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Abstract

Alterations in gene expression resulting from Alzheimer’s disease have received considerable attention in recent years.
Although expression has been investigated separately in whole brain tissue, in astrocytes and in neurons, a rigorous
comparative study quantifying the relative utility of these sources in predicting the progression of Alzheimer’s disease has
been lacking. Here we analyze gene expression from neurons, astrocytes and whole tissues across different brain regions,
and compare their ability to predict Alzheimer’s disease progression by building pertaining classification models based on
gene expression sets annotated to different biological processes. Remarkably, we find that predictions based on neuronal
gene expression are significantly more accurate than those based on astrocyte or whole tissue expression. The findings
explicate the central role of neurons, particularly as compared to glial cells, in the pathogenesis of Alzheimer’s disease, and
emphasize the importance of measuring gene expression in the most relevant (pathogenically ‘proximal’) single cell types.
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Introduction

Alzheimer’s disease (AD) is the most common cause of dementia

and its prevalence is rapidly increasing. AD is characterized by

impairment in cognitive processes and its neuropathology is

characterized by the intra-cellular neurofibrillary tangles and the

extra-cellular b-amyloid (Ab) plaques [1,2,3]. These markers are

found mainly in the neocortex and limbic cortex, including the

hippocampus and entorhinal cortex. Braak and Braak have

proposed a staging scheme, which is based on the density and

distribution of neurofibrillary tangles [4]. This staging shows

anatomical progression through the brain, from entorhinal (Braak

stages I–II), to limbic (Braak stages III–IV), through to isocortical

regions (Braak stages V–VI) [5]. At present, there are no

treatments that can stop the neurodegenerative process [6].

The brain contains various cell types with astrocytes being the

most abundant [7]. The nature of neuron–glia interactions in

controlling the function and pathology of our brains remains

quite a mystery in neurobiology due to limitations of procedures

that allow cell purification [8]. Astrocytes perform many control

and regulatory functions and are known to compose a heteroge-

neous cell population [9]. In the last decade, neurobiologists have

shifted their view of astrocytes from supporting cell types to

multifunctional housekeeping cells. Much attention has been paid

to the role of astrocytes in AD [7] and Ab peptides have been

shown able to activate astrocytes [10,11]. However, in contrast to

neurons, we have limited knowledge about the functional

diversity of astrocytes [12].

Changes in gene expression have become a major focus of

neurodegenerative disease research [5]. These alterations provide

clues about the mechanisms involved in the pathogenesis of

diseases and may aid in discovering novel drugs. Hippocampal

transcriptional profiling has been the focus of AD studies due to its

involvement in memory and spatial navigation, which are being

damaged early in the disease [13,14]. Microarrays of both whole

tissues and of isolated neurons have been reported for the

hippocampus as well as for other brain regions [15,16,17,18]. In

addition, a microarray of cortical astrocytes was recently reported

[19].

As reviewed above, the analysis of gene expression changes in

AD has already been investigated separately in whole tissue, in

astrocytes and in neurons. However, to the best of our knowledge,

up until now no one has compared between all these different

sources of gene expression and asked which provides the most

information about the progression of AD. This question is of

paramount interest, since it provides a strong clue to the main

culprit of AD, and might help to elucidate the initial events causing

AD. Given this data, we could build predictors of AD progression

and thereby to measure the association (information content) of

gene expression from various tissues and cell-types with the

progression of the disease.

A recent study comparing the ability to predict AD progression

by the expression of neuronal metabolic genes versus whole tissue

metabolic genes in the hippocampus region has pointed to the

importance of altered metabolic processes in the neuronal cells

[20]. In the current study, we examine this question on a markedly
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broader scope by generating predictors based on a wider set of

metabolic genes, on other Gene Ontology (GO) [21] biological

processes, and performing the analysis in a host of different brain

regions. Furthermore, astrocyte gene expression is used for the first

time for building predictors of AD progression and is compared

with neuronal cells expression and whole tissues results. Taken

together, this enables us to study the dependence of this

fundamental relation between gene expression and AD pro-

gression on the specific functional annotations of genes.

Results

In order to investigate the role of different biological processes

in AD we have selected several GO terms which are the top

categories in the GO process hierarchy [21] (Table 1). To

compare the influence of gene expression alterations in the disease

in whole tissue to that of specific cell types, we built classification

models utilizing different available datasets containing gene

expression from two different regions: the cortex and the

hippocampus. For each dataset we generated models using several

different sets of genes, annotated to different biological processes as

mentioned above. The three cortical datasets used of whole tissue,

neurons and astrocytes are detailed in Table 2. All gene expression

datasets were preprocessed as detailed in the Methods section.

Classification models for the disease stages available for each

dataset (see Table 2) were generated using the widely used random

forest algorithm (Methods). Separate models were produced for

different subsets of the data in order to compare the ability of

genes involved in particular biological processes (as determined by

GO term) to predict the progression of AD. For feature selection,

we generated models based on different cutoffs on the number of

genes selected (Methods). The prediction accuracy obtained in

each analysis was evaluated on unseen test data, and the cutoff

obtaining the most accurate results was chosen (Table S1).

Accuracies of the 20 cross-validation models based on the chosen

cutoff for each tissue sample type and biological process are shown

in Figure 1A–C. (A permutation test yielded p-value ,0.01 for the

neuronal and whole cortex models and p-value of 0.05 for the

astrocyte model, see Methods). Additional classification algorithms

that are commonly used including support vector machine (SVM)

and decision tree were examined as well and similar accuracies

were obtained (Table S2). The top AD predictive genes in each of

the models are listed in Table S3.

Interestingly, comparison of the prediction results of the

different models revealed high prediction accuracy when relying

on entorhinal cortex neuronal gene expression across the different

biological processes (Figures 1 and S1, prediction accuracy .0.9).

A similar analysis of neuronal dataset from an additional temporal

lobe region (middle temporal gyrus, included in GSE5281) has also

obtained high prediction accuracies of ,0.9 (Figure S2).

Furthermore, the astrocyte models (prediction accuracy ,0.71)

yielded lower results than the whole tissue models (prediction

accuracy ,0.8). Neuronal models that classify only between two

AD severity classes (control vs. AD or NDAD vs. AD, to be exactly

on par with the disease categories available for the whole tissue

and astrocyte datasets) performed similarly well to the 3-class

neuronal-based models (accuracy .0.9 in both cases), still

outperforming other tissue types. Since the whole tissue includes

both neuron and astrocyte cell types, its results may represent the

averaging of the prediction accuracies obtained via the neurons

and via the astrocytes in isolation. This effect of heterogeneity of

cells, which confounds the expression profile in whole tissue

profiling, was reviewed by [22], raising the potential importance of

single-cell gene-expression in medicine. Notably, the prediction

accuracies were similar when analyzing different groups of genes

which are annotated to different biological processes, both for the

models which are based on whole tissue and the models based on

a specific cell type.

The analysis above compares the different cell-type sources, all

arising from the temporal cortex, but due to the constraints

imposed by the existing data, these data come from different

subregions within the temporal cortex. To control for potential

differences that may arise in classification accuracies due to these

sub-regional differences, we have repeated our analysis using data

from an additional brain region – the hippocampus – which is also

affected severely by AD.

Hippocampal classification models were built using data from

whole tissue microarrays [15] and from neuronal microarrays [15–

16] (regrettably, astrocytic gene expression was not available for

the hippocampus) (see Table 2). As before, classification models for

the prediction of AD severity stages were generated using sets of

genes annotated to a number of biological processes in addition to

using all genes in the microarray. Feature selection was performed

as detailed above for the cortical datasets and the prediction

accuracy results are shown in Figure 1D–E (P-value,0.01 for both

neuronal and whole hippocampus models (Methods)). The top AD

predictive genes in each of the models are listed in Table S3.

Reassuringly, the prediction accuracy of the neuronal models is

markedly higher than the whole tissue data models (even to a much

larger extent than the difference observed when analyzing the

cortical region models). These results are consistent with the

dilution effect that was suggested to occur in regional hippocam-

pus microarrays in AD [18]. Taken together, the results highlight

the role of gene expression data from neuronal cells in predicting

the progression of AD, and show that their expression is markedly

more informative regarding the latter than expression of astrocytes

or of the tissue as a whole. Furthermore, as the prediction results

were very similar when testing models based on different biological

process annotations, it appears that many different subsets of genes

can be equally predictive of AD.

Discussion

The human brain is heterogeneously composed of distinct

regions and a variety of cell types that can be differentially affected

in a disease. In our current study we compared microarray gene

expression datasets from neurons, astrocytes and whole tissue

microarrays from brains of healthy and AD patients, assessing the

ability of various models, applied to different cellular processes,

cell types, and brain regions, to predict AD and AD progression.

We use expression data from both the cortex and the hippocampus

brain regions, which are both known to be involved in the disease.

Our key finding is that neuronal cells possess the information

needed to accurately predict AD progression in all the different

brain regions studied (Figure S1), and are markedly superior in

predicting the disease than either astrocytes or whole tissue. The

accuracies of models across the different biological processes in

predicting AD based on entorhinal cortex and hippocampus

neuronal expression were all higher than 0.9 (Figures 1 and S1).

Prediction accuracies based on entorhinal cortex region were

slightly higher than those based on the hippocampus genes for the

early stage of the disease. This is to be compared with prediction

accuracies which were lower than 0.71 for astrocytes models (of

the temporal cortex) and accuracies of ,0.8 and ,0.6 for whole

tissue models based on cortex (mostly temporal cortex) and

hippocampus data, respectively, highlighting the key role of

neurons in the pathogenesis of AD.

Central Role of Neurons in Predicting Alzheimer
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Interestingly, astrocytes provided the lowest predictions of AD

progression, even when comparing their results to the whole

cortical tissue models. As mentioned earlier, astrocytic cells are

heterogeneous. Therefore, although the astrocytes were isolated

based on GFAP marker in the reported study, it is possible that

within this GFAP+ population there is still significant variation.

Furthermore, there might be non-GFAP+ populations of

astrocytes that could yield better predictions of AD progression,

but this will not be possible until a better astrocyte marker is

identified [19].

When generating models based on whole tissue, the results are

likely to represent the overall picture of the tissue, and therefore to

resemble an averaging of the different cell types present in the

tissue, which may explain the finding that whole tissue data yields

accuracies between those of astrocytes and neurons. As mRNA

levels are highly variable even within a homogeneous cell

population [12], single cell expression analysis may also lead to

improved future prediction efforts. Notably, we obtained similar

prediction results among different subgroups of genes annotated to

different biological processes. This may be due on the one hand to

Figure 1. Mean accuracies of predictions of AD severity obtained from various classification models. Each bar represents the mean
accuracy of 20 classification models built using cross-validation based on cortex (A) neuronal (control, NDAD and AD samples), (B) astrocytes (early
and advanced AD samples) and (C) whole tissue (control and AD samples) and on hippocampus (D) neuronal (control, NDAD and AD samples) and (E)
whole tissue (control and AD samples) gene expression data, using all available genes (leftmost columns) or genes from specific biological processes.
Standard deviations (SD) are shown as error bars. Two classifiers results are presented for each case: one classifier using all genes annotated to that
biological process, and another classifier that imposes an additional feature selection for only top selected genes (see Methods).
doi:10.1371/journal.pone.0045879.g001
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the strong correlations that may exist between the expression of

various genes in the cells, and on the other hand due to the large

diversity of genes that are affected in a complex disease such as AD

(as noted, e.g., by [23]). Interestingly, several of these subgroups of

genes contained AD related genes including APP, PSEN1 and

PSEN2. Mutations in these genes are known to cause early-onset

familial AD, but have unclear roles in late onset AD (the subject of

this study) [24]. However, when employing the feature selection

method which chooses the top predictive genes in an unbiased

way, only APP was selected as top predictive of AD and only in

models based on the hippocampus neuronal dataset (Table S3).

Nevertheless, other subgroups of genes that did not include APP

could predict AD progression with similar accuracy.

In summary, various classification models were generated based

on gene expression from whole tissues, neurons and astrocytes

from different brain regions, and their prediction accuracies of AD

severity levels were compared. This study has revealed that

neuronal gene expression is an excellent predictor of AD initiation

and progression in all brain regions studied. As astrocyte gene

expression provides much lower prediction accuracy, these results

strongly suggest, on a genome scale, that the gene expression

changes that neurons undergo during AD progression are more

profound than those observed in the astrocytes (according to

currently available astrocyte microarrays). Furthermore, the

inferior results obtained by the whole tissue models from the two

brain regions highlight the importance of isolating single cell types

for the study of AD pathology and for the prediction of phenotypic

changes. With the advancement of methods and markers enabling

better isolation of different cells subpopulations, the investigation

of their prediction ability should be further studied and is expected

to lead to even more accurate predictions. Finally, the method-

ological lessons learnt from this study are likely to apply to the

study of gene expression of other tissues and organs in humans.

Materials and Methods

2.1 Datasets
All microarray data used in this study were obtained from the

Gene Expression Omnibus site [25] and are detailed in Table 2.

For the analysis of cortical regions we used 3 different gene

expression datasets: (1) for whole cortex analysis we used

microarray GSE15222, which contains control and AD cortical

samples (mainly temporal cortex) [26]; (2) for the neuronal analysis

we used microarrays from laser capture microdissected non-tangle

bearing neurons from the entorhinal cortex (located in the

temporal lobe) (GSE5281) [16,17]; and (3) for the analysis of

astrocytes we used dataset GSE29652 which contains gene

expression data from astrocytes isolated from lateral temporal

cortex with different AD severity levels (determined by their Braak

stage: I-II, III-IV and V-VI) [19].

For the analysis of the hippocampus region we used two gene

expression datasets (Table 2): (1) whole hippocampus tissue

samples (GSE1297) [15]; and (2) expression profiles of laser

capture microdissected non-tangle bearing hippocampal neurons

[16,17].

Further details on the samples that were used such as post-

mortem intervals, age and gender can be found in the original

gene expression microarray papers.

Each dataset was filtered several times according to the groups

of genes annotated to the different GO slim terms (the top

categories in the GO process hierarchy) that were used (Table 1)

[21].

2.2 Classification Models
The total samples of each dataset were randomly divided to

training and test sets, consisting of 2/3 and 1/3 of the samples,

respectively. This process was repeated 20 times to obtain 20

random partitions for each dataset in a standard cross-validation

procedure. Each of the training and test sets were sampled such

that they contained similar ratios of severity classes to the entire

dataset. See Table 2 for details on the classes that were used in the

different models.

The random forest classification algorithm was used for

generating the classification models [27]. The Matlab implemen-

tation of random forest was trained on the gene expression data

training sets (http://code.google.com/p/randomforest-matlab/).

Default parameters were used (500 trees were grown). Model

training and performance evaluation were done on distinct subsets

of data.

Table 1. The list of GO terms used in the current study and
the number of genes annotated to each process.

GO term Number of genes

Biological adhesion 670

Biological regulation 8239

Developmental process 3295

Immune system process 1064

Localization 236

Metabolic process 7803

Multicellular organismal process 3028

Response to stimulus 5551

doi:10.1371/journal.pone.0045879.t001

Table 2. Datasets used for generating the classification models.

Reference Classes in the model
Number of
samples Tissue/cell type Brain region Dataset

[25] Control, AD 364 Whole tissue Cortex (mostly temporal) GSE15222

[16,17] Control, NDAD*, AD 29 Neurons Entorhinal cortex GSE5281

[19] Early AD, advanced AD 18 Astrocytes Temporal cortex GSE29652

[15] Control, incipient AD, advanced AD 31 Whole tissue Hippocampus GSE1297

[16,17] Control, NDAD*, AD 29 Neurons Hippocampus GSE5281

*NDAD are non-demented individuals with intermediate AD neuropathology.
doi:10.1371/journal.pone.0045879.t002

Central Role of Neurons in Predicting Alzheimer
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Separate models were generated for different subsets of genes

(see Table 1) taken from each of the whole tissue and cell types

datasets detailed above, in order to compare the ability of genes

involved in particular biological processes (as determined by GO

term) to predict the progression of AD.

2.3 Feature (Gene) Selection
For feature (gene) selection, the genes with the highest

importance values obtained from the models in each of the

different random partitions were selected. Different cutoffs of

genes with highest importance scores were chosen and the same

training data was used to retrain a model using the genes that were

above the cutoff point. The cutoff that obtained the highest

prediction accuracy for the classification models was chosen to

obtain the final list of selected genes in each of the various

biological processes and different datasets models (see Table S1).

Prediction accuracy is defined as the number of true predictions

divided by the number of samples in a test set.

2.4. Determining the Statistical Significance of the
Models
To assess the significance of the classification models’ prediction

accuracy, a permutation test was applied [28]. In each permuta-

tion test, the class labels were randomly assigned to each sample,

and the entire model discovery process was repeated. For each of

the 20 partitions, 100 such permuted data sets were produced and

the permutation p-value was computed. This test was repeated for

each of the models that were generated in all the different datasets

that were used.

Supporting Information

Figure S1 Mean accuracies of predictions of Alzhei-
mer’s disease (AD) severity obtained from various
feature selection classification models. Each bar represents

the mean accuracy of 20 classification models built using cross-

validation based on neuronal (control, NDAD and AD samples)

gene expression data from (A) Entorhinal cortex and (B)

Hippocampus, using groups of genes annotated to specific

biological processes. SD are shown as error bars (see Methods).

(DOC)

Figure S2 Mean accuracies of predictions of AD severity
obtained from various classification models. Each bar

represents the mean accuracy of 20 classification models built

using cross-validation based on middle temporal gyrus neuronal

(control, NDAD and AD samples) gene expression data, using all

available genes (leftmost columns) or genes from specific biological

processes. SD are shown as error bars. Two classifiers results are

presented for each case: one classifier using all genes annotated to

that biological process, and another classifier that imposes an

additional feature selection for only top selected genes (see

Methods).

(DOC)

Table S1 Number of genes that were selected for the
different feature selection classification models of the
various biological processes.

(DOC)

Table S2 Mean prediction accuracies obtained by
different biological processes classification models by
using SVM and decision tree algorithms.

(DOC)

Table S3 Lists of top 50 AD predictive genes that were
most frequent in the different feature selection models.

(XLSX)
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