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Abstract

Adequate diversity and abundance of native seed for large-scale grassland restorations

often require commercially produced seed from distant sources. However, as sourcing dis-

tance increases, the likelihood of inadvertent introduction of multiple novel, non-native weed

species as seed contaminants also increases. We created a model to determine an “optimal

maximum distance” that would maximize availability of native prairie seed from commercial

sources while minimizing the risk of novel invasive weeds via contamination. The model

focused on the central portion of the Level II temperate prairie ecoregion in the Midwest US.

The median optimal maximum distance from which to source seed was 272 km (169 miles).

In addition, we weighted the model to address potential concerns from restoration practition-

ers: 1. sourcing seed via a facilitated migration strategy (i.e., direct movement of species

from areas south of a given restoration site to assist species’ range expansion) to account

for warming due to climate change; and 2. emphasizing non-native, exotic species with a

federal mandate to control. Weighting the model for climate change increased the median

optimal maximum distance to 398 km (247 miles), but this was not statistically different from

the distance calculated without taking sourcing for climate adaptation into account. Weight-

ing the model for federally mandated exotic species increased the median optimal maximum

distance only slightly to 293 km (182 miles), so practitioners may not need to adjust their

sourcing strategy, compared to the original model. This decision framework highlights some

potential inadvertent consequences from species translocations and provides insight on

how to balance needs for prairie seed against those risks.

Introduction

Habitat restorations are increasingly used as a means to conserve species, enhance ecosystem

function, and respond to environmental changes [1]. Native plant species translocations (i.e.,

moving plant material from one part of a species’ range to another, primarily via seed) are one

of the primary tools used to restore grassland habitats [2]. Moving seed presents a variety of

concerns to restoration practitioners. For example, obtaining seed from sources close to a

planned restoration site (i.e., a local provenance strategy) is often recommended to maintain
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local adaptation and avoid outbreeding depression in both the translocated population and

nearby native populations of the same species [3]. Sourcing seed from locations with a histori-

cal climate that resembles anticipated future conditions from climate change has received

recent attention as a form of climate adaptation to preserve ecosystem function [4–6]. To date,

much of the academic literature regarding plant species translocations has focused on genetic

concerns, and that work has resulted in the main seed sourcing strategies presented to restora-

tion practitioners [4, 7].

Practitioners and seed commerce regulatory agencies have long recognized the risk of

introducing weedy, exotic plant species to a site or a landscape via contamination of commer-

cially produced seed [8], particularly for prairies or grasslands. The recent introduction of

Palmer amaranth (Amaranthus palmeri) in the upper Midwest exemplifies this threat [9].

Palmer amaranth is an agricultural weed common in the southern and southwestern United

States [10] that has developed resistance to several herbicides [11]. It was likely introduced to

the Upper Midwest as a contaminant of native seed produced outside the region, which was

brought into the region for use in prairie conservation plantings [12]. Had seed been sourced

closer to the restoration sites, Palmer amaranth likely would not have entered the region

through this pathway. Thus, the distance between the range of a potentially new exotic species

and a restoration site substantially affects the degree of risk associated with plant transloca-

tions, via the potential for an exotic species to be a contaminant of native seed lots produced

within, but then planted outside of, its current range. Indeed, many agencies recommend or

require sourcing native seed from as close as possible to a restoration site, partly out of concern

over the introduction of novel weeds [13–16].

Requiring that seed be sourced locally to a restoration site, while having numerous benefits,

can be challenging for practitioners with respect to the diversity, abundance, and cost of native

seed [e.g.,16, 17]. Ethically harvesting native seed from the wild is limited to the species already

present on a local landscape and to only a fraction of the seed they produce per season [18–

20]. Commercial production of native species is limited by the available knowledge of their

biology [19] and to species that can be profitably grown in agricultural-like conditions [21].

Thus, while increasing the acceptable seed sourcing distance from a restoration site increases

the risk of introducing a new exotic species, it also increases native seed availability (diversity

and/or abundance), via an increase in the number of natural or commercial sources of seed.

Good seed availability is essential for maximizing species diversity in grassland restorations,

which can increase resilience and decrease invasibility [22, 23].

Here, we present the results of a decision framework that balances the increased risk of

introducing new exotic species to a landscape associated with moving plant seed greater dis-

tances, with the increase in commercial seed availability that also comes with expanding the

acceptable sourcing distance. First, we developed a geospatial model to identify an optimal

maximum distance for sourcing native prairie species’ seed in the upper Midwest. Our model

was parametrized with the locations of native plant species’ seed producers and the geographic

distributions of exotic species that have the potential to invade the region. Second, we interpret

the results of our model in relation to other common concerns among restoration practition-

ers, including risk associated with facilitated migration in sourcing based on climate change,

and exotic species with a federal mandate for control. We use these concerns to provide exam-

ples of how our model recommendations could be incorporated into a practitioner’s larger

seed sourcing or invasive species risk management decision-making processes. Together, these

two parts create a decision framework that first uses an evidence-based tool, then provides

guidance for incorporating that tool’s empirical results into the complexity of grassland resto-

ration implementation and management. This guidance complements, but does not substitute

for, seed sourcing recommendations based on genetic adaptation.
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Methods

Model

Overview. The goal of the model was to quantitatively balance two primary concerns that

restoration practitioners consider when making seed provenance choices: the availability of

native plant species seed and the risk of inadvertently introducing a new exotic plant species as

a seed contaminant. To do this, we compiled two georeferenced datasets within our focal

region in the upper Midwest USA and south-central Canada. The focal region for identifying

native seed production locations was delineated as a one US-state or Canadian-province buffer

around the five states in which our model’s sampling region was located. Our model’s sam-

pling region was delineated as the Level II Temperate Prairie Ecoregion [24, 25] within the

upper Midwest US states of Minnesota, Iowa, North Dakota, South Dakota, and Nebraska (Fig

1). We postulated that as the distance from a restoration site increases: 1) the total number of

seed production locations available to a practitioner increases, thus the availability of native

seed increases; but, 2) the total number of exotic species within that distance also increases;

thus, the risk of introducing a new invader increases and the safety associated with that seed

decreases (Figs 2 and S1). The model was parametrized with the known locations of native

plant species’ seed producers and the geographic distributions of exotic species that have the

potential to invade the region. Using linear approximations, the model quantitatively inte-

grates the distance between randomly sampled hypothetical restoration sites (Fig 1) and pro-

duction locations (availability) or exotic species’ range edges (risk). Our result identified an

optimal maximum distance (km) within which native plant species’ seed could be sourced

such that seed availability is maximized while the risk of introducing new exotic species to the

region is minimized.

Data collection. We searched ten sources (S1 Table) for native-seed production compa-

nies within our focal region. To be included in our model, a company had to grow or wild-har-

vest seed from native plant species that would be appropriate for a grassland-style planting

(e.g., native roadside plantings, prairie restorations) in our model’s sampling area. Companies

that did not produce seed or wild-harvest seed (i.e., they re-distribute seed purchased whole-

sale) were excluded because they did not have a production location that could be spatially ref-

erenced. We contacted each company to ensure they met the above criteria. We identified 46

production companies that operated 50 production locations (Fig 3). Some production loca-

tions did not have a physical address (e.g., when the location was an agricultural field with no

associated structures). Those locations were recorded as the center of the nearest township.

Addresses or townships were georeferenced using Google Earth Pro (7.3.2), then exported to

ArcGIS (10.6, ESRI, Redlands, CA). Because location information could include proprietary

information about a given producer, we could not publicly release this data. We acknowledge

that some grassland species’ seed appropriate for native plantings in our area are produced

outside our focal region [26]. A nationwide assessment was beyond the scope of our study.

We created 500 hypothetical restoration sites (hereafter ‘restoration sites’) as points ran-

domly chosen within the Level II Temperate Prairie Ecoregion within the upper Midwest US

(hence the model’s sampling region; Fig 1). The points were stratified such that the number of

points in each state is proportional to the area within each state classified as Temperate Prairie.

We used seven sources (S2 Table) to compile a list of exotic plant species identified as nox-

ious weeds, federally or at the state-level, within at least one of the five states in our model’s

sampling region. Using that list, we visually assessed each species’ county-level distribution

based on three sources [10, 27, 28]. A species was removed from consideration if none of the

sources showed it to be within our focal region, or if it was unlikely (<30% of the time; [29]) to

be considered a ‘new’ invader (i.e., already within 25 miles (40.2 km) of a restoration site. We
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adopted a strict definition of ‘new’ (25 miles, 40.2 km) to represent similar definitions of local

seed sourcing we found to be common among our practitioner colleagues. Next, we restricted

the exotic plant species used to: 1) species capable of moving with native species’ seed as con-

taminants (i.e., reproduce by seed), 2) terrestrial, herbaceous species, as aquatic and woody

exotic species are not typically weed species of concern in agricultural-like production fields,

and 3) are problematic in open, grassland-like habitats (i.e., are not shade-loving, such as

Alliaria petiolata, garlic mustard). Forty-seven exotic species met the above criteria. For those

species, county-level occurrence data were collected (or converted to county-level from point

data) from 31 sources, primarily databases, and primary and grey literature found using the

species’ name and ‘distribution’ as search terms connected with ‘AND’ on Web of Science (©
2019 Clarivate) and Google (S3 Table). Data were collected directly in ArcGIS whenever

Fig 1. Geographic scope of the analyses. The focal region for identifying native seed production locations was delineated as a one US state or Canadian province

buffer around the Level II Temperate Prairie Ecoregion within the upper Midwest USA, which is our sampling region. The map shows the final 483 hypothetical

restoration sites (filled black circles) that were used in our analyses. Seed production locations and exotic species distributions were obtained for the focal region of the

study. US state and county data are publicly available from the US Census Bureau and are not subject to copyright (https://www.census.gov/geographies/mapping-

files/time-series/geo/carto-boundary-file.2017.html). Canadian province data are publicly available through Statistics Canada and also are not subject to copyright

(https://www150.statcan.gc.ca/n1/en/catalogue/92-160-X).

https://doi.org/10.1371/journal.pone.0248583.g001
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possible, otherwise data were georeferenced using Google Earth Pro, then exported to ArcGIS.

These data are publicly available through ScienceBase [30].

Analyses. We used logistic regression [31] to relate the cumulative probability of occurrence,

either of a production location or exotic species, to distance from a restoration site. The line that

relates the probability of occurrence of a seed production location to distance from a restoration

site is a measure of availability. We took the complement of the probability of a weed being pres-

ent as a metric of safety and solved for the distance where the availability and safety lines inter-

sected. That distance is the ‘optimal maximum distance’, the maximum distance from a

restoration site for sourcing native plant species’ seed to minimize the risk of introducing a new

exotic species while retaining as much seed availability as possible. We ran a series of simulations

to determine how the number of exotic species per restoration site affected variation about the

slope and intercept of logistic regressions. Based on those simulations (S1 Appendix), we set a

minimum sample size of 25 new exotic species per restoration site. Seventeen restoration sites did

not meet this minimum and were removed. Note, these sites clustered in southeastern Nebraska

(Fig 1), and the results from that region should be interpreted with caution. Using the remaining

483 restoration sites, we extracted the straight-line distance in kilometers from each restoration

site to each production location, and from each restoration site to the edge of the nearest county

containing an occurrence for each exotic species (see S2 Appendix for each species’ distribution

map). Each restoration site was given a unique identifier allowing the two distances to be linked

during analyses and the spatial reference maintained for presenting results.

Optimal maximum distances were calculated for each of the 483 restoration locations,

mapped in ArcGIS, and solutions for all other possible locations were interpolated by using

the IDW (inverse distance weighted) tool with default settings in ArcGIS.

Randomization tests. Two randomization tests were performed individually to assess the

effects of each real dataset, production locations and exotic species’ distributions, on optimal

maximum distances. For production locations, 50 random points were chosen within our focal

region and the entire analysis was re-run using those points in place of the real production

Fig 2. Conceptual description of the approach to determine the maximum optimal distance for sourcing seed. As the distance from a restoration site increases:

1) the total number of seed production locations available to a practitioner increases, thus the availability of native seed increases (right graphic); but 2) the total

number of exotic species within that distance also increases, thus the risk of introducing a new weedy invader increases (left graphic). Our model found a balance

point between seed availability and weed risk by: 1) taking the complement of the weed risk curve, 2) fitting a logistic regression to each curve, then 3) finding the

distance at which the two lines intersect. We called that distance the ‘optimal maximum distance’ and define it as: the maximum distance from a restoration site for

sourcing native plant species’ seed in order to minimize the risk of introducing a new exotic species while retaining as much native species’ seed availability as

possible.

https://doi.org/10.1371/journal.pone.0248583.g002

PLOS ONE Balancing the need for seed against invasive species risks in prairie habitat restorations

PLOS ONE | https://doi.org/10.1371/journal.pone.0248583 April 7, 2021 5 / 17

https://doi.org/10.1371/journal.pone.0248583.g002
https://doi.org/10.1371/journal.pone.0248583


locations, while maintaining each restoration site’s real exotic species data. For exotic species

distributions, we created a new dataset for each restoration site by randomly sampling the entire

exotic species dataset without replacement, the same number of times as the sample size of each

site. So, each restoration site had a new set of randomly selected species and distances, but a

given species could occur more than once for an individual restoration site. The entire analysis

was re-run using the revised exotic species dataset in place of the real exotic species data, while

maintaining each restoration site’s real production location data. Optimal maximum distances

obtained with random production locations or random exotic species were compared to actual

data with Welch’s t-test. The goal of these analyses was to ensure that our results were not an

artifact of measuring several distances within a defined area; results provided insight on the

importance of production locations or exotic species’ distributions, but did not measure the rel-

ative contribution of each to the models compared to one another.

Fig 3. Data used to parameterize the model. The 50 production locations (filled black stars) are operated by 46 native seed production companies used in this study.

Color shading by county indicates the total number of exotic species that would be new to each county within our focal region (‘new’ defined in text). The exotic

species data are presented in aggregate here, however the data were used at the species level (S2 Appendix). US state and county data are publicly available from the US

Census Bureau and are not subject to copyright (https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.2017.html). Canadian

province data are publicly available through Statistics Canada and also are not subject to copyright (https://www150.statcan.gc.ca/n1/en/catalogue/92-160-X).

https://doi.org/10.1371/journal.pone.0248583.g003
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Scenarios for alternative restoration practices

Sourcing via facilitated migration to address climate change predictions. To assess

facilitated migration as a sourcing option in anticipation of warming due to climate change,

we altered both the exotic species data and production data to reflect sourcing of seed south of

a given restoration site. For each restoration site, we calculated the absolute geodesic angle

from a given restoration site to each exotic species and to each production location (where 0˚

= North, +/-180˚ = South). All exotic species and production locations with absolute geodesic

angles less than 90˚ were removed from the analysis. We removed restoration sites with fewer

than 25 exotic species or 25 production locations from consideration, to maintain the same

standards as in earlier renditions of the main model. With this exercise we were asking if the

optimal maximum distance changes if seed sourcing follows a simplified facilitated migration

strategy that assumes seeds will be sourced south of the restoration site. It provides one exam-

ple of how practitioners might source for adaptation to climate change and the implications

for importing exotic weeds.

Cost of control of exotic species. Another concern expressed by managers regarding

inadvertent exotic species introduction is the cost associated with a federal mandate for its

control under the Federal Noxious Weed Act. Within each set of exotic species for a given res-

toration site, all exotic species not listed as a federal noxious weed were removed from the

dataset, and those that were on the list and known to invade row crop agriculture, pastures,

rangeland, natural areas, or grasslands were retained for analysis. As with the original and cli-

mate-change models, we retained only those restoration sites with 25 or more exotic species

for subsequent analysis. With this exercise, we are asking if the optimal maximum distance

changes when we include only those species with a potential ‘cost’ associated with a federal

mandate for control.

Results

Model

To determine the optimal maximum distance from a given restoration site where sourcing

native plant species’ seed minimizes the risk of introducing a new exotic species, we used linear

approximations to calculate attributes we defined as safety and availability; the optimal maxi-

mum distance is the intersection of the two logistic regressions. Our logistic regression analy-

ses for safety and availability for all restoration sites in the model had R2 values between 0.723–

0.972 (safety) and 0.880–0.986 (availability). The optimal maximum distance within our study

area ranged from 220–653 km in a right-skewed distribution (Fig 4A) with a median value of

272 km (169 miles). The optimal maximum distance is lowest in the southern half of our focal

region and increases somewhat radially from there (Fig 5A). Notably, production locations

and exotic species are generally more concentrated in the southern half of our focal region (Fig

3).

To test if availability assessments and corresponding estimates of optimal maximum dis-

tance were sensitive to production locations, 50 random locations were selected within the

focal region (Fig 3; note that we zoomed in on the sampling region to better compare effects of

model scenarios). The most noticeable differences between the randomly chosen locations and

the real production locations (Fig 3) are that the clump of actual production locations in Iowa

and southern Minnesota is lost and that fewer fall within the model’s sampling region. In this

randomization test, the range of the optimal maximum distances was slightly decreased (239–

565 km) and the median was slightly increased (298 km) in comparison to the real result (Fig

4B compare to Fig 4A). The spatial structure of the results does not substantially change, but
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Welch’s t-test indicates that optimal maximum distance results are affected by the true coordi-

nates of the production locations (t = -2.992, df = 941.35, p = 0.003). The area where the

Fig 4. Histograms of modeled results estimating the optimal maximum distance from a given restoration site

where sourcing native plant species’ seed minimizes the risk of introducing a new exotic species. Modeled results

to show central tendency (medians as dotted line) and range. A) Result for the main analyses. B) Results from the

randomization test for the production locations across the focal region. C) Results from the randomization test for the

exotic species new to each site.

https://doi.org/10.1371/journal.pone.0248583.g004
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optimal maximum distance is lowest retracts (Fig 5B compare to Fig 5A). Because actual pro-

duction locations are more concentrated in the southern portion of the focal region (Fig 3),

when production locations are chosen at random, the distance to a production location would

increase, resulting in greater optimal maximum distance values, especially for the southern res-

toration sites.

We assessed the contribution of exotic species’ ranges to the model by creating a new exotic

species dataset for each restoration site and randomly sampling the entire dataset without

replacement, the same number of times as the exotic species’ sample size of each site. The

entire analysis was re-run using those datasets in place of the real exotic species data, while the

actual production location data was retained. The frequency distribution of the optimal maxi-

mum distances is less right-skewed when the exotic species’ data are randomized compared to

the real result (Fig 4C compare to Fig 4A). Again, the range is reduced (210–449 km) and

there is a slight increase in the median (282 km) compared to the original model (272 km).

However, here Welch’s t-test indicates the means of the two models are different (t = 4.4561,

df = 704.03, p< 0.0001). With randomized exotic species, the area where the optimal maxi-

mum distance ranges from 221–280 km retracts slightly compared to the main model, while

Fig 5. Maps of modeled results to show the spatial distribution of optimal maximum distance values across the

sampling region. Those values were interpolated across the sampling region using the inverse distance weighted

(IDW) tool in ArcGIS and binned by manual intervals to allow for comparison among maps. A) Interpolation of the

main results. B) Results from the randomization tests for the production locations across the focal region. C) Results

from the randomization test for the exotic species new to each site. US state and county data are publicly available from

the US Census Bureau and are not subject to copyright (https://www.census.gov/geographies/mapping-files/time-

series/geo/carto-boundary-file.2017.html). Canadian province data are publicly available through Statistics Canada

and also are not subject to copyright (https://www150.statcan.gc.ca/n1/en/catalogue/92-160-X).

https://doi.org/10.1371/journal.pone.0248583.g005
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the areas with an optimal distance between 281–400 km greatly expand. This expansion is the

likely cause of the increased median distance. The north-south gradient remains with exotic

species randomization, but the optimal maximum distance is greatly reduced in the northwest

portion of our sampling region, compared to the main model (Fig 5C compare to Fig 5A).

Together, these results indicate that our model is sensitive to both the distances between resto-

ration sites and exotic species’ range edges and the distances between restoration sites and

seed production locations.

Other restoration practitioner concerns

Sourcing via facilitated migration to address climate-change predictions. Because prac-

titioners may choose to use a facilitated migration seed sourcing strategy in anticipation of

warming due to climate change, we modified both exotic species and production data such

that sourcing of seed would only take place south of a given restoration site. In requiring seed

sources to be south of a given restoration site and focusing on exotic weeds in those areas the

optimal maximum distance range contracted from the original model (with facilitated migra-

tion: 228–584 km; original model: 220–653 km), and the median increased substantially from

272 km to 398 km (Fig 6B). The increase in the median is likely a result of the removal of many

of the restoration plots from the southern region, due to inadequate sample sizes, where values

of the maximum optimum distance were on the lowest end of the range from the original

model (Fig 7A; e.g., below 280 km). Welch’s t- test indicates that optimal maximum distance

results of the climate change model do not differ from the main model when comparing sites

present in both models (t = -1.510, df = 371.88, p = 0.132).

Cost of control of exotic species. Removing exotic species that are not federally noxious

from the model resulted in a slight increase in the median of the optimal maximum distance

from 272 km to 283 km (Fig 6C). However, as with the facilitated weighting exercise, we lost a

substantial number of restoration sites from the model in order to retain a minimum of 25

exotic species per site; 146 sites remained after exclusion. Similarly, there also was a contrac-

tion of the range in optimal maximum distance values (202–507 km) when compared to the

original model. The gradient from low-high optimal maximum distance values persists, when

moving from the southeast to the northwest corner of the sampling region, (Fig 7B)

Discussion

Seed sourcing guidelines

Seed source recommendations among agencies can vary widely, from “local” recommenda-

tions of<42 km (25 miles) to historical recommendations of up to 482 km (300 miles) away

[32]. Most, however, do not give a definitive distance threshold to follow [but see 15, 30].

Instead, recommendations often include adherence to local ecotypes and avoidance of agro-

nomic and horticultural cultivars [14, 33, 34], to preserve long-term fitness of extant popula-

tions that are (presumed to be) best adapted to the site [15]. While use of locally sourced seed

in close proximity to a restoration is seen as ideal, there are often limitations on species avail-

ability in quantities needed for large-scale restorations. Using cultivated seed, often sourced

from greater distances, increases availability but comes with increased risk of introducing

exotic, invasive species’ seed into grassland restorations. Results from our analyses offer guid-

ance on minimizing risk of exotic species’ introduction, while maximizing native seed

availability.

Our model results suggest that, across our sampling region, an optimal maximum seed

sourcing distance of 272 km, or approximately 170 miles, could reduce the risk of introducing

a new exotic plant species as a contaminant of native species’ seed, while retaining as much
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seed availability as possible, measured as the number of acceptable production locations. That

median value well represents most of the optimal maximum distance values calculated by our

model, despite a long tail of higher values (Fig 4A). Those higher values were clustered spatially

at the northern edge of our sampling region along the Canadian border (Fig 5A). While it is

Fig 6. Frequency histograms of optimal maximum distances (medians as dotted line) for A) the baseline model that

relies on locations for 50 seed production areas and 47 weed species; B) a model for facilitated migration, restricting

seed production areas and weed species to those south of a restoration site; and C) a model that allows all current seed

production areas but focuses on federally listed noxious weed species.

https://doi.org/10.1371/journal.pone.0248583.g006
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Fig 7. Maps of modeled results to show the spatial distribution of optimal maximum distance values across the

sampling region in the facilitated migration and cost of control weighting exercises. Those values were interpolated

across the sampling region by using the inverse distance weighted (IDW) tool in ArcGIS. A) Results for facilitated

migration exercise, where all exotic species and production locations north of a given restoration site were removed

from analysis. B) Results for the cost of control exercise, retaining only those exotic species with a federal mandate to

control and that are known to invade one of three habitats: row agriculture crops, rangeland/pasture, or natural

habitat/grassland. US state and county data are publicly available from the US Census Bureau and are not subject to

copyright (https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.2017.html).

Canadian province data are publicly available through Statistics Canada and also are not subject to copyright (https://

www150.statcan.gc.ca/n1/en/catalogue/92-160-X).

https://doi.org/10.1371/journal.pone.0248583.g007
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possible that there are fewer exotic species invading our sampling region from the north, this

pattern is also likely in part due to occurrence data for exotic plant species being much less

available from Canada (e.g., Rhaponticum repens in Appendix B). The lowest optimal maxi-

mum distance values are located in the southern half of our sampling region (Fig 5A). The ran-

domization tests support that this area experiences both high pressure from nearby new exotic

species, as can be seen when the spatial structure of the production locations is removed (Fig

5B), and high seed availability from nearby commercial production locations, as can be seen

when the exotic species data are generated randomly (Fig 5C). Therefore, that is the region

where it is most critical, but also most feasible, to source seed within our model’s suggested

median optimal maximum distance.

When weighting our model for facilitated migration, the median optimal maximum dis-

tance increased from 272 km to 398 km (169–247 miles), when compared to the original

model. However, in this exercise many of our random restoration sites were removed from

consideration after either exotic species or production areas north of a given restoration site

were removed from the analysis. The majority of restoration sites removed due to insufficient

(<25) exotic species after weighting were from the southern half of our sampling region; this

makes sense given how the data for the study were structured. Our emphasis was the Level II

Temperate Prairie Ecoregion within the upper Midwest US. Exotic plant species certainly

occur farther south of this region but were not included in this study due to logistical con-

straints. Further, we did not include seed production sites that are farther south than our focal

region. Thus, our data quality standards dictated, appropriately, that we not forecast an opti-

mal maximum distance for facilitated migration events in these southerly locations. Maintain-

ing a strict minimum sample size allowed for better fit of linear models and greater precision

in determining a specific intersection point between safety and availability. Despite the large

increase in the median optimal maximum distance from this exercise (398 km, or 247 miles),

the area for which we had enough data to interpolate remains relatively unchanged from the

original model (compare Figs 7A–5A) and analyses suggest no significant difference from the

main model. Because the southeast portion of our study region lacks sufficient data to interpo-

late optimal maximum distances, it may be best to take a conservative approach to sourcing

from the minimum end of the optimal maximum distances from this weighting exercise (228

km, or 141 miles). The ability to do so will depend on sufficient availability of seed sources

south of a given restoration site.

In addition to facilitated migration, restoration practitioners also expressed concern about

federally listed noxious weeds, for which control is required, as compared to non-native inva-

sive weeds in general. We addressed this by retaining only those exotic species with a federal

mandate to control and known to invade row crop agriculture, pasture or rangeland, or grass-

lands, in our model; this approach to weighting substantially reduced the number of non-

native, invasive species under consideration. The range of optimal maximum distances con-

tracted compared to the original model (202–507 km) and only 146 random restoration sites

remained for interpolation. Like the climate-change weighting exercise, restoration sites from

the southern end of the sampling area were removed from consideration due to low sample

sizes after removal of those exotic species with no associated mandated “cost.” However,

despite the minimal change from the original model’s median optimal maximum distance

(283 km or 175 miles), there is a noticeable visual shift in the optimal maximum distance cate-

gories, particularly on the lower end of the range in western Minnesota and northern Iowa

(Compare Figs 5A–7B). Given this overall expansion of the lower end of the range of optimal

maximum distances, one might again consider a conservative approach to sourcing seed from

the lowest end of the categories provided (181–220 km, or 112–137 miles) in those areas for

which no data for interpolation is available.

PLOS ONE Balancing the need for seed against invasive species risks in prairie habitat restorations

PLOS ONE | https://doi.org/10.1371/journal.pone.0248583 April 7, 2021 13 / 17

https://doi.org/10.1371/journal.pone.0248583


Caveats

It is important to note that the above findings apply to the linear distance between a restora-

tion site (or any native planting site) and the site where the seed used in that planting was

grown, in the Level II Temperate Prairie Ecoregion within the upper Midwest. We believe this

method provides a useful conceptual starting point for other regions, but formal testing of the

approach was beyond the scope of the study. Application of the method requires knowledge of

where plants for restorations are being produced, where exotic species that could be moved

with those plants might be found, and where future restoration activities might occur. We can-

not comment on the applicability of the method to other systems (e.g., forests or wetlands) as

additional caveats beyond our experience may apply. To date, seed sourcing guidelines for

native plant species are largely based on the linear, or sometimes ecological, distance between

a restoration site and the genetic origin of the seed used in the planting [7, 15]. As such, many

seed labeling and certification regulations for native seed require the genetic origin to be

reported [35], not the location where the seed lot was grown. Thus, practitioners attempting to

incorporate the findings provided here will likely have to request this additional information

during the seed bidding process. However, labeling the location where seed was grown or

wild-harvested has been required by law in the United States for agricultural or silvicultural

seed for decades [8]. Thus, we anticipate this information will be available from seed suppliers

upon request.

Testing commercial seed lots for the presence of noxious weed seeds is also required by law

[8, 36]. This testing helps to ensure good field hygiene and seed cleaning procedures by grow-

ers and is a critical layer of protection for consumers. However, only a limited number of

exotic species’ seed are regulated via testing, and the list of species’ seed that are prohibited or

restricted varies by state [36]. Thus, while this regulation certainly helps prevent the spread of

well recognized or highly noxious species, it does not provide comprehensive protection

against seed-lot contamination by the many potentially problematic, exotic invaders encroach-

ing on any given landscape.

Numerous idiosyncratic factors affect the true probability that a weed contaminant will be

present in a seed lot. Such factors include the abundance of different weed seeds at the time of

harvest, the efficiency with which weeds are removed by various post-harvest cleaning tech-

niques, and the potential for contaminated seed lots to be detected during seed testing and reg-

ulatory inspections. Each of these factors is influenced by numerous other variables that may

change over time (e.g., weed densities and weather conditions in production areas, efficiency

of weed management, timing of harvest, size and shape of weed seeds, etc.). We consider

efforts to account for all of these variables to be untenable. Our abstraction of the problem

assumes a constant, non-zero probability of introduction for each exotic weed species that

could occur in a production area. Thus, as additional exotic weed species are encountered, the

probability that at least one of these species is present in a shipment of seed increases. Our

analysis provides an empirical estimate of the rate at which new weed species might be

encountered as distance from a restoration site increases and a baseline against which future

analyses might be compared.

Conclusion

Here we presented results from a decision framework in which we sought to quantitatively

find the balance between two primary concerns of grassland restoration practitioners: 1. Avail-

ability of native prairie seed and 2. Risk of unintentional introduction of novel, invasive seed

via contamination. Our analyses indicated that seed obtained from no more than 272 km from

a prairie restoration site would balance these objectives. If a strategy of facilitated migration is
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pursued to adapt to anticipated future climate change, this distance would increase to 398 km

to maintain current levels of seed availability. Our results are consistent with several current

recommendations/requirements for maximum seed-sourcing distances in the sampling region

but are more transparent in their derivation. We hope these results provide practical guidance

to public entities that support prairie restorations and valuable insights to restoration practi-

tioners about the potential hazards of importing seeds from long distances.

Supporting information

S1 Fig. Maximum optimal distance for sourcing seed from a hypothetical restoration site.

A logistic regression was fit to seed availability and the complement of weed risk. The ‘optimal

maximum distance’ is the distance at which these two regressions intersect and is represented

by a circle with an “X” strike-through on the x-axis.

(TIF)

S1 Appendix. Determining the number of ‘new’ exotic species needed per restoration site.

(DOCX)

S2 Appendix. Maps of each species’ county-level distribution used in this study. Bold black

lines are borders of the US states or Canadian provinces of our study’s focal region. Thin black

lines are the borders of the counties (USA) or census tracts (Canada). The crosshatched area is

the Level II Temperate Prairie Ecoregion within the upper Midwest, which was used to delin-

eate our model’s sampling region. Darkened counties or census tracts are known occurrences

of the species in each map. A complete list of references used to gather distribution data is pro-

vided in S3 Table.

(DOCX)

S1 Table. National and regional websites, databases, reports and publications document-

ing commercial sources for native plant species’ propagation materials.
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S2 Table. Sources for state and federal noxious weed lists.
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S3 Table. Total list of species used in the analyses for this study; sources used to obtain

exotic species occurrence data is listed in endnotes.
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