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Abstract
Placental oxygenation varies throughout pregnancy. The detection of early changes in placental oxygenation as pregnancy pro-
gresses is important for early identification of preeclampsia or other complications. This invited commentary discusses a recent
preclinical study on the application of 3-dimensional photoacoustic imaging (PAI) for assessment of regional variations in placental
oxygenation and longitudinal analysis of differences in placental oxygenation throughout normal pregnancy and pregnancy
associated with hypertension or placental insufficiency in mice. Three-dimensional PAI more accurately reflects oxygen satura-
tion, hemoglobin concentrations, and changes in oxygen saturation in whole placenta compared to 2-dimensional imaging. These
studies suggest that PAI is a sensitive tool to detect different levels of oxygen saturation in the placental and fetal vasculature in
pathologic and normal pregnancy in mice.
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The placenta, a highly specialized organ, is an interface

between the mother and the fetus that maintains appropriate

fetal growth and development. It controls the exchange of oxy-

gen and nutrients, and the removal of carbon dioxide and waste

products between the maternal and fetal circulations. The pla-

centa also protects the fetus against environmental factors and

produces many hormones and cytokines necessary for preg-

nancy progression and fetal well-being. Placental development

depends on oxygen levels and the mechanisms that control

intrauterine oxygen concentrations.1 Oxygen levels are rela-

tively low early in pregnancy to allow normal embryonic and

placental development.2 During this time, extravillous cytotro-

phoblast cells differentiate and transform into an invasive phe-

notype to remodel the maternal uterine arterial tree. As a result,

placental perfusion increases to supply sufficient oxygen to the

growing placenta and the fetus. Later in pregnancy, oxygena-

tion of the feto–maternal interface increases. However, abnor-

mal vascular remodeling can lead to a series of changes in

placental oxygenation, including persistent hypoxia and in

some cases ischemia, with release of vasoactive and antiangio-

genic factors into maternal circulation. These changes in uter-

oplacental circulation are thought to be associated with a subset

of preeclamptic pregnancies. Therefore, detection of early

changes in placental oxygenation throughout pregnancy may

lead to the identification of pregnancies at risk for negative

maternal and fetal outcomes, including preeclampsia and other

hypertensive disorders of pregnancy.

Currently, Doppler ultrasound is widely used to assess uter-

ine and umbilical blood flows in high-risk pregnancies. How-

ever, such measurements only indirectly relate to the

development of the placental vascular network and oxygena-

tion and the Doppler clinical value as a screening tool in intrau-

terine growth restriction or preeclampsia is controversial.3
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Direct measurements of oxygen levels in the placenta (partial

pressure of oxygen, pO2) are also possible using oxygen-

sensing electrodes, but these invasive methods are not suitable

for clinical use. Currently, no method can directly measure

placental oxygenation in real time in the clinic. A few studies

have demonstrated the utility of blood-oxygenation-level-

dependent (BOLD) magnetic resonance imaging (MRI) for

analysis of placental and fetal oxygenation. These early pre-

clinical and clinical studies have shown the application of

BOLD MRI for the detection of regional differences in placen-

tal oxygen saturation in response to changes in maternal oxy-

genation during singleton and monozygous twin human

pregnancies,4-11

Recently, photoacoustic imaging (PAI) emerged as a pro-

mising noninvasive diagnostic modality to quantify placental

and fetal oxygenation in real time. Photoacoustic imaging is

based on the photoacoustic effect: a laser sends pulsed signals

to the tissue; when absorbed light is converted into heat, ther-

mal expansion of tissue occurs. The resultant sound waves are

detected by ultrasound. Photoacoustic imaging can detect

endogenous contrast such as hemoglobin (Hb). Differences in

absorption spectra between oxygenated and deoxygenated Hb

in the blood allow calculation of microvessel oxygen saturation

in an area of imaged tissue. Use of PA tomography12 and

ultrasound-guided PAI13 has been reported recently for analy-

sis of fetal oxygenation in mice. The sensitivity of PAI was also

demonstrated by changing levels of maternal fraction of

inhaled oxygen (FiO2) from hyper-oxygenation (100%) to

hypo-oxygenation (5%) at day 14 pregnant rats.14 However,

whether differences exist in placental vascular oxygenation

during pathologic pregnancy was not established.

In our article published in The FASEB Journal,15 we have

extended these observations and demonstrated for the first time

that 3-D PAI is a sensitive method for assessing regional var-

iations in placental oxygenation in mice. Using a VevoLAZR

device (FUJIFILM VisualSonics Inc, Toronto, Canada), we

could directly analyze differences in placental oxygenation

between normal pregnancy and pregnancy associated with

hypertension or placental insufficiency in mice.

Photoacoustic imaging enables high-resolution 3-D imaging

of tissue. Three-dimensional PAI more accurately reflects sO2

and Hb concentrations in whole tissue and therefore more com-

pletely represents changes in sO2 in the tissue vasculature com-

pared to 2-dimensional (2-D) imaging. Three-dimensional

images are created by acquiring a series of 2-D images and

assembling them into a 3-D data set (Figure 1). The Vevo-

LAZR software can also calculate 3-D volume, thus allowing

the capture of differences in placental size between groups.

Since rodents have multiple uteroplacental units, the 3-D

model allows standardization of data from different placentas

within 1 animal or between different animals within each study

group. Thus, analysis of placental oxygenation accounts for the

whole tissue volume; correlations between placental volume

and oxygenation during normal and pathologic pregnancy can

then be inferred. Three-dimensional imaging can be also used

to record differences within regions of the rodent placenta, such

as the labyrinth, decidual, and mesometrial triangle areas.

Guided by the anatomical landmarks and histology, we have

identified higher oxygenation of the placental labyrinth com-

pared to the decidual and mesometrial triangle areas, as well as

differences in lateral and central portions of the labyrinth dur-

ing normal pregnancy.16 The ability to record regional changes

Figure 1. Three-dimensional photoacoustic imaging of the placenta and the fetus (A) and the 3D rendering of the placenta (B) at day 14 of
gestation in C57Bl/6 mouse. A, Representative photoacoustic spectra and the image of the uteroplacental unit with contours around the
placenta (pink) and fetus (blue). B, Three-dimensional rendering of the placenta.
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in placental oxygenation is important for our understanding of

the placental oxygenation status throughout pregnancy.

Changes in placental oxygenation can be identified in

response to decreasing levels of maternal FiO2 ranging from

hyperoxia (1) to normoxia (0.21) or hypoxia (0.05). When

maternal oxygen was decreased from hyperoxia to normoxia,

reciprocal changes in the fetal versus maternal portions of the

placenta were recorded during normal mouse pregnancy using

PAI.16 Although not tested in our study, placental insufficiency

is potentially associated with a different capacity for oxygen

transport and varied responses to changes in maternal oxygen.

Clinical studies using BOLD MRI have demonstrated regional

differences in human placental oxygenation when maternal

oxygenation was changed from hyper-oxygenation to room air

at normal gestation.6 These studies suggest that the placenta is

sensitive to changes in maternal oxygen during gestation14 and

that PAI can be used to analyze various states of placental

oxygenation.6 Since vascular oxygenation depends on blood

flow and vascularization, any abnormalities in these parameters

may be signaled by regional differences in oxygenation. Thus,

complementing PAI with contrast-enhanced ultrasound with

microbubbles could provide more information about placental

oxygenation in relation to its vascularization and perfusion.

Early signs of placental hypoperfusion and onset of tissue

hypoxia can be detected by monitoring placental oxygen

saturation throughout pregnancy. We demonstrated stable pla-

cental oxygenation during normal mid-late mouse pregnancy

but lower oxygenation in the placenta during hypertensive

pregnancy. We also demonstrated lower total sO2 levels in the

placenta of angiotensin converting enzyme 2 knockout (ACE2

KO) mouse, a model of uteroplacental insufficiency, compared

with wild-type C57Bl/6 mice. Lower total placental sO2 levels

in both models were corroborated by higher placental expres-

sion of markers of hypoxia.16 Furthermore, lack of difference

in sO2 between labyrinth and decidual plus mesometrial trian-

gle region in ACE2 KO compared to wild-type mice suggests

different patterns of oxygenation between normal mouse preg-

nancy and placental insufficiency.16 Our study also showed

that total fetal sO2 was similar between the normal and hyper-

tensive pregnancies. However, hypertensive pregnancy may be

associated with regional differences in fetal tissue oxygena-

tion.17,18 Thus, in addition to placental oxygenation, PAI pro-

vides valuable information about fetal regional oxygenation

thus permitting noninvasive, real-time analysis of fetal well-

being. These studies suggest that ultrasound-guided PAI is a

sensitive noninvasive tool to detect real-time differences in

placental and fetal oxygenation during pathological and normal

pregnancy.

Yamaleyeva et al15 and others16 have validated the use of

PAI (VevoLAZR) for assessments of blood oxygenation using

an in vitro approach. The accuracy and sensitivity of the PAI in

measuring oxygen saturation was studied intensively with

phantom experiments, where direct measurement from blood

gas analysis, served as the ground true values, and PAI mea-

surements were compared. Most importantly, data obtained in

the phantom studies showed a significant correlation in oxygen

saturation between signals recorded by PAI and direct mea-

surements from blood gas analysis, suggesting that PAI is an

accurate and linear method to measure oxygen saturation in

vitro.15 In our previous work, we have also shown that both

CO-oximetry and PAI measured a similar stepwise decline in

femoral artery sO2 as the FiO2 was lowered, suggesting that

PAI can accurately measure real-time sO2 in the macrocircula-

tion.19 Since the direct placental sO2 measurements are nearly

impossible in the mouse, we focused our study on relative

changes in placental oxygenation in relation to control group,

measurements over time or in response to different maternal

oxygen levels that gave us relevant information on physiologi-

cal responses of placental microvascular sO2. However, addi-

tional validation of PAI sO2 measurements in the placenta in

vivo is desirable. Perhaps comparing PAI to other techniques

such as BOLD-MRI could further validate PAI measurements

of placental sO2. This would improve the overall understanding

of the accuracy of PAI in the placenta.

To begin assessing relative variability of placental sO2 mea-

sured by PAI, the coefficients of variation (COVs) were calcu-

lated for each of the experimental protocols (table 1,

supplemental data, Faseb J15). Our data showed that the major-

ity of experiments had COVs less than 10%, which is similar to

other methods measuring sO2 such as BOLD MRI or arterial

spin labeling measurements. Future studies should address the

repeatability and reproducibility over time, as well as inter-

subject and inter-experimental variability of PAI of the

placenta.

In the discussed study, PAI was performed using a commer-

cial VEVO LAZR system with LZ250 probe, which has a

central frequency of 21 MHz and spatial resolution around

75 mm. As such, the resolution of measuring oxygenation

within regions of the rodent placenta is limited by 75 mm.

However, the spatial resolution can be further improved by

imaging probes with higher central frequency, for example,

LZ550 which has a spatial resolution around 44 micrometers.

Higher resolution of the LZ550 probe is associated with lower

depth of signal penetration and smaller total area of imaging.

Therefore, the selection of the probe will depend on the depth

of the location of the placenta within the animal.

This preclinical study supports the concept of applying PAI

for the analysis of placental oxygenation in clinic. However,

clinical translation of this technology in the field of feto–

maternal medicine is still in its early stages. One of the major

limitations that hinder the use of PAI technology in clinical

practice is shallow penetration of light within the tissue. The

maximum depth of imaging in our study was 18 to 20 mm.

However, in order to image human placenta, PAI signal needs

to be able to penetrate not just the placenta but also the sur-

rounding tissues at the overall depth of approximately 10 to

15 cm at the end of gestation. The thickness and localization of

the placenta, and thickness of uterine and abdominal walls

should be considered when overall depth of imaging is esti-

mated. A PAI depth up to 7 cm from the surface of the skin has

been reported20 suggesting that at early stages of pregnancy it

may be possible to image the placenta using transabdominal
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approach particularly when the placenta is attached to the ante-

rior uterine wall. Furthermore, this technology is capable of

providing assessment of variations in placental oxygenation

both spatially and temporally throughout pregnancy. As such,

it can be a very promising preclinical tool in the studies of

pathologic pregnancy with a potential for further transla-

tional/clinical application in the field. The limitation of the

current imaging depth of PAI technology can be solved with

the further advancement of PAI technology, such as optical

focusing to minimize optical scattering in diffusive tissue,

nanotechnology for high performance imaging contrast with

greatly enhanced PAI signals, PAI endoscopy to image inside

of the body or specific organ of interest, and so on. For exam-

ple, the recently developed time-reversed ultrasonically

encoded optical focusing technique21 is capable of delivering

light into any dynamically defined location inside a scattering

medium by encoding diffused coherent light with focused

ultrasonic wave. Such optical focusing method may signifi-

cantly improve the PAI imaging depth and break through the

current gap between preclinical studies and clinic applications

of PAI technology in placental imaging. Furthermore, although

current devices use laser energy within the safety limits estab-

lished by the American National Standards Institute,22 the

safety of PAI of placenta and fetus needs further investigation.

The significance of the PAI application during pregnancy is

that accurate measurements of placental oxygenation may

reveal the origin of hypoxic stimuli. It may also provide evi-

dence about the timing and role of early placental vascular

abnormalities in the pathogenesis of hypertensive pregnancy

disorders such as preeclampsia. Using near-infrared fluorescent

probes specifically targeted to hypoxic cells or other hypoxia-

responsive imaging agents such as nanoparticles targeted to

hypoxia markers can improve the detection of hypoxia by PAI

in preeclampsia and other pregnancy complications associated

with placental hypoxia. Furthermore, placental oxygenation at

later stages of pregnancy may be rescued by delivering oxygen

to the placenta using artificial oxygen carriers.23 Nanoscale-

sized artificial oxygen carriers such as Hb vesicles reduced

placental hypoxia, decreased levels of antiangiogenic proteins,

and improved fetal growth restriction in a rat model of pree-

clampsia.23 Thus, accurate detection of placental hypoxia with

PAI may enable identification of pregnancies at risk for devel-

opment of preeclampsia or placental insufficiency, and the

ability to therapeutically target hypoxic regions within the pla-

centa to improve overall maternal and fetal outcomes.
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