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A B S T R A C T

Background: Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome cor-

onavirus 2 (SARS-CoV-2), has resulted in ~4.8 million deaths worldwide as of this writing. Almost all

conceivable aspects of SARS-CoV-2 have been explored since the virus began spreading in the human

population. Despite numerous proposals, it is still unclear how and when the virus gained the ability

to efficiently bind to and infect human cells. In an effort to understand the evolution of receptor bind-

ing domain (RBD) of the spike protein of SARS-CoV-2, and specifically, how the ability of RBD to bind

to angiotensin-converting enzyme 2 receptor (ACE2) of humans evolved in coronaviruses, we have

applied an alignment-free technique to infer functional relatedness among betacoronaviruses. This

technique, concurrently being optimized for identifying novel prions, was adapted to gain new insights

into coronavirus evolution, specifically in the context of the ongoing COVID-19 pandemic. Novel meth-

ods for predicting the capacity for coronaviruses, in general, to infect human cells are urgently needed.

Methodology: proposed method utilizes physicochemical properties of amino acids to develop fully dy-

namic waveform representations of proteins that encode both the amino acid content and the context

of amino acids. These waveforms are then subjected to dynamic time warping (DTW) and distance

evaluation to develop a distance metric that is relatively less sensitive to variation in sequence length

and primary amino acid composition.

Results and Conclusions: Using our proposed method, we show that in contrast to alignment-based

maximum likelihood (ML) and neighbor-joining (NJ) phylogenetic analyses, all bat betacoronavirus

spike protein RBDs known to bind to the ACE2 receptor are found within a single physicochemical

cluster. Further, other RBDs within that cluster are from pangolin coronaviruses, two of which have al-

ready been shown to bind to ACE2 while the others are suspected, yet unverified ACE2 binding

domains. This finding is important because both severe acute respiratory syndrome coronavirus

(SARS-CoV) and SARS-CoV-2 use the host ACE2 receptor for cell entry. Surveillance for coronaviruses

belonging to this cluster could potentially guide efforts to stifle or curtail potential and/or early zoonot-

ic outbreaks with their associated deaths and financial devastation.

Lay Summary: Robust methods for predicting human ACE2 receptor binding by the spike protein of

coronaviruses are needed for the early detection of zoonotic coronaviruses and biosurveillance to
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prevent future outbreaks. Here we present a new waveform-based approach that utilizes the physicochemical properties of amino acids

to determine the propensity of betacoronaviruses to infect humans. Comparison with the established phylogenetic methods demon-

strates the usefulness of this new approach in the biosurveillance of coronaviruses.

K E Y W O R D S : SARS-CoV-2, betacoronaviruses, virus evolution, biosurveillance

INTRODUCTION

Coronaviruses are a diverse group of RNA viruses of the family

Coronaviridae. There are currently four recognized genera with-

in this family, namely, Alphacoronavirus, Betacoronavirus,

Gammacoronavirus and Deltacoronavirus [1]. Of these, members

of the Alphacoronavirus and Betacoronavirus are known to pri-

marily infect mammals including humans [1, 2]. There are seven

coronaviruses known to infect humans. These include SARS-

CoV, SARS-CoV-2, Middle East respiratory syndrome-related

coronavirus (MERS-CoV), HCoV-NL63 and HCoV-HKU1 that

were identified after the SARS-CoV epidemic of 2002–03, and

HCoV-OC43 and HCoV-229E that were identified in samples

collected in the 1960s. Of these, all but HCoV-NL63 and HCoV-

229E are betacoronaviruses [3–11].

In the past 20 years, three of the seven known human corona-

viruses have emerged, presumptively through zoonoses, as

deadly human pathogens. These include Betacoronavirus SARS-

CoV that in November 2002 began circulating with human-to-

human transmission in China [12], Betacoronavirus MERS-CoV

that in 2012 made the leap to humans in the middle-east with

human-to-human transmission limited primarily to healthcare

settings [7, 13], and a second Betacoronavirus SARS-CoV-2 that

began circulating in the human population of Guangdong

Province, China in late 2019 [14]. Of grave concern is that both

SARS-CoV and SARS-CoV-2, the two most contagious and there-

fore deadly human betacoronaviruses, have emerged recently

and as shown in Table 1, both use the ACE2 receptor for entry

into human cells [15, 16]. Of even greater concern is that these

viruses may have converged upon efficient human ACE2 usage

since the ML phylogenetic analyses of the region of the spike

protein responsible for binding of the ACE2 receptor indicates

considerable divergence in the sequences of these domains be-

tween SARS-CoV and SARS-CoV-2 [17]. Therefore, prior to the

placement of SARS-CoV-2 into the second clade of ACE2-

binding betacoronaviruses, the scientific community might

have erroneously assumed that the clade was less of a zoonotic

concern. For this reason, it is imperative that efficient and cost-

effective surveillance techniques be developed which allow for

the identification of betacoronaviruses with the ability to bind

ACE2 or the propensity to converge upon human ACE2 usage.

Herein we present one such method.

The question of the origin of any organism, protein, or gene

is a question of both homology and mapping of that homology.

Current phylogenetic analyses mostly involve comparison and

quantification of similarity among biomolecular entities, mainly

at the nucleotide or protein primary sequence level. Arguably

the most objective approach to classify genetic entities is using

quantifiable traits even when that quantification is boolean in

nature [26]. This is the reason for the popularity of nucleotide

and amino acid sequence-based approaches for placing a value

on the degree of similarity and inferring relatedness based on

that similarity. Classification is simple and intuitive once align-

ment of nucleotide or amino acid sequences is achieved.

However, in cases where sequences are evolving rapidly, the

similarity between sequences may be low despite conservation

of function. This may render sequences unalignable or yield an

alignment of too low of a score to be deemed significant. In

such cases, inferring homology of rapidly evolving sequences

based on alignment may be inconclusive or incorrect. This has

necessitated the development of alternative approaches to infer

relationships whether phylogenetic or functional, especially

when the evolutionary distance between biological entities is

large or evolutionary rate is high. Lolkema and Slotboom [27]

Table 1. Betacoronaviruses known to

bind the ACE2 receptor

Virus Host Acc. Num. References

SARS-CoV Human P59594 [18]a

SARS-CoV-2 Human P0DTC2 [19]a

GXP2V Pangolin A0A6G9KP06 [20]a

MP789 Pangolin A0A6M3G9R1 [21]a

RS7327 Bat A0A2D1PXC0 [16]a

YN2018B Bat A0A4Y6GL47 [15]a

Rs9401 Bat A0A2D1PXD5 [15]b

WIV16 Bat A0A0U2IWM2 [22]a

Rs4874 Bat A0A2D1PX97 [15]b

Rs3367 Bat U5WHZ7 [15]b

WIV1 Bat U5WI05 [23]a

Rs4084 Bat A0A2D1PX29 [16]a

RsSHC014 Bat U5WLK5 [24]a

Rs4231 Bat A0A2D1PXA9 [16]a

RaTG13 Bat A0A6B9WHD3 [25]a

Cited evidence for ACE2 usage based either on demonstration of bind-
inga or bioinformatic prediction of bindingb. In cases where the predic-
tion was made prior to demonstration, the citation for the
demonstration is shown. Others have hypothesized that the additional
pangolin coronaviruses included in our analysis also bind ACE2, how-
ever, this has not yet been investigated.
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took a step forward in that direction when they examined pro-

tein sequences from the aspect of shared properties rather than

corresponding sequence identity and made the statement that

‘three-dimensional structure is quite tolerant of changes at the

amino acid level’. This engenders the need for approaches to

the determination of homology, which do not strictly rely upon

primary sequence alignment. However, it also fails to include

the related but distinct conundrum that a single amino acid

substitution/insertion/deletion may in some cases completely

change the functional niche filled by a protein and thus may rep-

resent a level of functional evolution or divergence that cannot

otherwise be inferred based on alignment-based techniques.

When sequence identity as determined by primary sequence

alignment is low and yet functional conservation is obvious, hom-

ology determination becomes difficult, that is, many such cases fall

into the twilight zone of <30% identity among homologs where

ambiguity rules [28]. Of even further complication in determining

homology is the midnight zone of the twilight zone (�10% iden-

tity) where homology and random chance have an almost equal

probability of resulting in observed functional similarity among pro-

tein structures [28, 29]. Alignment-free techniques like the one pre-

sented herein attempt to reach into the twilight zone of sequence

identity and resolve function/structure-based relatedness instead of

or in support of weak sequence identity-based determinations. This

is important considering the vast amounts of biomolecular data

where relatedness has been difficult to accurately determine [29]. It

should be emphasized that the twilight zone becomes a limiting

factor when evolutionary distance is high, not necessarily temporal

distance. In other words, two sequences or even very small frag-

ments of a gene may diverge very rapidly in a short period of time

under certain circumstances and thus temporally speaking enter

the twilight zone rapidly.

In the early years of phylogenetics, perhaps when biomolecu-

lar sequences were not abundant, homology was predominately

determined using traits expressed at the macro-morphological

scale. This practice continues even today, albeit in a limited

scope and most notably in cases where molecular data are not

available or collection is not practical such as in the analysis of

fossils [30] and fish genetics where large numbers of individuals

from closely related taxa are regularly defined by both morpho-

logical and meristic metrics [31]. However, morphological traits

to characterize taxa need not only be macro-morphological. In

other words, the conformation of a protein, if it can be mathem-

atically described in part or whole is also a morphometric trait

and the count of transmembrane regions, domains, or residues

if observable or predictable can also be meristic despite the

need for molecular-level resolution for observation [26].

Lolkema and Slotboom [27] recognized this and proposed that

the hydropathy profile of proteins could be used to find distant

homologs. Eight years after that proposal, hydropathy profiles

were successfully used in a phylogenetic inquiry. In that study,

each amino acid was categorically classified as internal (I), ex-

ternal (E), or ambivalent (A) based on its hydrophobicity (HP)

[32]. Those transformed strings representing the hydrophobic

category of each amino acid were then used for pairwise input

into the Lempel and Ziv algorithm whose complexity metric was

used to derive a measure of distance between proteins [32, 33].

Rather than inferring the substitution of amino acids based

on probabilistic models derived from the alignments of well-

understood protein sequences, which underpin most scoring

matrices commonly used for sequence alignment, the inference

by the method presented herein is based solely on the assump-

tion of conservation of structure/function within orthologous

protein domains. Such structural conservation likely varies spa-

tially within a protein and therefore our alignment-free method,

not constrained by genomic segment contiguity relied upon by

alignment-based methods, is able to account for such conserva-

tion at the structural/functional level and thus could resolve the

twilight zone homology, where the alignment-based methods

relying on genomic segment contiguity and probabilistic matri-

ces become progressively less reliable.

The physicochemical properties that we chose to mathemat-

ically represent the underlying structure of the RBDs of corona-

viruses were HP and molecular weight (MW). While HP is well

established as the premier factor with regards to the formation

of stable protein–protein interaction [34–36], MW as an indica-

tor of accessible surface area and shape is also fundamental to

such interactions [34, 35]. Only when an optimal combination

of spatial HP and shape exists, two proteins can form a stable

complex of complementary structure. Therefore, in the absence

of complementarity with regards to HP and shape, other physi-

cochemical properties that contribute to the specificity of pro-

tein–protein interactions may be of limited effect on the

stability/specificity of the protein–protein complex [35]. For this

reason, we chose both HP and MW as contributing factors in

the derivation of the waveforms used in this study.

We therefore build upon the use of HP by Lolkema and

Slotboom [27] by including the MW of each amino acid as well

in order to derive a representative profile that can then be used

in functional cluster analyses of the spike protein RBD of

betacoronaviruses. It should be noted that although our

method has some similarities of concept with that of the Liu

and Wang method [32], the genesis of our method did not start

with their research. Our method was conceived and evolved

independently, in our ongoing attempt to classify novel proteins

belonging to functional groups with little to almost no

sequence-level identity and high levels of variation in sequence

length, namely, the prions. As previously stated, one of the

most profound differences between our method and the Liu

and Wang approach is that our method uses not only the HP of

each amino acid but also the MW to derive a fully dynamic non-

categorical profile for each protein, based on the primary amino
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acid sequence. Furthermore, and as expanded upon later, our

approach utilizes DTW to derive a distance measure that can

subsequently be used in clustering analysis and/or potentially

phylogenetic reconstruction. Furthermore, our method does

not necessarily assign the same index value to the same amino

acid at two different positions within a protein because the resi-

dues that flank each amino acid have an effect on the value

assigned to that amino acid. Therefore, our method allows for

the construction of an indexed profile of a protein as encoded

by a serial string of amino acids, accounting for both, content

and context. The method of Liu and Wang was, however, pre-

dominately based on the content [32].

METHODS

Waveform conversion

Primary amino acid sequences can be converted into vector rep-

resentations according to the physicochemical properties of

each individual residue. In doing so it becomes possible to visu-

alize polypeptide sequences as waveforms (the terms wave,

waveform and vector are used interchangeably henceforth).

These are similar in concept to time series data except that peri-

odicity is based on a serial representation of residues rather

than observations at sampling times. The techniques employed

are, therefore, conceptually similar to those used in the analysis

of time series data such as speech recognition profiles.

A complete list of the sequences used in our analyses can be

found in Supplementary Table S1. For each of the coronaviruses

examined, only the sequence of the RBD of the spike protein

was used in our analysis. Unless noted otherwise, all analyses

were performed on a single computer with an IntelV
R

CoreTMi5-

7200u processor with 8GB of RAM. Each RBD sequence was

converted into a vector according to the algorithm described

below. The algorithm uses the values for residue MW and HP

to compute residual value V (Equation (1); Table 2). The values

for residue MW and HP are available at https://www.sigmaal

drich.com/life-science/metabolomics/learning-center/amino-

acid-reference-chart.html#3 (2 November 2021, date last

accessed) and originally published by Monera et al. [37].

V ¼ ðR=GÞ �H (1)

Where V is the residue value; R is the residue MW; G is the

largest MW of all 20 amino acids (186.22); and H is the residue

HP index.

The values in Table 2 were used to calculate a vector repre-

sentation of each RBD. This conversion from primary amino

acid sequence to the vector representation was carried out by

calculating three peak values for each residue as shown in

Table 3. The two peaks that flank each residue are called ‘phan-

tom’ peaks and the vector representation values for the three

peaks were calculated as described below. The intrinsic value

for the left flanking peak is the value of V for the residue of inter-

est and the extrinsic value was obtained as the mean of the V

value for the residue of interest and V value for the left flanking

residue (Table 3). The vector representation value for the left

flanking peak was then obtained as the mean of the intrinsic

and extrinsic values. Similarly, the intrinsic value for the right

flanking peak is the value of V for the residue of interest and the

extrinsic value was obtained as the mean of the V value for the

residue of interest and V value for the right flanking residue

(Table 3). The vector representation value for the right flanking

peak was obtained as the mean of these intrinsic and extrinsic

values. The intrinsic value for the central peak is the value of V

for the residue of interest and the extrinsic value is the cumula-

tive extrinsic values from the flanking peaks. The vector repre-

sentation value for the central peak was obtained as the mean

of these intrinsic and extrinsic values. In order to start each

wave, it was assumed that an additional glycine residue

occurred prior to the start of the sequence. In order to end each

wave, it was assumed that an additional residue identical to the

last residue of the actual sequence occurred after the last resi-

due. These assumptions were in effect inconsequential and

were only used as a convenient way to approximate the begin-

ning and end of the wave. In addition, we also analyzed single-

peak waveforms whereby each peak for a residue corresponded

to the mean of intrinsic (V value of the residue, Table 2) and ex-

ternal forces (sum of both flanking residue values, Table 2). We

developed an R-Script for our analyses in which both the single-

peak and three-peak algorithms were implemented. The R-

Script is available on GitHub at https://github.com/JamberFX/

Mol-WtandHydrophobicityDTW (Accessed 02 November 2021).

Dynamic time warping and hierarchical clustering

RBD polypeptide sequences were analyzed by performing direct

Euclidean and cosine comparisons using the ape, dtw, proxy

and TreeTools libraries in R [38–43]. Three-peak and single-peak

waveforms as described above were evaluated. RBD polypeptide

sequences were also evaluated using DTW. For DTW, only

Euclidean distance was used because with univariate vectors,

such as those used in this study, warping does not generally

vary based on distance metric and also because if we had devel-

oped a similarity matrix using DTW with cosine distance, the

distances would have all been zero, or near zero, due to the cal-

culation of cosine distance. For both direct and DTW analyses,

the resulting distance matrices for the full suite of sequences

considered were subjected to hierarchical clustering using both

unweighted pair group method with arithemetic meand

(UPGMA) and NJ as implemented in the hclust and nj

functions of core R [41].
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In addition to the waveform-based, alignment-free approach,

we reconstructed phylogenetic trees for the amino acid sequen-

ces using alignment-based ML and NJ protocols. Amino acid

sequences were used in our alignment-based analysis because

the results from such analyses are directly comparable to our

DTW-based approach which uses the physicochemical proper-

ties of those amino acids to derive distance and topological

relationships. For the alignment-based analyses, multiple se-

quence alignments were performed using ClustalW version 2.1

as implemented in Jalview 2.11.1.3 with a gap initiation penalty

of 10, a gap extension penalty of 0.2, and a Gonnet series scor-

ing matrix (default) [44, 45]. ML tree reconstruction was per-

formed using the PhyML webserver available at http://www.

atgc-montpellier.fr/phyml/ (Accessed 02 November 2021), with

automatic substitution model selection (default) and 1000

bootstrap steps [46]. NJ tree reconstruction was performed

using MEGA-X version 10.1.8 with the Jones-Taylor-Thornton

(JTT) substitution model with the gamma rate among sites set

to 1.0 (default) and 1000 bootstrap steps [47].

Dendrogram congruence evaluation

Three methods of determining the congruence among dendro-

grams were used. These included visual examination of tangle-

grams, evaluation of the number of nodes with the exact same

list of terminal taxa (aka common nodes) and calculation of the

Robinson–Foulds Metric [48]. Tanglegram comparisons of full

trees were performed using the phytools package in R [49], com-

mon node calculations were performed using the dendextend

package in R [50] and Robinson–Foulds metrics were calculated

using the TreeDist package in R [51]. Individual trees included

herein were prepared for publication using FigTree v.1.4.3 [52]

and TreeGraph 2.15 [53].

Dynamic time warping one-to-one waveform comparison

To compare the waveform representation of RBD sequences

from different coronaviruses including SARS-CoV-2, we used

the Warping Correspondence function in Mathematica version

11.3.0.0 [54] with a Euclidean distance function. The Euclidean

distance between the SARS-CoV-2’s RBD waveform and each of

P59594 (SARSCoV), A0A6B9WHD3 (BtCoV/RaTG13),

A0A6G9KP06 (PCoV_GXP2V), A0A6G6A2R8 (PCoV_GXP1E),

and A0A6M3G9R1 (PCoV_GD_MP789) was calculated along

the full length of the waveform using a window size of 10 and

an offset of 1. It is important to note that there is no universal

reference when using DTW. Therefore, each pair of sequences

may experience varied levels and locations of X-axis warping. In

other words, differences indicated by peaks in the plots of these

waveforms may not be directly comparable across multiple

waveforms unlike multiple alignment-based methods.

RESULTS

The MW and HP of amino acids were used to encode the RBDs

of the betacoronavirus spike proteins. Those encoded sequen-

ces were subjected to direct comparisons using Euclidean and

cosine distance and also DTW comparison using Euclidean dis-

tance. The resulting distance matrices were then subjected to

hierarchical clustering analysis using both NJ and UPGMA

methodologies and compared to the ML and NJ trees produced

using a multiple alignment of the same primary sequences. As

can be observed in Fig. 1, several variations of our analysis

were performed with single-peak and three-peak amino acid

waveforms. All dendrograms produced using hierarchical clus-

tering with either direct Euclidean or cosine comparisons or

DTW Euclidean comparison resulted in all coronavirus RBDs

known to bind ACE2, clustered in a single well-formed group

(Fig. 2B and D and Supplementary Figs S3–S14). The non-

DTW waveform-based analyses (Fig. 2D and Supplementary

Figs S7–S14) resulted in a single pangolin RBD sequence

(GXP1E) outside of that cluster.

While alignment-based ML and NJ are both commonly used

in the analysis of protein sequences, the congruency between

the dendrograms produced using these methods was low as

indicated by tanglegram comparison of those dendrograms in

Table 3. Example conversion from primary amino acid sequence to vector (waveform) representation

of a short amino acid sequence.

Original Sequence: G A T

Profile: Phantom G Phantom Phantom A Phantom Phantom T Phantom

Internal Values: 0.306 0.306 0.306 15.650 15.650 15.650 7.059 7.059 7.059

External Values: – 0.306 7.978 7.978 7.978 11.354 11.354 11.354 –

– 0.978 – – 11.354 – – 7.059 –

Vector: 0.306 4.295 4.142 11.814 17.491 13.502 9.207 12.736 7.059

The vector value for phantom peaks are means and the vector values for actual residues are one-half of the sum of all internal and external values for
that residue.
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Supplementary Fig. S2 and the Robinson–Foulds Metric value

of 0.53 (Fig. 1B), despite 77% common nodes among them as

shown in Fig. 1A. There is only slightly lower congruency, as

measured by common nodes in Fig. 1a, between the widely

accepted and utilized ML method and the DTW methods

employed herein (75–76% common nodes). The Robinson–

Foulds Metric values from the comparisons of alignment-free

DTW dendrograms to the alignment-based ML dendrograms

are equal to or higher than those for the comparison to the

alignment-based NJ dendrograms at 0.53–0.58 (Fig. 1B).

Furthermore, manual comparison of the DTW-based dendro-

grams (Supplementary Figs S3–S6) to the alignment-based NJ

dendrograms (Supplementary Fig. S2) reveals that not only are

polytomies common in the alignment-based NJ dendrograms

and absent in the DTW-based dendrograms but also that the

overall congruency of topology is greater in the DTW-based

analyses. Therefore, the alignment-based NJ method was con-

sidered unsuitable to the analysis of coronavirus spike protein

RBDs, an observation that to our knowledge has not been spe-

cifically addressed in the literature but is apparent by the lack of

NJ methodology in published studies regarding the evolutionary

history of the coronavirus spike protein RBD. In an attempt to

better resolve the polytomies present in the NJ tree, we

removed 28 basal RBDs from the dataset because those

sequences were members of clades with low support and

multiple polytomies. Re-alignment and NJ tree construction

using the truncated dataset resulted in fewer polytomies and a

majority of nodes with support; however, the overall topology

remained similar to the original NJ tree, with no changes to the

topology of the ACE2-binding clade.

DTW and strict Euclidean/cosine distance-based methods

employed herein resulted in little ambiguity within and among

clusters and were in general agreement, regarding cluster com-

position, with the alignment-based ML analysis. However, there

is a major exception among ACE2-binding RBDs where the

alignment-based ML method results in two separate clusters, a

finding that has been reported by others as well [17, 55–58]; in

contrast, both the DTW and strict Euclidean/cosine distance

methods yield a single consolidated ACE2-binding cluster as

shown in Fig. 2B and D as well as in Supplementary Figs S3–

S14. Common node comparisons for congruency presented in

Fig. 1A indicate that the DTW-based methods result in dendro-

gram topologies that are more similar to the alignment-based

ML topology than the alignment-free strict Euclidean distance

dendrograms with regard to cluster composition. Despite this,

inter-cluster relatedness varies between the methods as indi-

cated by lower topological agreement as revealed using the

Robinson–Foulds Metric in Fig. 1B.

The alignment-based NJ tree shows a less cohesive grouping

of ACE2-binding RBDs than does our physicochemical

Figure 1. (A) Proportion of common nodes (nodes with the exact same list of terminal taxa) depicted in the dendrogram comparisons from all methods used

to resolve the relationships among spike protein receptor-binding domains. (B) Inverse Normalized Robinson–Foulds Metric for the dendrogram compari-

sons of all methods used to resolve the relationships among spike protein receptor-binding domains. MW and HP were used as the physicochemical proper-

ties for all methods as described in the methods section. The first two methods shown were standard alignment-based ML and alignment-based NJ analyses

of the amino acid sequences. The remaining 12 analyses shown used waveforms as described in the Methods section. Among those methods, the first part of

the label for each method indicates whether a three-peak or single-peak waveform was encoded. If present, the ‘D’ following the peak designation indicates

that DTW was used. The next part indicates the distance measure used (Cos ¼ cosine or Euc ¼ Euclidean). The final part indicates the dendrogram recon-

struction method‘UP’ indicates UPGMA.
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clustering method and also exhibits numerous polytomies

(Fig. 2C). Additionally, our algorithms are far less computation-

ally intensive than either alignment-based ML or alignment-

based NJ analyses as shown in Fig. 2. Briefly, the ML phylogen-

etic reconstruction took �42 h to complete on the PhyML

web server, the NJ phylogenetic reconstruction took �2 h, the

strict Euclidean distance reconstruction took �5 min and

the DTW-based method took �15 min highlighting a

significant reduction of processing time for the alignment-free

techniques.

Figure 2. (A) Dendrogram depiction of ML phylogenetic tree produced from a multiple alignment of RBD’s from betacoronaviruses. The values are the num-

ber of supporting bootstrap steps out of 1000. (B) Dendrogram of Betacoronaviruses constructed using DTW with Euclidean distance and hierarchical cluster-

ing of the herein described waveform representations (three-peaks) of RBD sequences. (C) Dendrogram depiction of NJ phylogenetic tree produced from a

multiple alignment of RBD’s from Betacoronaviruses. (D) Dendrogram of Betacoronaviruses constructed using Euclidean distance and hierarchical clustering

of the herein described waveform representations (three-peaks) of RBD sequences. The values shown are the supporting percentage of 1000 bootstrap steps.

All dendrograms have been cropped for display purposes. The full dendrogram for each of these trees can be found in the Supplementary Materials.
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Closer examination of congruency as indicated by the propor-

tion of nodes with the exact same taxa (Common Nodes) in

Fig. 1A reveals that the DTW-based techniques recovered 75–

76% of the node composition of the dendrogram produced by

the alignment-based ML method. In contrast, the strict

Euclidean distance-based analyses recovered only 69–73% of

the node composition. Among the DTW-based analyses, the

greatest level of node composition agreement occurred be-

tween the single- and three-peak UPGMA analyses (98%). The

agreement between alignment-based ML method and the three-

peak UPGMA method was 76% (slightly higher than 75% agree-

ment with the single-peak UPGMA analysis; refer to Fig. 2B for

Figure 3. A DTW comparison of the waveforms of each of the indicated coronavirus RBD’s to that of SARS-CoV-2. The comparisons are ordered from top to

bottom respective of how close they cluster with SARS-CoV-2 in the non-DTW dendrogram depicted in Fig. 2D. Despite minimal divergence between GXP2V

and GXP1E as indicated by Euclidean distance here and among the four critical ACE2 contact residues in Fig. 4, GXP1E does not tightly cluster with known

ACE2-binding RBD’s in Fig. 2D. We attribute this to the single peak marked with red boxes, where GXP1E is more divergent from SARS-CoV-2 than GXP2V is.

That peak corresponds to two amino acid deletion in GXP1E in Fig. 4. Of further interest is that despite GXP1E being clearly less divergent from SARS-CoV-2

than SARS-CoV is here, SARS-CoV clusters with SARS-CoV-2 in Fig. 2D, whereas GXP1E does not, potentially indicating the ability of strict Euclidean distance,

without DTW, to resolve key differences with respect to ACE2 binding. Residue positions on the X-axis should be considered approximate due to the variable

nature of dynamic time warping with regard to the stretch/compression of the X-axis as related to the particular waveform pair in each comparison.
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the three-peak dendrogram and Supplementary Fig. S5 for the

single-peak dendrogram). The full suite of Common Nodes across

all pairwise dendrogram comparisons is displayed in Fig. 1A.

In addition to the cluster composition, overall tree topologic-

al congruency was evaluated using the Robinson–Foulds

Metric. The greatest level of congruency was observed between

the single- and three-peak DTW analyses and the alignment-

based ML analysis (58%) as shown in Fig. 1B. This is indicative

of a moderate level of similarity in the overall topology of the

dendrograms. However, the greatest level of consistency from

single- to three-peak DTW analyses was with the UPGMA meth-

odology (96%). The full suite of Robinson–Foulds Metrics

across all pairwise dendrogram comparisons is shown in

Fig. 1B.

Due to multiple polytomies in the tree produced using an

alignment-based NJ methodology (Fig. 2C and Supplementary

Fig. S2), the topology depicted was deemed unreliable and

largely unresolved. Visual comparison of the full suite of den-

drograms/trees produced from waveform representations of

the amino acid sequences (Supplementary Figs S3–S14)

revealed a common theme and a few interesting observations.

Regardless of the exact waveform-based methodology, using

MW and HP as described herein always resulted in all known

ACE2-binding RBDs forming a single consolidated cluster

(Fig. 2B and D and Supplementary Figs S3–S14) in contrast to

the two separate groups resulting from alignment-based ML

methodology (Fig.2A and Supplementary Figs S2–S14). All but

one pangolin RBD (GXP1E) clustered within the ACE2-binding

group with all non-DTW waveform methodologies (Fig. 2D and

Supplementary Figs S7–S14). That finding was further explored

by performing a DTW comparison of the waveform representa-

tions of the SARS-CoV-2 RBDs on a one-to-one basis as can be

seen in Fig. 3. That visual comparison revealed that GXP2V

which has been confirmed to bind ACE2 [20] shows more simi-

larity than GXP1E to SARS-CoV-2 in only a single location

(�140 in the waveform comparison). That single location corre-

sponds to residues 132–133 in the amino acid alignment where

GXP1E has a two-residue deletion (Fig. 4). That deletion is only

four residues away from a key residue in binding of human

ACE2 [59] and therefore may result in a conformational change

resulting in the loss of ACE2 binding. With the exception of

GXP2V and GXP1E, all of the sequences shown in Fig. 3 are iden-

tical at positions 132–133 of the primary sequence alignment.

However, unlike GXP1E, GXP2V does not have a deletion at those

positions. Instead, GXP2V vs. the other sequences known to bind

ACE2, exhibits a glycine to asparagine substitution at position 132

and is identical to the other sequences at position 133 (Fig.3).

DISCUSSION

The death toll from SARS-CoV-2 has been growing steadily since

the beginning of the COVID-19 pandemic in early 2020 [60].

Recently, there have been calls for methods that can cost-

effectively and quickly predict the potential for any newly discov-

ered coronavirus to make the zoonotic leap to the human popu-

lation [16]. The ability to bind the ACE2 receptor is key to that

transition particularly within SARS-like betacoronaviruses [18,

19]. Alignment-based phylogenetic analyses of the Spike protein

RBDs results in two separate clades of ACE2-binding betacoro-

naviruses as has been found by others [17, 55–58] and is con-

firmed here (Fig. 2A and Supplementary Figs S2–S14). The new

approach described herein provides an avenue to objectively re-

solve ACE2-binding betacoronaviruses as a single unified clus-

ter using a waveform analysis of the RBD. That single cluster

includes SARS-CoV, SARS-CoV-2, 11 ACE2-binding bat coronavi-

ruses, and all of the pangolin RBDs examined using DTW meth-

odology and all but one pangolin coronavirus RBDs (GXP1E)

with direct Euclidean or cosine distance measurement.

Four of the pangolin coronavirus RBDs used in our analyses

have not been investigated with regards to ACE2 binding.

However, two pangolin coronaviruses that have been previously

investigated and confirmed to bind ACE2 (GXP2V and MP789)

are found within our unified cluster [20, 21] raising the possibil-

ity that the unconfirmed ACE2-binding ability of some or all of

the other four will ultimately be confirmed. The four yet to be

investigated pangolin RBDs are found within the ACE2-binding

cluster when DTW analyses are performed (Fig. 2B and

Supplementary Figs S3–S6). The placement of GXP1E outside

of the ACE2-binding clade, when using non-DTW waveform-

based methodology, appears to have been caused by a two-

residue deletion that is four residues upstream of a known

ACE2 contact residue [59], as shown in Fig. 4. This is perhaps

indicative of a consequential conformational change facilitated

by those deletions. Additionally, deletions of two residues fur-

ther upstream have previously been associated with a lack of

ACE2 binding [59]. The two-residue deletion shown for GXP1E

in Fig. 4 is part of a quasi-repetitive region consisting of the se-

quence N, Y/F, N/G, and Y, presenting the possibility that due

to the repeat structure of this region, the alignment algorithm

may have artificially shifted the deletions shown for GXP1E by

two residues thus excluding those deletions from the deletion

region common to non-ACE2-binding RBDs reported by Zhang

et al. [59]. For these reasons, we conclude that GXP1E may not

bind to ACE2 and that our non-DTW method was able to predict

this with no manual examination of the RBD despite the high

level of similarity between GXP1E and GXP2V, a confirmed

ACE2-binding betacoronavirus RBD that also clusters with other

ACE2-binding betacoronavirus RBDs in our analyses. While this

reveals the power of non-DTW waveform-based methods to dis-

criminate between ACE2-binding and non-ACE2-binding RBDs,

it should be applied cautiously since without using DTW, any

deletion may have an amplified effect on the distance compari-

sons and may in some cases shift the placement of a single
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taxon artificially. Furthermore, the non-DTW methodology with

regards to physicochemical clustering can only be reliable when

intra-cluster indels are rare. In further support of our proposal

that GXP1E might not bind to ACE2 despite clustering near or

within the ACE2-binding cluster in our waveform-based analy-

ses, all of the RBDs found by Zhang et al. which have deletions

in this upstream region and do not bind ACE2, are part of a 49-

member cluster that we found to be distinct from the ACE2-

binding cluster in all waveform-based analyses (both DTW and

non-DTW). Additionally, those 49 taxa were situated between

the two clusters of ACE2 binding RBDs in the alignment-based

ML analysis (Fig. 2A) yet were not in any of our waveform-

based analyses, thus illuminating the ability of our methods to

properly cluster ACE2-binding RBDs based on functional re-

latedness. Our results demonstrate that waveform-based meth-

ods, especially DTW-based methods including the ones

presented herein, can reliably identify newly sequenced ACE2-

binding RBDs with no laborious manual examination of the

amino acid sequence or error-prone structural prediction.

While it is the most pronounced benefit, the ability to identify

newly sequenced ACE2-binding RBDs is not the only value in

our waveform-based approach. Some studies have focused on

the divergent origin of SARS-CoV-2 coupled with recombination

[55, 61]. Other studies have presented the possibility that while

the virus might have arisen via descent, the ability to bind to

the ACE2 receptor might alternatively have arisen from a con-

vergent evolutionary process [57]. The genesis of an ACE2-

binding RBD and whether or not SARS-CoV-2 emerged due to

recombination or convergent evolution are independent ques-

tions. The current RBD of SARS-CoV-2 may not have evolved in

the progenitor lineage of SARS-CoV-2 but instead have been

acquired via recombination. However, that RBD, wherever it

came from previously, evolved to the point of ACE2-binding. It

is that evolutionary process which our waveform-based meth-

ods most notably provide insight into. Despite this, if the

alignment-based ML topology shown in Fig. 2A and

Supplementary Figs S2–S14 and put forth previously by others

[17, 55–58] does not accurately reflect the true evolutionary his-

tory of the RBDs and instead the topology revealed by our

waveform-based technique (Fig. 2B) is more accurate, then a

single clade of ACE2-binding RBDs evolved from their common

ancestor and the greatest zoonotic concern is the further expan-

sion of that clade of ACE2-binding RBDs through recombin-

ation. However, if the relationships depicted in the ML

dendrogram are accurate with regards to the true evolutionary

history of the RBDs and the waveform-based dendrograms are

merely constructs of convergent structural conformations that

deviate from the true evolutionary history of the groups, then a

repetitive functional convergent process is of greatest concern.

The low level of support for the two separate ACE2-binding

clades in the alignment-based ML dendrogram in Fig. 2A

(59.4% and 51.7%) draws into question the veracity of the two-

clade topology and is therefore circumstantially supportive of

the topology derived using our waveform-based method

(Fig. 2B) as an indicator of the true evolutionary history of the

ACE2-binding betacoronavirus RBDs. Additionally, it is import-

ant to consider that convergence and recombination may act in

combination and therefore mutual exclusivity should not be

assumed and is actually refuted by previous evidence for con-

vergence in the incongruency of dendrograms produced from

only the synonymous sites of the RBDs versus the entire gen-

ome [57] and also in later topological congruency analyses [62].

Such incongruency among phylogenetic topologies has been

reported to oftentimes indicate convergent molecular evolution

and appears to be much more common than has been historic-

ally accepted [63]. For that reason, it is premature to exclude

convergent evolution as the dominant mode of evolution with

regard to the acquisition of the ability to bind to ACE2 by beta-

coronavirus RBDs, especially considering our consolidation of

the two groups of ACE2-binding RBDs using physicochemically

derived waveforms.

Figure 4. Partial alignment of the RBD for the coronaviruses indicated. Shaded red boxes indicate key residues for binding to the human ACE2 receptor as pre-

viously reported, yellow boxes indicate key residues that contact the ACE2 receptor in general [19, 57, 59]. Of note, the Zhang et al. and Lam et al. studies are

in disagreement as to whether residue 187 is key in human ACE2 binding or ACE2 binding in general. Wan et al. originally reported that it was not critical in

human ACE2 binding [19]. We predict, based on our non-dtw-based bioinformatic approach that GXP1E will not bind to ACE2. It clusters with non-ACE2-bind-

ing coronaviruses using strict Euclidean distance techniques (Fig. 2D) and has a two-residue deletion (red box) which corresponds to the peak shown in

Fig. 3 where GXP1E (predicted non-ACE2-binding) and GXP2V (ACE2-binding [20]) differ.
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Another way to approach the question of convergent evolu-

tion is by asking if there is excessive conservation of function

given the observed level of phylogenetic diversification. Such

functional conservation can be maintained semi-independent of

primary sequence due to overlap in the physicochemical profiles

of amino acids. Lolkema and Slotboom noted this physico-

chemical conservation and therefore made their previously

mentioned statement to the effect that the 3D structure of pro-

teins and thus their function is very tolerant of changes in their

primary sequence [27]. Herein, our method exploits that prin-

ciple and in an objective manner, independent of structural

modeling allows for the evaluation of physicochemical cluster-

ing, which is validated by known functional classification of

ACE2-binding RBDs [61] as shown in Fig. 2B and D.

Additionally, not only is this an objective method but it is also

based on both the content and context of the amino acid se-

quence, thus preserving the evolutionary assumption rather

than creating a spurious metric based merely on shared charac-

teristics. Therefore, conclusions made using this technique

should not be considered strictly function-based. Instead, in the

case of betacoronavirus RBDs shown in Fig. 2A, B, and D and

in totality in Supplementary Figs S2–S14, our method can be

used to resolve phylogenetic topologies with weak support

using standard methodology such as those leading to the separ-

ation of the ACE2-binding RBDs into two clades (Fig. 2A) and

may provide more insight into relatedness than standard tech-

niques like alignment-based ML alone. Such complimentary use

of standard alignment-based and waveform-based methodolo-

gies might be desirable considering that in the absence of the

waveform equivalent of multiple sequence alignment, boot-

strapping to provide indications of branch support is not pos-

sible. Note that the DTW distance matrices are constructed via

pairwise comparisons. A valuable future extension to our

method would be the development of waveform-guided amino

acid alignment similar to current amino acid-guided nucleotide

alignment [64]. This may allow for bootstrapping on an amino

acid alignment guided by structural conservation.

The true evolutionary history of the ACE2-binding betacorona-

virus RBDs may have experienced convergent evolution, recom-

bination or both. However, the most pressing question is

whether or not a newly emerged betacoronavirus has the ability

to bind to ACE2. Addressing this brings us closer to targeting

the betacoronaviruses with the propensity to evolve to bind to

human ACE2. The fact that our waveform-based approach

results in a single cluster of ACE2-binding betacoronavirus

RBDs when a large number of betacoronavirus RBDs were ana-

lyzed demonstrates the utility of the method in the identifica-

tion of potential betacoronavirus zoonoses before they become

an actuality in the human population. This is emphasized by

the fact that prior to the identification of SARS-CoV-2, it would

not have been assumed that a new RBD sequence belonging to

the clade that we now know contains SARS-CoV-2 (Fig. 2A)

would be a threat to humans on the same scale as SARS-CoV?

Developing new approaches to robustly address this or related

questions is important and our proposed approach demon-

strates a way forward in this direction. Considering the uncer-

tainty surrounding whether SARS-CoV-2 evolved the ability to

infect and persist in humans while in a progenitor host, an

intermediate host or within a subset of the human population

[65], it is imperative that surveillance techniques be employed

that can efficiently identify coronaviruses with the potential to

experience zoonoses [16]. Our technique requires only amino

acid sequence data from the RBD and therefore could easily be

used in a metagenomic-based surveillance program. Such sur-

veillance would involve not only monitoring of animal popula-

tions such as bats and pangolins but also general surveillance

of coronavirus circulation in the human population. Samples

for that surveillance could be obtained from numerous sources

including clinical samples and waste receptacles in public rest-

rooms. The identification of a new waveform that clusters with

the ACE2-binding RBDs would trigger a wider-scale sequencing

and clinical monitoring effort aimed at full characterization of

the new variant. This could give the scientific community valu-

able time in the response to any newly emerged betacoronavi-

rus that could potentially have a similar or even higher death

rate than either SARS-CoV or SARS-CoV-2. Furthermore, we sug-

gest an expansion of efforts to identify coronaviruses in diverse

mammals. It is entirely possible that there exist multiple reser-

voirs of ACE2-binding betacoronaviruses in animal populations

far more diverse than humans, bats, and pangolins. Therefore,

worldwide monitoring of diverse animal populations is currently

warranted.

Supplementary data

Supplementary data is available at EMPH online.
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