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Non-invasive prenatal diagnosis (NIPD) holds great promise to
increase the options for women seeking prenatal testing, as it
combines the benefits of earlier sampling in pregnancy with
absence of procedure-related risk to the fetus. But all new
procedures have costs and, in an article published in Prenatal
Diagnosis last year, Verhoef et al.1 undertook a health
economic evaluation of NIPD in the UK. They noted that ‘In
[a] cash-constrained publicly funded health care system such
as the English NHS, decisions about the broad programme of
NIPD tests are likely to be largely dependent upon their relative
costs’ and advocated that ‘careful audit of any NIPD service
should be put in place from the outset’. Here, we wish to
highlight that in prenatal testing for the (remote) possibility
of sibling recurrence of so-called paternal age effect (PAE)
disorders (such as achondroplasia, thanatophoric dysplasia
and Apert syndrome), such NIPD (estimated cost of £550 per
procedure) is already taking place (including in the authors’
own institution), without the health economic case having
been clearly assessed. We believe that if such an assessment
was undertaken, this particular use of NIPD may be difficult
to justify at current prices.

To explain and clarify our point of view, we note that there
are three different contexts in which NIPD may take place
because an increased risk of a dominant genetic disorder is
suspected in the fetus2: (1) one of the parents is themselves
affected (risk 50%); (2) fetal abnormality is detected (risk
depends on positive predictive value of test/findings); and (3)
a sibling of the fetus has an apparently sporadic dominant
mutation (risk is related to the possibility of gonadal mosaicism
in one of the parents). Our concerns relate to this third
scenario: Whilst studies of gonadal mosaicism suggest an
overall risk of 1–2% for point mutations3 and up to 4% for
chromosomal rearrangements4 (cost £13 750–£55 000 per case
detected, economically justified), in the specific context of
PAE disorders, the risk is likely to be at least an order of
magnitude lower, so the economic argument is much more
finely balanced.

What do we mean by a ‘PAE disorder’? We previously
highlighted5 that a small number of dominant genetic

conditions, most commonly caused by mutations in the genes
FGFR2, FGFR3, HRAS, KRAS, PTPN11, and RET, show a striking
combination of epidemiological and molecular features that
distinguish them from the bulk of disease-causing mutations.
Briefly summarised, these features comprise (1) a very high
apparent germ line mutation rate, (2) extreme bias towards a
paternal origin of mutations, (3) markedly elevated age of the
healthy father (this is the PAE by which these disorders are
collectively known) and (4) the causative mutations confer
gain-of-function to the encoded proteins, which are involved
in signalling through the growth factor receptor-RAS-
mitogen-activated protein kinase (MAPK) pathway. An
alternative collective term is ‘RAMP’ (recurrent, autosomal
dominant, male-biased, PAE).6 We have demonstrated that
PAE disorders arise in testes by clonal expansion of rare
mutations along segments of seminiferous tubules, through a
mechanism termed selfish spermatogonial selection.7,8 This
process occurs during adulthood; hence, despite positive
selection, the mutations never attain the levels in sperm
associated with classical gonadal mosaicism, which arises
during early embryonic development. For example, in a total
of 909 published measurements in sperm of four different
PAE mutations causing Apert syndrome,9,10 thanatophoric
dysplasia11 or Costello syndrome,12 the highest specific
mutation level measured in any sample was 1 in 1380.10

In the context of NIPD, the unique characteristics of PAE
disorders make them particularly suited to its use and
(potentially) misuse. Indeed, stimulated by the knowledge that
PAE mutations are the most common de novo germ line
mutations in the human genome, have a narrow mutation
spectrum and originate nearly exclusively from the healthy
father, specific assays for several of these disorders were amongst
the first to be reported (for achondroplasia/FGFR3,2,13,14

thanatophoric dysplasia/FGFR32,14 and Apert syndrome/
FGFR2).2 Based on scrutiny of the indications for NIPDpresented
in these reports2,14 as well as in the article by Verhoef et al.,1 it is
apparent that in many instances, NIPD has been performed to
detect recurrence of a de novo mutation (indication 3 earlier),
rather than because of 50% prior risk or fetal abnormality.
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What is the evidence base to justify NIPD for sibling
recurrence in PAE disorders owing to the risk of parental
confined gonadal mosaicism in one of the parents? We do
not argue that this cannot occur; we are aware of eight reports
of proven gonadal mosaicism for a recognised PAE
mutation,15–22 although in only four of those16,18,21,22 was the
mutation occult (that is, not also detectable in a parental blood
sample). Rather, rare mosaic cases become swamped out in
PAE disorders by the much more frequent process of adult
male-driven PAE mutation, so the relative risk of high-level
mosaicism is substantially lower than for usual, non-PAE
mutations (Figure 1). It is difficult to accurately determine the
relative risk, because for the rare reported mosaic events, the
denominator (total de novomutations from which those events
were sampled) is unknown. The only large empiric study that
we are aware of, in achondroplasia, found a single recurrence
(not molecularly proven) in 443 siblings (~0.2%).23 A simple
calculation based on the known biology of PAE disorders
would suggest that the risk of mosaicism is inversely
proportional to the elevation in mutation rate owing to selfish
selection. For common PAE disorders, the multiplier for the
mutation rate ranges from 10 to >100, so that the relative risk
of mosaicism would be one tenth to one hundredth the usual
risk, or 0.2–0.02%. Put another way, using the number needed
to treat (NNT), a common metric in drug trials and health
economics, the NNT for NIPD applied to detection of sibling
recurrence of common PAE mutations is likely to range from
the hundreds to the thousands. At these extremely low risk
levels, the apparent benefits of a negative NIPD for maternal
‘reassurance’ and avoidance of additional sonographic
screening later in the pregnancy2 are actually rather

misleading, because this may divert attention from the
substantially higher 2–3% baseline risk of serious congenital
or genetic disorder faced in all pregnancies, and for which
normal screening recommendations should still apply.

In conclusion, we urge that clinical geneticists, genetic
counsellors, obstetricians and midwives should have greater
awareness of the distinct biological features of PAE mutations
(Figure 1) when counselling about the sibling recurrence risk
after the birth of a child with one of these de novo mutations
and (after confirming the absence of the mutation in parental
blood samples) reassure the couple that the recurrence risk is
extremely low. Given that the risk of causing the miscarriage
of a healthy fetus likely exceeds the risk of the PAE disorder
being tested for, we believe that invasive prenatal diagnosis
to look for sibling recurrence of a PAE mutation is difficult
to justify on medical, ethical or economic grounds. Whether
NIPD is justified in the same context is not clear and should
be the subject of further debate and research. What is clear
is that the prospective collection of NIPD data should
distinguish this from other indications for testing, which
would provide the opportunity to measure the NNT in an
empirical setting.

Looking to the future, we previously highlighted5 that PAE
mutations have characteristics that could make them ideally
suited to implementing non-invasive screening (as opposed
to targeted testing) in harness with screening for Down
syndrome.24 Recently, a commercially available screening test
(PreSeek™) has appeared on the market that apparently
includes several PAE mutations; as yet we are unaware of
published data supporting the sensitivity and specificity of this
new application.

Figure 1 Diagrammatic representation of the effect of paternal age effect (PAE) mutations on the proportion of cases of gonadal mosaicism.
Number of mutations is proportional to area of boxes. Although mosaicism (grey and black boxes) may still occur at the background
frequency, its relative prevalence is substantially diluted out for PAE compared with typical mutations, because selfish spermatogonial selection
strongly enriches for sporadic mutations (unfilled boxes) originating from the father. In the example shown, ~90% of mutations are attributable
to the PAE, but for the most abundant mutations (such as those causing achondroplasia, thanatophoric dysplasia or Apert syndrome), the effect
may be more than an order of magnitude greater. The table insert lists the most common congenital disorders caused by PAE mutations.
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