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A B S T R A C T   

The search for effective treatment against novel coronavirus (COVID-19) remains a global challenge due to 
controversies on available vaccines. In this study, data of SARS coronavirus 3C-like protease (3CLpro) inhibitors; 
a key drug target in the coronavirus genome was retrieved from CHEMBL database. Quantitative Structure- 
Activity Relationship (QSAR) studies, Molecular docking, Absorption-Distribution-Metabolism-Excretion- 
Toxicity (ADMET) and molecular dynamics simulation (MDS) were carried out using these 3CLpro inhibitors. 
QSAR model constructed using the data had correlation coefficient R2 value of 0.907; cross-validated correlation 
coefficient Q2 value of 0.866 and test set predicted correlation coefficient R2

pred value of 0.517. Variance 
inflation factor (VIF) values for descriptors contained in the model ranged from 1.352 to 1.68, hence, these 
descriptors were orthogonal to one another. Therefore, the model was statistically significant and can be used to 
screen and design new molecules for their inhibitory activity against 3CLpro. Molecular docking showed that 
seven of the compounds (inhibitors) used in the study had a remarkable binding affinity (− 9.2 to − 10.3 kcal/ 
mol) for 3CLpro. ADMET study revealed that five (CHEMBL Accession IDs 19438, 196635, 377150, 208763, and 
210097) of the seven compounds with good binding ability obeyed Lipinski’s rule of five. Hence, they were 
compounds with drug-like properties. MDS analysis revealed that 3CLpro-compound 21, 3CLpro-compound 22, 
3CLpro-compound 40 complexes are very stable as compared to the reference 3CLpro-X77 complex. Therefore, 
this study identified three potent inhibitors of 3CLpro viz. CHEMBL194398, CHEMBL196635, and 
CHEMBL210097 that can be further explored for the treatment of COVID-19.   

1. Introduction 

Coronavirus re-emerged recently in the Wuhan region of China as a 
novel coronavirus (CoVID-19) causing severe upper respiratory tract 
infection with symptoms that include; fever, pneumonia, dyspnea, and 
asthenia reported by people in Wuhan [1–3]. Since then, the virus has 
spread to almost all countries in the world prompting several lockdown 
measures by governments to curb the spread of this disease. Even with 
increasing attention on the development of vaccines to stop the daily 
mortality recorded, all effort so far has proved abortive with about 98.2 
million reported cases and over 2.1 million deaths globally [4]. 

Coronavirus is a positive-stranded RNA virus with the largest 

genome of all know RNA viruses with a length of about 26–32 kb [5]. 
The coronavirus genome encodes 4 crucial structural proteins namely; 
the spike (S) protein, nucleocapsid (N) protein, membrane (M) protein, 
and the envelope (E) protein, all of which are essential for the produc-
tion of a structurally complete viral particle [6,7]. Besides encoding 
structural proteins, a significant part of the coronavirus genome is 
transcribed and translated into a polypeptide, which encodes proteins 
essential for viral replication and gene expression [8]. One of the 
best-characterized drug targets among coronaviruses is the 
chymotrypsin-like protease (3CLpro) [9]. Together with the papain-like 
protease (PLpro), 3CLpro is crucial for processing the translated poly-
proteins from the viral RNA [10]. The highly conserved 3CLpro 
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Table 1 
Accession ID, binding affinity, experimental and predicted PIC50 of 3C-like protease inhibitors.  

Comp. No CHEMBL Accession ID BA (kcal mol− 1) Exp. PIC50 Pred. PIC50 

1a CHEMBL45830 − 7.0 4.32 4.51 
2 CHEMBL118596 − 7.2 4.30 4.35 
3 CHEMBL358279 − 8.5 6.43 5.96 
4 CHEMBL348660 − 7.7 4.9 5.36 
5 CHEMBL148483 − 6.1 4.15 4.04 
6 CHEMBL1518673 − 7.1 4.48 4.32 
7 CHEMBL363535 − 8.1 4.83 5.10 
8 CHEMBL187266 − 7.5 4.44 4.62 
9 CHEMBL188487 − 7.8 5.03 5.20 
10 CHEMBL426082 − 8.0 4.88 5.44 
11 CHEMBL365134 − 7.9 6.01 5.54 
12 CHEMBL187579 − 8.6 5.14 4.88 
13 CHEMBL185698 − 7.7 4.87 5.15 
14 CHEMBL187598 − 8.0 5.32 5.76 
15a CHEMBL188983 − 7.9 4.63 5.39 
16 CHEMBL187717 − 8.6 5.70 5.32 
17a CHEMBL365469 − 7.9 4.95 5.43 
18 CHEMBL190743 − 7.6 6.02 5.90 
19 CHEMBL370923 − 8.4 4.76 4.53 
20 CHEMBL191575 − 7.9 4.90 5.19 
21 CHEMBL194398 − 10.3 4.35 4.11 
22 CHEMBL196635 − 9.6 4.15 4.05 
23a CHEMBL377150 − 9.8 5.00 4.73 
24 CHEMBL210092 − 8.6 4.96 4.62 
25a CHEMBL210525 − 6.7 4.6 4.96 
26 CHEMBL379727 − 6.8 4.72 4.97 
27 CHEMBL209227 − 8.0 4.85 4.95 
28 CHEMBL210497 − 8.9 4.40 4.54 
29 CHEMBL210632 − 8.5 4.22 3.96 
30 CHEMBL207207 − 7.6 4.00 4.32 
31 CHEMBL208763 − 9.5 4.82 4.73 
32a CHEMBL208584 − 6.7 4.52 3.87 
33 CHEMBL208732 − 8.7 5.52 5.46 
34a CHEMBL209287 − 5.4 4.18 3.22 
35a CHEMBL383725 − 8.0 5.96 5.33 
36a CHEMBL210612 − 7.7 4.4 4.61 
37 CHEMBL380470 − 8.4 4.35 4.46 
38a CHEMBL210487 − 8.9 4.22 3.83 
39 CHEMBL378674 − 8.2 4.92 5.28 
40a CHEMBL210097 − 9.5 4.82 5.88 
41 CHEMBL209667 − 8.9 4.82 4.69 
42 CHEMBL212218 − 9.2 6.52 6.23 
43 CHEMBL427404 − 7.7 5.30 5.24 
44 CHEMBL212190 − 7.6 5.00 4.84 
45 CHEMBL211969 − 8.2 4.89 4.58 
46a CHEMBL378700 − 7.3 4.82 3.71 
47a CHEMBL212019 − 6.6 4.80 4.09 
48 CHEMBL212399 − 7.2 4.74 4.54 
49a CHEMBL384739 − 7.2 4.82 5.14 
50 CHEMBL215732 − 8.2 4.8 5.06 
51 CHEMBL215733 − 6.5 4.74 5.07 
52 CHEMBL375130 − 6.8 4.7 4.75 
53 CHEMBL214372 − 5.3 4.4 4.44 
54 CHEMBL212240 − 7.3 4.8 4.47 
55a CHEMBL377253 − 7.7 4.8 4.28 
56 CHEMBL215397 − 7.3 4.6 4.59 
57 CHEMBL378342 − 10.0 4.49 4.18 
58 CHEMBL379642 − 6.8 5.52 5.53 
59 CHEMBL212454 − 8.4 6.05 6.50 
60 CHEMBL213581 − 7.3 5.22 5.49 
61 CHEMBL380403 − 8.1 4.92 5.16 
62a CHEMBL212504 − 7.8 4.89 4.32 
63a CHEMBL215254 − 8.4 4.58 4.72 
64 CHEMBL222769 − 8.0 7.2 6.61 
65a CHEMBL222840 − 6.1 7.22 6.04 
66 CHEMBL426898 − 7.7 6.77 7.14 
67a CHEMBL222234 − 6.1 7.3 5.98 
68a CHEMBL225515 − 7.3 7.19 6.79 
69 CHEMBL222893 − 7.7 7.02 6.64 
70 CHEMBL222628 − 6.0 6.57 6.49 
71a CHEMBL222735 − 6.2 6.47 6.35 
72a CHEMBL1358724 − 7.9 5.11 4.79 
73 CHEMBL2146517 − 8.5 4.87 4.96  

a
= Test set compounds; BA - Binding affinity; Exp. PIC50 - Experimental IC50; Pred. PIC50 - Predicted IC50. 
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consisting of about 306 amino acids, is a key enzyme for coronavirus 
replication. Consequently, it is a vital target for the development of 
vaccines against coronavirus. 

The design and development of pharmaceutical agents for the con-
trol of coronavirus infections is of utmost importance in our world and 
scientist are leaving no stone unturned in this endeavor. To this effect, 
scientists are into the traditional methods of obtaining new drugs by 
screening numerous compounds (either synthesized or extracted 
phytochemical agents) using non-living systems or simplified living 
systems such as rats, until a suitable lead is identified. These processes 
are the arbiter of truth in any scientific stride; however, they are time- 
consuming and costly. Any procedure that can assist in reducing the 
cost, time and still maintain scientific integrity is a welcome develop-
ment. This is where computer-aided drug design methodologies (quan-
titative structure-activity relationship (QSAR), molecular docking, 
molecular dynamics simulation, and so on) comes in. 

QSAR establishes a mathematical relationship between chemical 
structures of compounds with defined biological activity and their bio-
logical activities. This relationship can be used to screen or design new 
molecules for better biological activity [11]. QSAR is an effective 
method for optimizing or correlating specific structural features or 
molecular descriptors like polarizability, lipophilicity, electronic and 
steric properties within an analogous series of molecules with their 
biological activities [12]. Also, molecular docking elucidates the binding 
of small compounds (drugs or ligands) with a known macro-molecular 
target (receptor) [13]. Chemical structures with the inhibitory activity 
against 3C-like protease deposited in the CHEMBL database were used in 
this study with the aim of developing a QSAR model that will reveal the 
structural feature of the molecules that relates to their inhibitory ac-
tivity. Besides, molecular docking was carried out to show the interac-
tion between the compounds and amino acids in the binding pocket of 
3CLpro. Compounds with the most negative binding affinity were sub-
jected to ADMET studies followed by a 100 ns molecular dynamics 
simulation to determine the stability of the lead compounds. 

2. Material and methods 

2.1. Experimental data 

Seventy-three (73) compounds with SARS coronavirus 3C-like pro-
tease (3CLpro) inhibitory activity retrieved from the CHEMBL database 
were used as a dataset in this study. The inhibitory activities of the 
dataset compounds were presented as IC50 (nM). SDF files of these 
compounds were retrieved with DataWarrior version 5.2.1 software and 
their biological activity data (IC50) were converted to PIC50 values 
presented in Table 1 using equation (1) below:  

PIC50 = (9 – Log IC50)                                                                    (1)  

2.2. Geometry optimization and molecular descriptor calculation 

The geometries of the spatial data (SDF) files of the dataset com-
pounds were optimized in order to make the conformations have the 
least potential energy using the GROMOS96 force field in Swiss-PDB 
viewer [14]. The optimized structures were imported into 
PaDEL-Descriptors [15], which calculated about 1875 molecular de-
scriptors for each molecule. The calculated descriptors and their corre-
sponding activity values for each molecule were arranged in an n × m 
matrix format (Supplementary Table 1). This constituted the dataset 
used in the study, where n is the number of molecules and m is the 
number of descriptors. 

2.3. Normalization of descriptor and data division 

Descriptor values were normalized to values between 0 and 1 using 
equation (2) below in order to convert them to values with a similar unit 
which is needed for regression analysis and to reduce skewness in the 
measured values [16]. 

XI =
Xmax − X

Xmax − Xmin
(2) 

In equation (2), XI is the scaled descriptor value, Xmax and Xmin 
represent maximum and minimum descriptor values respectively in a 
column. The normalized descriptors and the activity values were ar-
ranged in a matrix as the dataset. The dataset of 73 molecules was 
divided into 51 training sets and 22 test sets using the Kennard-Stone 
algorithm available in Dataset Division GUI v1.2 software. The 
training set was used for model development, while the test set was used 
for the validation of the developed model. 

2.4. Variable selection and model construction 

The selection of combinations of important descriptors that best 
explain the variability in the activity values of the compounds was done 
using a genetic algorithm (GA) which divides the descriptors into proper 
subsets from where models can be generated. Multiple linear regression 
(MLR) method available in MLRplus Validation 1.3 software was used to 
construct the model. 

2.5. Model validation 

The quality of the model developed in this study was assessed using 
validation parameters calculated by the MLRplus Validation 1.3 soft-
ware. These parameters include determination coefficient R2, adjusted 
determination coefficient R2

adj, Variance ratio F, Standard errors of es-
timate SEE, and Golbraikh and Tropsha criteria for an acceptable model 
[17]. 

Furthermore, co-linearity between the descriptors contained in the 
model was checked using the descriptors correlation matrix and their 
corresponding variance inflation factor. The model variance inflation 
factor (VIF) also known as inverse of tolerance [18] was calculated using 
the equation below: 

VIF =
1

1 − R2
j

(3) 

In equation (3), R2
j, is the coefficient of determination of the 

regression of descriptor j on other descriptors contained in the model. 

2.6. Model applicability domain 

A model cannot be used to predict the biological activity for the 
entire chemicals in the universe except for those in its region of reliable/ 
acceptable prediction, which is defined in terms of descriptors contained 
in the model. This region is known as the applicability domain (AD) of 
the model. In this study, the AD of the developed model was defined 
using the extent of the extrapolation method. This method employs 
leverage h values of dataset molecules and the standardized prediction 
residual (SDR) of the models to define their AD. The result of this 
method is often visualized by the plot of h versus SDR (Williams plot). 

Leverage h is a special type of distance measures used to show 
similarity/dissimilarity among objects and it’s obtained as the diagonal 
element of a hat matrix H: 

H=X
(
XTX

)− 1
.XT (4) 

In equation (4), X is the model’s descriptor matrix and XT is the 
transpose of matrix X. Generally, AD of models in the study was defined 
by a square area with vertical boundary 0 <hi < h* and horizontal 
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boundary − 3 < SDR <3, where hi’s were molecules leverages values and 
h* was the models warning leverage expressed as: 

h∗ =
3(k + 1)

n
(5) 

In equation (5), k is the number of descriptors in the model, and n is 
the number of training set molecules. Standardized residual (SDR) was 
calculated with the equation below: 

SDR=
Yobs −  Ypred
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n

i=1(Yobs −  Ypred)
2

n

√ (6) 

In equation (6), Yobs  and  Ypred are observed and predicted response 
respectively for either training or test set molecules, n is the number of 
dataset molecule. 

2.7. Molecular docking studies 

2.7.1. Protein preparation 
The crystal structure of SARS coronavirus 3C-like protease with PDB 

ID 6W63 was retrieved from the protein databank (www.rcsb.org). The 
structure was prepared by removing existing ligand and water molecules 
while missing hydrogen atoms were added using Autodock version 4.2 
program, Scripps Research Institute [19]. Thereafter, non-polar hydro-
gens were merged while polar hydrogens were added to the protein and 
subsequently saved into pdbqt format for molecular docking. 

2.7.2. Ligand preparation 
The smiles strings of seventy-three (73) potential inhibitors of 

3CLpro were retrieved from the CHEMBL database using DataWarrior 
software [20]. The structures of this compound were generated with the 
aid of ChemSketch, (Version 14.01) using the SMILES obtained earlier. 
The compounds were thereafter converted to PDB chemical format in 
order to create ligand binding groups using Open babel [21]. Thereafter, 
the PDB structure of 3CLpro co-crystalized ligand N-(4-tert-butylphe-
nyl)-N-[(1R)-2-(cyclohexylamino)-2-oxo-1-(pyridin-3-yl)ethyl]-1-
H-imidazole-4-carboxamide (X77) was retrieved from the PubChem 
database (https://pubchem.ncbi.nlm.nih.gov/) to serve as the reference 
compound. Polar hydrogen charges of the Gasteiger-type were assigned 
and the nonpolar hydrogens were merged with the carbons and the in-
ternal degrees of freedom and torsions were set to zero. The compounds 
were further converted to pdbqt format using Autodocktools [22]. 

2.7.3. Molecular docking study 
Docking of the ligands to 3CLpro and determination of binding af-

finities was carried out using VINA [23]. Pdbqt format of the receptors 
and ligands were dragged into their respective columns and the software 
was run. The grid center for docking was set as X = − 4.70, Y = − 20.17, 
Z = 25.47 with the dimensions of the grid box, 67.84 × 46.83 × 72.30 
for 3CLpro. A cluster analysis based on Root Mean Square Deviation 
(RMSD) values, with reference to the starting geometry, was subse-
quently performed and the lowest energy conformation of the more 
populated cluster was considered as the most trustable solution. The 
binding affinities of compounds for 3CLpro were recorded. The com-
pounds were then ranked by their affinity scores and molecular in-
teractions between the receptors and compounds with remarkable 
binding affinity were viewed with Discovery Studio Visualizer and 
PoseView [24]. 

2.7.4ADMET. study 
The seven lead compounds identified in molecular docking studies 

were subjected to Absorption, Distribution, Metabolism, Excretion, and 
Toxicity (ADMET) studies to determine the drug-likeness of the com-
pounds. ADMET studies were carried out using the Swiss online ADME 
web tool [25–27] to determine the pharmacokinetic properties of the 
lead compounds while the US Food and drug administration toxicity risk 

predictor tool OSIRIS evaluated various toxicity risks properties such as 
tumorigenicity, mutagenicity, irritation, and reproductive development 
toxicity. 

2.8. Molecular dynamics simulation 

Molecular dynamics simulation was employed to validate the dock-
ing analysis and quantify the conformational changes of 3CLpro and 
3CLpro-screened compound complexes. The dynamics package GRO-
MACS 5.0.7 [28] was used to simulate the system wherein the CHARMM 
36 force field was used [29]. Using transferable intermolecular potential 
water molecules (TIP3Pmodel), the water molecules were added [30], 
and then neutralization of the complex was achieved by adding Na+ at 
310 K temperature. For energy minimization of the complex, the peri-
odic boundary condition was retained where the Particle Mesh Ewald 
(PME) approach with the steepest descent algorithm was used for the 
measurement of long-range electrostatic interaction using the Verlet 
cutoff scheme at 10 kJ mol− 1. A dodecahedral simulation box was 
developed to simulate the complex that was 10 Å greater than the 
complex. The Berendsen thermostat has been used to monitor the tem-
perature of the simulation system. Initially, the protein-ligand complex 
and apo-protein structure were cleaned and equilibrated in two stages 
by the steepest gradient approaches (5000 ps); NVT and NPT ensemble. 
Lastly, constant temperature and pressure of 300 K and 1 atm were 
maintained for all the systems subjected to the production MD of 100 ns. 
The simulation time was maintained using the Parrinello–Rahman with 
a time step of 2fs for constant pressure simulation. To evaluate the 
result, the simulation trajectory was saved for every 100 ps. 

The simulation results were incorporated with the GROMACS default 
script. Finally, MD trajectories were evaluated for the measurement of 
Root-mean-square-deviation (RMSD), Root-mean-square-fluctuation 
(RMSF), Radius-of-gyration (Rg), Solvent-accessible-surface-area 
(SASA), Hydrogen bonds (H-bonds), and principal component analysis 
(PCA). This was worked out to measure the strength of the protein- 
ligand interaction. In order to get a more accurate MD simulation 
result, each complex was run three times (n = 3) and the average result 
was used for analysis. 

To calculate the binding free energy, the molecular mechanics 
Poisson–Boltzmann surface area (MMPBSA) approach was used [31]. 
The MD trajectories were processed before doing MMPBSA calculations. 
Binding free energy calculations include free solvation energy (polar +
nonpolar solvation energies) and potential energy (electrostatic en-
ergies + van der Waals interactions). In the following equation, the 
whole process of MMPBSA can be summarized:  

ΔGbind = ΔGcomplex(minimized)- [ΔGligand(minimized) + ΔGreceptor(minimized)]  

ΔGbind = ΔGMM + ΔGPB + ΔGSA-TΔS                                                   

Here, the sum of van der Waals and electrostatic interaction is 

Table 2 
Molecular descriptors used in this study.  

Symbol Description Type 

AATS8v Average Broto-Moreau autocorrelation - lag 8/ 
weighted by van der Waals volumes 

2D autocorrelation 

AATS3i Average Broto-Moreau autocorrelation - lag 3/ 
weighted by first ionization potential 

2D autocorrelation 

MATS6c Moran autocorrelation - lag 6/weighted by 
charges 

2D autocorrelation 

GATS8e Geary autocorrelation - lag 8/weighted by 
Sanderson electronegativities 

2D autocorrelation 

BCUTp- 
1h 

nlow highest polarizability weighted BCUTS 2D-Matrix based 
descriptor 

ZMIC2 Z-modified information content index 
(neighborhood symmetry of 2-order) 

Information content 

VE1_D Coefficient sum of the last eigenvector from 
Barysz matrix/weighted by atomic number 

2D-Matrix based 
descriptor  
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ΔGMM, the polar and non-polar solving energies are ΔGPB and ΔGSA, 
and the entropic contribution is TΔS. For average binding energy mea-
surements, the ‘python’ script provided in g_mmpbsa was used. For MM- 
PBSA measurement, the last one ns MD trajectory files were considered. 

3. Results and discussion 

3.1. Qualitative structure-activity relationship 

The QSAR model produced by the genetic algorithm-multiple linear 
regression method (GA-MLR) used in this study was represented by 

equation (7). The model validation parameters were also presented 
below.  

PIC50 = 5.531(±0.286) + 1.824(±0.214)ALogP2 + 2.209(±0.191)AATS8v – 
1.324(±0.206) AATS3i + 1.107(±0.156)MATS6 – 1.227(±0.237)GATS8e – 
1.648(±0.227)BCUTp-1h – 1.448(±0.273)ZMIC2 – 1.229(±0.163)VE1_D(7) 

Internal Validation Parameters: SEE = 0.256; R2 = 0.907; R2
adj =

0.890; F = 51.397; Q2 = 0.866; R2
m(loo) = 0.817; ΔR2

m(loo) = 0.0497. 

Table 3 
Model’s descriptors correlation matrix and variance inflation factors.   

ALogp2 AATS8v AATS3i MATS6c GATS8e BCUTp-1h ZMIC2 VE1_D VIF 

ALogp2 1        1.480 
AATS8v 0.054 1       1.647 
AATS3i 0.025 − 0.176 1      1.468 
MATS6c 0.078 − 0.019 − 0.159 1     1.085 
GATS8e − 0.056 − 0.341 − 0.246 0.142 1    1.352 
BCUTp-1h 0.483 0.142 − 0.290 0.040 − 0.124 1   1.681 
ZMIC2 0.311 0.454 − 0.070 − 0.054 − 0.135 0.330 1  1.666 
VE1_D 0.172 0.220 − 0.291 − 0.081 − 0.106 0.295 − 0.082 1 1.385  

Fig. 1. Predicted inhibitory activity against the experimental inhibitory activity of dataset compounds.  

Table 4 
Y-randomization of the model.  

MODEL TYPE R R2 Q2
LOO 

Original 0.953 0.907 0.866 
Random 1 0.236 0.056 − 0.412 
Random 2 0.397 0.157 − 0.256 
Random 3 0.349 0.122 − 0.446 
Random 4 0.230 0.053 − 0.302 
Random 5 0.332 0.110 − 0.437 
Random 6 0.358 0.128 − 0.259 
Random 7 0.316 0.100 − 0.296 
Random 8 0.430 0.185 − 0.314 
Random 9 0.287 0.082 − 0.532 
Random 10 0.288 0.083 − 0.237 
Random Models Parameters 
Average R 0.380 
Average R2 0.180 
Average Q2

(LOO) − 0.239 
cRp

2 0.854  

Fig. 2. Williams plot showing the standardized residuals versus 
leverage values. 
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External Validation Parameters: R2
pred. = 0.517; Ṙ2

m(test) = 0.514; r2 

= 0.609; r0
2 = 0.568. 

Golbraikh and Tropsha acceptable model criteria’s:  

1. Q2 = 0.866, Passed (Threshold value: Q2 > 0.5).  
2. r2 = 0.609, Passed (Threshold value: r2 > 0.6).  
3. |r0

2-r’02| = 0.013, Passed (Threshold value |r02-r’02|<0.3).  

4. k = 1.045 and [(r2-r0
2)/r2] = 0.067, Passed (Threshold value: 

[0.85<k < 1.15 and ((r2-r0
2)/r2) < 0.1].  

5. OR k ’ = 0.94289 and [(r2-r’02)/r2] = 0.0873, Passed (Threshold 
value: 0.85<k’<1.15 and ((r2-r’02)/r2) < 0.1)) 

In equation (7), the alphanumeric terms in the RHS were molecular 
descriptors (molecular properties encoded in numerical forms) 

Table 5 
Binding affinity, hydrophobic interactions, hydrogen bonds, and hydrogen bond distance of selected compounds to 3C-like protease.  

Comp No CHEMBL ID Binding Affinity (kcal/mol) Hydrophobic interaction Hydrogen bonds Hydrogen bond distance (Å) 

S X77 − 10.1 His41, 
Cys44, 
Met49, 
Cys145 

Gly143 2.11 

21 CHEMBL194398 − 10.3 Tyr239, 
Leu287 

Tyr237 3.59 

22 CHEMBL196635 − 9.6 Val171, 
Ala193 

Lys137, Thr199, 
Thr196, 
Asn238 

3.00, 
2.06, 
2.11, 
2.04 

23 CHEMBL377150 − 9.8 His41, 
Cys44, 
Met49 
Arg118, 
Asp187 

Tyr54, 
Thr24, 
Met49, 
Arg188, 
Asn119, 
Gly143 

3.24 
2.96 
2.40, 
2.16 
2.19 

31 CHEMBL208763 − 9.5 Tyr237, 
Tyr239, 
Leu272, 
Leu287 
Lys137 

Asp197 3.33 

40 CHEMBL210097 − 9.5 Val171 
Ala194, 
Leu287 

Gly275, 
Leu272 

2.01 
2.19 

42 CHEMBL212218 − 9.2 Met49, 
Pro168 

Thr25, 1.98 

57 CHEMBL378342 − 10.0 Pro108, 
Ile200, 
Val202, 
His246, 
Ile249 

Glu240 2.32  

Fig. 3. Cartoon view of the distribution of X77 and seven other ligands in the binding domains of 3C-Like protease.  
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contained in the model which were found to be correlated with the 
inhibitory activity of 3C-like protease inhibitors (PIC50) used in this 
study. The details of each descriptor used in this study are presented in 
Table 2. The numbers in the parenthesis were the standard deviation of 
their coefficients. The equation contained 8 descriptors, the maximum 
ratio of a model descriptors to the number of training set was not 
violated [32,33]. In addition, the model’s determination coefficient R2 

was greater than the adjusted R2, therefore, the model was not 
over-parameterized [34]. 

The model determination coefficient R2 was 0.907 which explained 
over 90% of the variation in the activity values of dataset compounds. 
The high Fisher F value of 51.397 indicated that the variation in the 
activity values explained by the collective descriptors contained in the 
model was more than could be reasonably attributed to chance. The 
model cross-validation correlation coefficient Q2 value was 0.866 and its 
modified correlation coefficient R2

m(loo) was 0.817. These values were 
greater than 0.5 indicating the model was stable. 

The model’s descriptors correlation matrix and VIF values presented 
in Table 3 revealed that inter-correlation between any two descriptors 
contained in the model was less than 0.5, which implied the descriptors 
were orthogonal to one another and multi-collinearity problem does not 

exist in the model. VIF value for each descriptor was less than10 which 
further confirmed the orthogonal nature of the descriptors and absence 
of multi-collinearity problem [18,35]. 

The predictive power of the model was further validated by its 
application to predict the activity values of test set compounds and it 
was found that its predicted determination coefficient for test set R2

pred 
was 0.517. This indicated that observed and predicted activity data for 
the test set by the model were well correlated and the model had good 
predictive power [16,34] as reflected in Fig. 1. Y-randomization analysis 
was performed on training set data to further confirm if the model ob-
tained was not a result of chance correlation. In this analysis, the 
response values of the dataset were randomly shuffled while the 
descriptor matrix was untouched, then MLR analysis was performed on 
the permuted dataset. The result of y-randomization analysis for the 
model presented in Table 4 showed that the determination coefficient 
R2, correlation coefficient R and the leave one out determination coef-
ficient Q2

LOO for the model were greater than 5 and that of the ran-
domized models. Furthermore, the model y-randomization parameters 
cRp

2 were greater than 0.5. These confirmed that the model was not a 
result of chance correlation [16,36]. 

The ability of the model to predict inhibitory activity value for test 

Fig. 4. Binding of ligands to 3CLpro, the interaction between amino acid in the binding site of 3CLpro and (a) X77 (b) compound 21 (c) compound 22 (d) compound 
23. Green dotted line represents hydrogen bond, faint green dotted line represents a carbon-hydrogen bond, the deep pink dotted line represents π-π stacking, the 
faint pink dotted line represents π-alkyl interaction, the purple dotted line represents π-sigma interaction, the red dotted line represents donor-donor interaction. 
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set data was further confirmed with the Golbraikh and Tropsha criteria 
for a satisfactorily external predictive model. As presented above, the 
result showed that the model passed all the criteria. Therefore, the 
model can be used to predict the inhibitory activity value of external 
data. In the criteria, r2 represent square correlation coefficients of the 
plot of observed versus predicted values for the test set with intercept, 
r2

0 is the square correlation coefficients between observed versus pre-
dicted values for the test set without intercept i.e. through the origin, 
r’20 is the reverse of r2

0, k is the slope of the plot of observed versus 
predicted values for the test set without intercept and k′ is the reverse of 
k. 

3.2. The model applicability domain 

The Williams plot showing the applicability domain of the model 
produced in this study was presented in Fig. 2. In the figure, AD of the 
model was defined by a square area bounded by 0 < h* less than 0.52 
and − 3 < SDR less than 3, where h* is the model’s warning leverage. As 
shown, almost all the data were within the model AD except for training 
set molecule 59 with a leverage value of 0.54. 

The result presented showed that there is no outlier molecule in the 
dataset because the standardized residual produced by the model for 
each compound was within the ±3 range. Molecule 59 was not an outlier 
but an influential molecule with a leverage value greater than the 
warning leverage h*. Generally, the model reported in this study had a 
good predictive ability and was well validated. Therefore, it can be used 
to design and screen new molecules for their inhibitory activity against 
3CLpro. 

3.3. Molecular docking studies 

Of the 73 ligands considered in this study, compounds 21, 22, 23, 31, 
40, 42 and 57 were selected based on their remarkable binding affinity 
of − 10.3, − 9.6, − 9.8, − 9.5, − 9.7, − 9.2 and − 10.0 kcal/mol respec-
tively for 3CLpro compared to the reference compound’s − 10.1 kcal/ 
mol (Table 5). Compounds 23, and 42 binds to the catalytic domain of 
3CLpro as seen with X77. Alternatively, compounds 21, 22, and 40 
occupied a distinct binding site spanning domain 1 and 2 while 57 
occupied regions spanning domain 2 and domain 3 but without inter-
action with any of the catalytic residues in domain 2 (Fig. 3). The 

Fig. 5. Binding of ligands to 3CLpro, the interaction between amino acid in the binding sites of 3CLpro and (a) compound 31 (b) compound 40 (c) compound 42 (d) 
compound 57. Green dotted line represents hydrogen bond, the faint green dotted line represents a carbon-hydrogen bond, the deep pink dotted line represents π-π 
stacking, the faint pink dotted line represents π-alkyl interaction, cyan dotted line represents π-fluoride interaction, the yellow dotted line represents π-Sulphur 
interaction, the red dotted line represents donor-donor interaction. 
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binding affinities obtained for this compounds were consistent with 
their predicted activity. 

The reference compound (X77) had formed predominantly hydro-
phobic interaction with His41, Cys44, Met49, and Cys145 in addition to 
a single hydrogen bond with Gly143 in the catalytic domain of 3CLpro 
(Fig. 4a). Compound 21 had a hydrophobic interaction with Tyr239 and 
Leu287 along with a donor-donor interaction with Thr199 and a carbon- 
hydrogen bond with Tyr237 (Fig. 4b). Compound 22 was visualized in 
mainly hydrogen bond formation with Lys137, Thr196, Thr199 and 

Asn238 while hydrophobic interactions with Val171 and Ala193 in a 
similar binding site with compound 21 (Fig. 4c). Hydrophobic interac-
tion was predominant in the binding of 23 to 3CLpro. Catalytic His41, 
Cys44, and Met49 participated in the hydrophobic interaction in addi-
tion to halogen bond formation with Asp187, Arg188, and a hydrogen 
bond formation with Tyr54, and carbon-hydrogen bond with Tyr54, 
Thr24, Met49, Asn119, Gly143, and Arg188 (Fig. 4d). 

The mode of interaction of compound 31 was basically via hydro-
phobic interaction as seen with Tyr237, Tyr239, Leu272, and Leu287 

Table 6 
ADMET properties of the seven lead compounds with notable binding affinity for 3C-like protease.  

Properties Compound 21 Compound 22 Compound 23 Compound 31 Compound 40 Compound 42 Compound 57 

Mw (g/mol) 580.67 558.67 509.95 422.89 525.33 459.18 588.63 
LogP 1.15 0.91 3.10 2.48 3.75 3.01 1.65 
HBA 8 8 7 5 8 9 11 
HBD 3 3 1 1 1 0 2 
Solubility (Log S) − 4.33 − 4.19 − 6.04 − 5.35 − 6.79 − 5.75 − 5.80 
Lipinski Violation 1 1 1 0 1 0 2 
Mutagenic No risk No risk No risk No risk No risk No risk No risk 
Tumorigenic No risk No risk No risk No risk No risk No risk Medium risk 
Irritant No risk No risk No risk No risk No risk No risk No risk 
Reproductive effect No risk No risk No risk No risk No risk Medium risk No risk 
Possible toxic fragment      

Mw - Molecular weight; LogP - Octanol/water partition coefficient; HBA - Hydrogen bond acceptor; HBD – Hydrogen bond donor. 

Fig. 6. Simulation result showing RMSD (A), RMSF (B), and Rg (C) plots of 3CLpro and 3CLpro-ligand complexes during the period of simulation.  
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and a single hydrogen bond with Asp197 (Fig. 5a). Compound 40 was 
visualized in a hydrophobic interaction with Val171, Ala194, Leu287, 
halogen bond formation with Leu271, and a carbon-hydrogen bond with 
Leu272 and Gly275 (Fig. 5b). The fluoride groups in compound 42 
played a significant role in halogen bond formation with catalytic His41, 
and Cys44 and a hydrogen bond with Thr25 (Fig. 4c). Hydrophobic 
interaction played a key role in the binding of compound 57 to 3CLpro. 
The compound interacted with Pro108, Ile200, Val202, His246, and 
Ile249 via hydrophobic (alkyl) bond formation (Fig. 5d). The residues 
involved in the binding of the seven selected compounds are listed in 
Table 5. 

The QSAR model generated in this study provides a valuable 
approach for ligand base design, while the molecular docking studies 
provide a valuable approach for structure base design. Previous studies 
[9,37,38] have reported the presence of three important domains in 

3CLpro. The 3CLpro domains 1 and 2 (residues 10–99 and 100–182, 
respectively) are six-stranded antiparallel β-barrels that contain the 
substrate-binding site between them. Domain 3 (residues 198–303), a 
globular cluster of five helices, is involved in regulating dimerization of 
the 3CLpro mainly through a salt-bridge interaction between Glu290 of 
one protomer and Arg4 of the other [39]. The binding of compounds 
identified in this study to domains 1 and 2 of 3CLpro jointly referred to 
as the N-terminal domain could be exploited in the treatment of coro-
navirus as the two domains host the complete catalytic machinery of the 
enzyme. Also, binding of the compounds to domain 3 residues would 
disrupt the dimerization of the enzyme. Consequently, a promising 
strategy might be established in which two separate inhibitors, one 
binding to the active site and another disrupting the dimerization 
interface on the extra domain (domain 3), are linked together to create a 
multifunctional inhibitor with significantly enhanced binding affinity 

Table 7 
The average values of different parameters, RMSD, RMSF, RG, SASA, Number of H-bond, and Gibbs Energy.  

S No. Protein/Protein-ligand 
complex 

Average RMSD 
(nm) 

Average RMSF 
(nm) 

Average RG 
(nm) 

Average SASA 
(nm2) 

Number of H- 
bond 

Gibbs Energy (kJ 
mol− 1) 

1 3CLpro 0.18 ± 0.03 0.09 ± 0.05 1.92 ± 0.13 –   
2 3CLpro-X77 (Reference) 

complex 
0.17 ± 0.02 0.13 ± 0.07 1.88 ± 0.26 149.29 ± 2.77 4 12.5 

3 3CLpro-compound 21 complex 0.20 ± 0.06 0.12 ± 0.08 1.67 ± 0.27 151.33 ± 2.75 4 14.8 
4 3CLpro-compound 22 complex 0.17 ± 0.02 0.10 ± 0.05 1.82 ± 0.21 158.04 ± 3.05 3 12.9 
5 3CLpro-compound 23 complex 0.20 ± 0.04 0.11 ± 0.08 1.90 ± 0.18 152.58 ± 4.85 3 13.5 
6 3CLpro-compound 31 complex 0.20 ± 0.03 0.10 ± 0.05 1.79 ± 0.21 153.63 ± 3.49 4 12.4 
7 3CLpro-compound 40 complex 0.15 ± 0.01 0.09 ± 0.04 1.72 ± 0.25 150.21 ± 2.55 4 12.9  

Fig. 7. Simulation result showing the number of H-bond (A), fluctuations in the solvent accessibility surface area (B), and Principal component analysis showing 
eigenvalues vs. first 40 eigenvectors (C) during the simulation period. 
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and specificity. 

3.4. ADMET studies 

Based on their remarkable binding affinity for 3CLpro, compounds 
21, 22, 23, 31, 40, 42, and 57 were subjected to ADMET studies to 
determine their drug-likeness. Compounds 31 and 42 had all their values 
within the acceptable range as postulated by the Lipinski rule of 5 
(Table 6). Also, compounds 21, 22, 23, and 40 had one violation each 
(Mw > 500 g/mol) which is acceptable. Lipinski’s rule states that, 
generally, an orally active drug has no more than one violation of the 
following criteria: (1) Not >5 hydrogen bond donors (nitrogen or oxy-
gen atoms with one or more hydrogen atoms). (2) Not >10 hydrogen 
bond acceptors (nitrogen or oxygen atoms) (3) A molecular mass < 500 
g/mol and (4) an octanol-water partition coefficient log P not greater 
than 5 [40]. Consequently, compound 57 was not considered for further 
studies due to two Lipinski violations i.e. Mw > 500 g/mol and HBA >10 
(Table 6). OSIRIS server identified 2, 4-dichlorotoluene scaffold in 
compound 42 as a possible mild anti-reproductive unit while the server 
also highlighted the presence of dapsone constituent in compound 57 
that is capable of mild tumorigenic effect (Table 6). 

3.5. Molecular dynamics simulation 

The docked 3CLpro-compound complexes were subsequently used to 
study the detailed dynamic, structural, as well as binding behaviors to 
know how it targets the active site of SARS-CoV2 3CLpro. 

3.5.1. RMSD, RMSF, and Rg of 3CLpro-compound complexes during MDS 
The MDS trajectories of 100 ns simulations were examined to study 

the detailed structural and dynamic mechanisms of the 3CLpro protein 

and 3CLpro-compound complexes. The RMSD, RMSF, Rg fluctuations 
profile of all systems during the period of 100 ns simulation are pre-
sented in Fig. 6. The RMSD of the backbone atoms computed over 100 ns 
revealed that the 3CLpro protein reached stability after approximately 
50 ns, whereas all the 3CLpro-compound complexes took only 5–10 ns to 
become stable (Fig. 6A) 3CLpro-X77 complex (reference) as well as all 
the 3CLpro-compound complexes were stabilized until the end of the 
MD production run and converged overall except 3CLpro-compound 21 
complex which is stable up to 90 ns and after that, it showed a little 
fluctuation of about 0.15–0.2 ns and become stable at the end. The 
average RMSD values of 3CLpro, 3CLpro-X77 complex, 3CLpro-com-
pound 21 complex, 3CLpro-compound 22 complex, 3CLpro-compound 
23 complex, 3CLpro-compound 31 complex, and 3CLpro-compound 
40 complex were found to be 0.18 nm, 0.17 nm, 0.20 nm, 0.17 nm, 
0.20 nm, 0.20 nm, and 0.15 nm, respectively (Table 7). Interestingly, the 
RMSD values of all the systems are very similar and do not exceed 0.2 
nm, which denotes the structural integrity of the 3CLpro protein. The 
RMSD profile suggested that upon compound binding no significant 
variation or conformational changes were taking place in the 3CLpro 
structure. 

Structural flexibility was evaluated by the residue-wise RMSF in 
3CLpro protein and 3CLpro-compound complexes. RMSF mainly spec-
ifies the flexible region of the protein and analyzes the portion that di-
verges from the overall structure. A higher RMSF value indicates greater 
flexibility (less stability) during the MD simulation while the lower value 
of RMSF reveals less flexibility (good stability) of the system. The 
3CLpro, 3CLpro-X77 complex, 3CLpro-compound 21 complex, 3CLpro- 
compound 22 complex, 3CLpro-compound 23 complex, 3CLpro-com-
pound 31 complex, and 3CLpro-compound 40 complex showed an 
average RMSF value of 0.09 nm, 0.13 nm, 0.12 nm, 0.10 nm, 0.11 nm, 
0.10 nm, and 0.09 nm, respectively (Table 7). All the 3CLpro-compound 

Fig. 8. Gibbs energy plot of (A) 3CLpro-X77 complex, (B) 3CLpro-Compound 21 complex, (C) 3CLpro-Compound 22 complex, (D) 3CLpro-Compound 23 complex, 
(E) 3CLpro-Compound 31 complex, and (F) 3CLpro-Compound 40 complex. 
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complexes exhibited overall lower RMSF than the 3CLpro-X77 complex 
during the simulation (Fig. 6B). The RMSF results predicted that all the 
3CLpro-compound complexes were stable and can act as potential drug 
candidates against SARS-CoV2. 

The Rg of the protein and protein-ligand complex indicates the de-
gree of compactness and rigidity of the protein. Therefore, we investi-
gated the Rg of 3CLpro and 3CLpro-compound complexes to know how 
they show their compactness during the simulation run. For this, we 
have calculated the Rg of 3CLpro and 3CLpro-compound complexes 
during the 100 ns simulation time. Fig. 6C showed that all the 3CLpro- 
compound complexes have almost similar stability as the 3CLpro protein 
and 3CLpro-X77 complex. The average Rg values of the 3CLpro and 
3CLpro-X77 complex were found to be 1.92 nm and 1.88 nm respec-
tively. Similarly, Rg values were found to be 1.67 nm, 1.82 nm, 1.90 nm, 
1.79 nm, and 1.72 nm for the 3CLpro-compound 21 complex, 3CLpro- 
compound 22 complex, 3CLpro-compound 23 complex, 3CLpro-com-
pound 31 complex, and 3CLpro-compound 40 complex, respectively 
(Table 7). From Rg profiles, it has been observed that the 3CLpro-com-
pound complexes exhibited a more compact behavior than the 3CLpro 
protein without ligand. The lower RMSD, reduced residue-wise fluctu-
ation, and higher compact nature in the 3CLpro-compound complexes 
indicate their overall stability as well as convergence. 

3.5.2. H-bonds, solvent accessible surface area, and PCA analyses of 
3CLpro-compound complexes 

The H-bonds are essential for drug specificity, metabolization, and 
stability. Therefore, the H-bonding pattern was evaluated to understand 
the H-bond and its contributions to the overall stability of the systems. 
From Fig. 7A, it can be observed that the maximum numbers of 

intermolecular hydrogen bond interactions were found to be 4 for, 
3CLpro-X77 complex, 3CLpro-compound 21 complex, 3CLpro-com-
pound 31 complex, and 3CLpro-compound 40 complex respectively, 
while, the 3CLpro-compound 22 complex, 3CLpro-compound 23 com-
plex formed 3 hydrogen bond interactions during the 100 ns simulation 
period. By analyzing the result, it was found that all 3CLpro-compound 
complexes did not deviate and almost similar numbers of hydrogen 
bonds were formed between the 3CLpro-compound complexes and 
3CLpro-X77 complex which indicates that all the compounds were 
bound to the 3CLpro as tightly and effectively as its standard inhibitor 
X77. This result reflects that the H-bonds probably played a crucial role 
in the stability of the 3CLpro-X77 complex during the simulation and 
also indicates stability to the 3CLpro-compound complexes. Fig. 7B 
showed that the SASA of 3CLpro-X77 complex and 3CLpro-compound 
complexes. The average SASA values were found to be 158.04 nm2 for 
3CLpro-compound 22 complex, 153.63 nm2 for 3CLpro-compound 31 
complex respectively. 3CLpro-compound 21 complex (151.33 nm2), 
3CLpro-compound 23 complex (152.58 nm2), and 3CLpro-compound 40 
complex (150.21 nm2) was found to have a slightly similar SASA value 
compared to the 3CLpro-X77 complex which showed the average SASA 
value of 149.29 nm2. However, after 40 ns 3CLpro-X77 complex as well 
as all the 3CLpro-compound complexes showed almost similar surface 
area (Fig. 7B). The results showed a similar assessable surface area of 
compounds to the reference X77 in the aqueous system which indicates 
equivalent stability of compounds with 3CLpro as X77. 

PCA analysis was performed to get insights into the correlation of 
atomic motions in the protein-ligand interaction, which was obtained 
from the significant motion of atoms regulated by the secondary struc-
ture of a protein. Typically, the overall motion of the protein subspace 

Table 8 
Table displaying binding energy of 3CLpro-compound complexes obtained by MM–PBSA.  

S No. Protein/Protein-ligand 
complex 

Van der Waal 
Energy 
(KJmol− 1) 

Electrostatic 
Energy (KJ mol− 1) 

Polar salvation energy (KJ mol− 1) SASA energy (KJ mol− 1) Binding Energy (KJ mol− 1) 

R 3CLpro -X77 complex − 114.85 ± 8.88 − 8.42 ± 6.92 81.55 ± 11.92 − 15.657 ± 1.025 − 57.380 ± 9.773 
1 3CLpro-compound 21 complex − 112.59 ± 8.72 − 13.90 ± 8.01 88.28 ± 13.74 − 15.199 ± 1.494 − 53.415 ± 10.654 
2 3CLpro-compound 22 complex − 93.1 ± 18.14 − 20.05 ± 1.03 77.97 ± 40.20 − 12.302 ± 2.176 − 47.490 ± 34.959 
3 3CLpro-compound 23 complex − 27.24 ± 8.26 − 2.62 ± 11.15 6.07 ± 47.33 − 4.210 ± 1.751 − 28.003 ± 48.454 
4 3CLpro-compound 31 complex − 0.23 ± 0.22 0.10 ± 1.43 8.86 ± 60.08 0.010 ± 1.502 8.739 ± 60.651 
5 3CLpro-compound 40 complex − 111.82 ± 17.44 − 14.84 ± 9.42 71.04 ± 20.59 − 14.801 ± 2.107 − 70.419 ± 11.211  

Fig. 9. The contributions of individual amino acid residues of 3CLpro to the total binding.  
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where the majority of the protein dynamics occur is defined by only the 
first few eigenvectors. For this study, the stable PCA clusters for the 
3CLpro-X77 complex and 3CLpro-compound complexes were visualized 
and analyzed (Fig. 7C). The figure shows the eigenvalues from the 
diagonalization of the covariance matrix of atomic motions and the 
corresponding eigenvector for 3CLpro-X77 and 3CLpro-compound 
complexes. Here, the first 40 eigenvectors were selected to calculate 
collective motions. It was analyzed that out of the selected eigenvectors, 
the first ten eigenvectors accounted for 74.59% in 3CLpro-X77 complex, 
81.35% in 3CLpro-compound 21 complex, 71.10% in 3CLpro-compound 
22 complex, 77.46% in 3CLpro-compound 23 complex, 68.68% in 
3CLpro-compound 31 complex, and 63.44% in 3CLpro-compound 40 
complex of overall collective motions, respectively. All the studied 
3CLpro-compound complexes showed very similar dynamic motions as 
reference complex. So we can conclude that all compounds showed 
fewer motions and form very stable complexes with 3CLpro. 

3.5.3. Gibbs free energy analyses of 3CLpro-compound complexes 
The Gibbs energy plots were generated from the PC1 and PC2 co-

ordinates and are shown in Fig. 8. In these plots, ΔG values ranging from 
0 to 12.5 kJ mol− 1, 0–14.8 kJ mol− 1, 0–12.9 kJ mol− 1, 0–13.5 kJ mol− 1, 
0–12.4 kJ mol− 1, and 0–12.9 kJ mol− 1 for 3CLpro-X77 complex, 3CLpro- 
compound 21 complex, 3CLpro-compound 22 complex, 3CLpro-com-
pound 23 complex, 3CLpro-compound 31 complex, and 3CLpro-com-
pound 40 complex, respectively. All the 3CLpro-compound complexes 
represent significantly similar energy as the 3CLpro-X77 complex, which 
indicates that these compounds follow the energetically favorable 
transitions during the MDS. 

3.5.4. Binding free energy calculations in 3CLpro-compound complexes 
To determine how strongly compounds bind to 3CLpro and their 

respective associated binding modes, the binding free energies were 
calculated using the MM-PBSA approach. The MD trajectories were 
analyzed through MM-PBSA to know the binding free energy values and 
their energy component. For this purpose, the last ns trajectory was 
investigated to calculate binding energies and insights into the binding 
modes of compounds with 3CLpro. The reference molecule X77 was 
found to display binding energy of − 57.380 kJ mol− 1 for 3CLpro 
(Table 8). Computation of the binding energy of compounds for the 
3CLpro revealed that compound 40, 21, and 22 exhibited a higher af-
finity − 70.419 kJ mol− 1, -53.415 kJ mol− 1, and -47.490 kJ mol− 1 

respectively, while compound 23 and 31 displayed a lower affinity 
− 28.003 kJ mol− 1and 8.739 kJ mol− 1 respectively for the 3CLpro. The 

detailed study of the individual energy components revealed that all 
components including the van der Waals energy, Electrostatic Energy, 
and SASA energy, except the polar solvation energy contributed to the 
efficient binding of compounds with 3CLpro. 

The comprehensive study shows that all three compounds have very 
good binding efficiency against the 3CLpro. From the overall RMSD, 
RMSF, Rg, SASA, hydrogen bonds, PCA, and binding free energy analysis 
results, we conclude that 3CLpro-compound 21, 3CLpro-compound 22, 
3CLpro-compound 40 complexes are very stable as compared to refer-
ence 3CLpro-X77 complex. It means that these compounds may potent 
inhibitors of SARS-CoV-2 3CLpro and could be used as potential drug 
candidates against SARS-CoV-2. However, further studies are necessary 
to reveal the action of these compounds. This study provides an insight 
into the structure of new compounds that have not been previously re-
ported. With an effective binding to SARS-COV-2 3CLpro, these com-
pounds can regulate their role in replicase polyprotein processing and 
the release of functional proteins during virus maturation. 

For the last 1 ns of MD simulation trajectories, a per residue inter-
action energy profile was also developed using the MM-PBSA approach 
to identify the essential residues involved in ligand binding toward 
3CLpro protein. Fig. 9 shows a per-residue decomposition plot of the 
total binding energy of the 3CLpro-ligand complexes. Only residues that 
contribute most to overall binding energy are illustrated in the figure for 
a better representation of the results. The plot showed that the strongly 
involved amino acids in all complexes were Thr25, Leu27, His41, Cys44, 
Met49, Gly143, Cys145, Met165, Pro168, and Asp187. The per-residue 
interaction plot revealed that the majority of residues had negative 
binding energy, while only a few had positive binding energy. The res-
idues with a negative binding affinity were important in maintaining the 
stable protein-ligand complex. Fig. 10 depicts the per-residue decom-
position plot of active site residues of 3CLpro in various 3CLpro-ligand 
complexes. When compared to other active site residues, Thr25, 
Leu27, Met49, Gly143, Cys145, Met165, and Pro168 showed higher 
binding affinity. The overall results revealed that Met49, Cys145, and 
Met165 play the most significant roles in 3CLpro-ligand stabilization, 
which is consistent with previous research [41]. 

4. Conclusion 

The present study aimed to identify novel inhibitors against the 
SARS-CoV-2 3CLpro. In this study, quantitative structure-activity rela-
tionship and molecular docking were used to evaluate the relationship 
between molecular properties and inhibitory activity of selected 

Fig. 10. The per-residue decomposition plot of active site residues of 3CLpro in studied 3CLpro-ligand complexes.  
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compounds against SARS coronavirus 3C-like protease from the 
CHEMBL database. The model obtained in the study was robust and 
statistically significant. This study revealed five compounds with a 
remarkable binding affinity for 3CLpro, good ADMET properties, and 
important pharmacophore features. Finally, the relative stability of 
these compounds was validated by 100 ns MD simulation. The MD 
trajectories analysis showed that three compounds viz. compound 21, 
22, and 40 reflect good structural stability with 3CLpro. Hence from this 
study, three hits i.e. compound 21 (CHEMBL ID 19438), 22 (CHEMBL ID 
196635), 40 (CHEMBL ID 210097) were identified against SARS-CoV-2 
3CLpro and these can be considered as a possible treatment for COVID- 
19. However, further in-vitro and in-vivo studies are necessary to inves-
tigate the efficacy of these potential compounds against SARS-CoV-2. 
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