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Statement of Translational Relevance: Escalated doses of radiation (RT) for intrahepatic 

cholangiocarcinoma (iCCA) are associated with substantially prolonged survival in patients with 

unresectable disease. Understanding the mechanisms underlying radiation resistance in iCCA 

may improve patient outcomes. We hypothesized that changes in enhancement on computed 

tomography (CT) scans of iCCA would be indicative of the physical mechanisms of RT dose 

response. We developed a CT-informed mathematical model of RT response that yields patient-

specific parameters of tumor biology. Results indicated that a CT-derived model-based tumor 

growth rate parameter was associated with local control and overall survival in iCCA. 

Furthermore, simulations with varying RT doses and fractionations for non-responders using 

patient-specific model parameters revealed optimized RT approaches to potentially convert non-

responders to responders. These findings demonstrate the clinical utility of this CT-informed 

mathematical model to improve outcomes for iCCA, and may be applicable to other solid tumors 

for which changes in enhancement indicate a cytotoxic response.
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Abstract 

Background: Although escalated doses of radiation therapy (RT) for intrahepatic 

cholangiocarcinoma (iCCA) are associated with durable local control (LC) and prolonged 

survival, uncertainties persist regarding personalized RT based on biological factors. 

Compounding this knowledge gap, the assessment of RT response using traditional size-based 

criteria via computed tomography (CT) imaging correlates poorly with outcomes. We 

hypothesized that quantitative measures of enhancement would more accurately predict clinical 

outcomes than size-based assessment alone and developed a model to optimize RT.   

 

Methods: Pre-RT and post-RT CT scans of 154 patients with iCCA were analyzed 

retrospectively for measurements of tumor dimensions (for RECIST) and viable tumor volume 

using quantitative European Association for Study of Liver (qEASL) measurements. Binary 

classification and survival analyses were performed to evaluate the ability of qEASL to predict 

treatment outcomes, and mathematical modeling was performed to identify the mechanistic 

determinants of treatment outcomes and to predict optimal RT protocols. 

 

Results: Multivariable analysis accounting for traditional prognostic covariates revealed that 

percentage change in viable volume following RT was significantly associated with OS, 

outperforming stratification by RECIST. Binary classification identified ≥33% decrease in viable 

volume to optimally correspond to response to RT. The model-derived, patient-specific tumor 

enhancement growth rate emerged as the dominant mechanistic determinant of treatment 

outcome and yielded high accuracy of patient stratification (80.5%), strongly correlating with the 

qEASL-based classifier. 
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Conclusion: Following RT for iCCA, changes in viable volume outperformed radiographic size-

based assessment using RECIST for OS prediction. CT-derived tumor-specific mathematical 

parameters may help optimize RT for resistant tumors. 

 

Keywords: response biomarker, imaging, qEASL, RECIST, tumor enhancement, mathematical 

modeling, simulation  
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Introduction 

Intrahepatic cholangiocarcinoma (iCCA) is an uncommon and aggressive malignancy arising 

from the epithelial lining of the intrahepatic biliary tree, for which 70% of patients present with 

unresectable tumors. (1) While chemotherapy has historically been considered the standard of 

care for these patients, treatment with chemotherapy alone has been associated with 

unsatisfactory results, with median overall survival (OS) estimates ranging from 3 to 12 months. 

(2) Recent retrospective studies have shown that treatment with ablative doses of radiotherapy 

(RT) is associated with local control (LC) and OS. (3-5) However, the RT dose and fractionation 

schedule are subjectively chosen for each patient, and there is no consensus on the optimal 

protocol for treating iCCA. (3,6) Further compounding this uncertainty, evidence suggests that 

the optimal treatment of iCCA may be specific to each individual patient, potentially mediated 

by differences in pretreatments received, functional liver reserve, and intrinsic radiosensitivity. 

(7) 

To address these intricacies, investigators in the field of mathematical oncology (8) have  

developed several mathematical models to predict radiotherapy response (9), with the widely 

used linear quadratic (LQ) model being the most prevalent. The LQ model posits that radiation-

driven cell death results from double-strand DNA breaks caused directly by ionizing radiation, or 

through interactions involving single-strand DNA breaks. (10) Leder et al. formulated a more 

comprehensive model encompassing tumor cellular diversity and dynamically evolving 

radioresistance, enabling prediction of the efficacy of radiation schedules. (11) Prokopiou et al. 

introduced the proliferation saturation index (PSI), which implicitly links the proliferative 

fraction of a tumor with its radiation sensitivity. (12) Zahid et al. adapted the PSI model to 

simulate the impact of radiation not through LQ cell survival but by altering the tumor 
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microenvironment, thereby enabling the forecasting of patient-specific responses to radiation. 

(13) To quantify radiosensitivity from a genomic perspective, modeling has been applied to 

develop a radiation sensitivity index (RSI) which connects the expression of specific genes to the 

radiosensitivity of cells. (14) Building on this, a genome-based model for adjusting radiotherapy 

dose (GARD) was developed by Scott et al., linking patient-specific RSI values and the LQ 

model with radiation dose plans to customize treatment schedules based on patient 

radiosensitivity. (15) To enhance the clinical application of mathematical models, we previously 

integrated pre-treatment CT imaging with mechanistic models to predict clinical responses in 

pancreatic cancer. These models are instrumental in understanding cytotoxic response 

mechanisms and have the potential to inform therapeutic decisions. (16) CT-based imaging for 

iCCA prior to and following RT provides a rich source of data from which mathematical models 

may permit therapy selection and adaptation. 

Nevertheless, there are shortcomings in the current methods of radiographic evaluation of 

hepatic tumors. Conventionally, assessment of solid tumor response to systemic and locoregional 

therapies is performed with diagnostic imaging studies, which are crucial for prompt 

identification of responders and non-responders to treatment. Early prediction of treatment 

response after RT in iCCA may substantially impact further management, particularly if other 

liver-directed or systemic therapies are viable options. Currently, approved criteria for assessing 

tumor response to treatment include those from the World Health Organization (WHO) and 

Response Evaluation Criteria in Solid Tumors (RECIST). (17-19) Both criteria depend on 

changes in overall tumor size using the largest unidimensional or bidimensional measurements. 

A significant limitation of these size-based criteria is that they do not account for tumor 
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morphological changes that reflect treatment response, such as tumor necrosis and decreased 

tumor perfusion, which may occur after liver-directed RT. (20)  

To address this, an expert panel introduced the European Association for the Study of the 

Liver (EASL) criteria for hepatocellular carcinoma (HCC), which considers the enhancing 

portion of the tumor as viable tissue using bidimensional measurements of the largest enhancing 

portion of the tumor. (21) The EASL criteria have been shown to be predictive of patient 

outcomes and superior to RECIST and WHO criteria in the assessment of response after 

treatment of HCC. (22,23) Several studies have shown that three-dimensional quantitative EASL 

(qEASL) is predictive of survival after transarterial chemoembolization (TACE) and Yttrium-90 

(Y-90) radioembolization in patients with HCC. (24,25) The utility of CT-based tumor 

enhancement for response assessment following RT for iCCA is yet to be explored and may 

provide more accurate outcome prediction than traditional size-based criteria. (26) More 

importantly, based on the dynamic assessment of viable tumor volume, adaptive radiotherapy 

can be supported by integration with mechanistic mathematical models of tumor growth and 

treatment response. (27) Therefore, the use of qEASL-based tumor enhancement measurements 

to develop mathematical models may be an attractive means of personalizing RT treatment 

protocols.  

In the present study, we tested the hypothesis that changes in tumor enhancement 

following RT could inform a mathematical model of cytotoxic response in iCCA. We aimed to 

evaluate the utility of changes in tumor enhancement for RT response assessment in iCCA and 

predict outcomes following treatment. In addition, using qEASL-based viable tumor volume 

measurements, we sought to develop a mechanistic mathematical model as a prospective tool for 

personalization and adaptation of RT. An imaging-based biomarker of treatment response, 
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integrated with mathematical modeling, may better guide the subsequent management of iCCA 

patients, which is highly important in both direct patient care and clinical trial settings. 

 

 

Methods 

Patient selection 

We retrospectively identified 154 patients with biopsy-proven unresectable iCCA treated with 

definitive RT at MD Anderson Cancer Center from 2001-2021 and underwent liver-protocol 

computed tomography (CT) scans with non-contrast and portal venous phases before and after 

RT. CT imaging was deemed adequate for analysis if liver-protocol scans with and without 

contrast were available prior to the start of treatment and following treatment at the first follow-

up visit. All patients were treated with 3D conformal radiotherapy, intensity-modulated photon 

radiotherapy (IMRT), conformal passive scatter proton beam, or intensity-modulated proton 

radiotherapy (IMPT) techniques. All patients had clinical and radiographic follow-up 

information. OS was measured from the initiation of RT until death or last follow-up. LC was 

calculated from the start of RT until local tumor progression or last follow-up. Local tumor 

progression was defined as any new tumor growth within or at the margin of the RT field. 

Imaging studies that revealed local tumor progression were reviewed and confirmed by a 

radiologist. The Institutional Review Board of MD Anderson Cancer reviewed the study under 

protocol PA14-0646 and waived the need for consent. 

 

Imaging selection and image analysis 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 12, 2024. ; https://doi.org/10.1101/2024.09.11.24313334doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.11.24313334
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

All patients underwent pre- and post-RT (i.e., at the first follow-up visit) contrast-enhanced liver 

protocol CT imaging. We performed image visualization, processing, and analysis on the portal 

venous phase images of both CT scans using Philips IntelliSpace Portal 8 software (Philips 

Healthcare, Amsterdam, Netherlands). As shown in Figure 1A-D, after image registration, the 

corresponding non-contrast scan was subtracted from each post-contrast study to remove any 

artifactual enhancement (e.g., due to tumor calcification, biliary stents, or other metal artifact). 

The tumor volume was manually contoured on each 5 mm slice with exclusion of visually 

identifiable arteries or veins to reduce the possibility of contrast within larger vessels 

confounding measurements of tumor enhancement. Given that the degree of enhancement is a 

surrogate for tumor viability, inclusion of visually apparent vessels within the tumor contour 

could potentially lead to an artifactually increased estimate of viable tumors. (28) 

A reference region of non-tumor hepatic parenchyma was selected for each CT study. 

Viable tumor was classified as any tissue with enhancement exceeding one standard deviation of 

the mean enhancement measured in Hounsfield units from this reference region. Tumor contours 

and reference regions were independently verified by a radiation oncologist (EJK) who was 

blinded to all patient clinical data and outcomes. 

 

Molecular correlates of disease response 

Mutation profiling was performed in 94 (61%) patients using previously described techniques, 

including next-generation sequencing from solid tumor tissue and/or circulating cell-free DNA to 

screen for single nucleotide variants, insertions/deletions, copy number gains, and gene 

fusions.(5) Associations between mutations and changes in enhancement were evaluated. 
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Mathematical model development and calibration 

To understand the mechanistic underpinnings of tumor response to RT in iCCA, we adapted our 

prior work to develop a mathematical model of tumor growth based on qEASL-derived 

measurements of viable tumor volumes. (16,29) The model (Eq. 1) describes the time-dependent 

evolution of the qEASL-derived tumor enhancement volume by accounting for exponential 

tumor growth and radiotherapy-induced tumor death. The model assumes that tumor 

enhancement volume kinetics is a surrogate for tumor growth kinetics, such that the rate of 

change of enhancement volume is given by 

��������

��
� � �����	�
 � ��� · � ����

�
��
��������

	
�������������
 � · �������,  �����0� � �����  (1) 

where ������� is the tumor enhancement volume at time �, � is the first-order tumor growth rate 

constant, ��� is the maximum tumor death rate constant (achievable under ideal conditions of 

radiation dose delivery and radiation sensitivity), ���� is the radiation dose absorbed in the 

tumor at time �, ���
��� is the ‘effective’ half-maximal inhibitory dose of RT (i.e., potency of 

radiation), and �����  is the pre-treatment tumor enhancement volume designated as the initial 

condition. Note that the radiation-induced tumor death rate is proportional to the absorbed 

radiation dose ���� and is assumed to be saturable; hence, the Michaelis-Menten function 

����

�
��
��������

 was used to model the death process.     

We hypothesized that the potency of radiotherapy (or ���
���) depends on tumor perfusion 

(i.e., tissue oxygenation) (30) and non-specific molecular factors (e.g., activation of transcription 

factors to induce anti-apoptotic genes and upregulate cell proliferation) (31). Therefore, the 

‘theoretical’ or in vitro ��� of radiotherapy is corrected for by a penalty factor obtained from the 
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patient-specific tumor blood volume fraction (BVF), such that ���
��� � ���

����
. Here, BVF is a 

dimensionless quantity estimated as the ratio of tumor enhancement volume to total tumor 

volume (pre-treatment); hence, BVF always assumes a value between 0 and 1. Here, the 

exponent � is defined as the radiation resistance coefficient that represents the effect of patient-

specific, ‘unknown’ molecular factors on radiation resistance. Therefore, a larger value of � 

leads to a smaller value of the denominator, thereby increasing ���
��� (i.e., reducing potency). 

Given the administered radiation dose per fraction (��), it was modeled to undergo first-order 

decay such that the remaining total radiation in the tumor at time � was ���� � ∑ �1������ ·� �� ��

�� · �� ·������. Here, � is the decay rate constant of radiation, and 1������ �  1, � ! "0, � # "$ is the 

indicator function, such that " represents individual treatment times, and %"  is the set of treatment 

times.     

While some of the model parameters (Table S1) were either fixed based on average 

estimates from the literature (i.e., ���, �, ���) (32,33) or calculated for individual patients from 

the available clinical data (i.e., BVF from CT images), the remaining parameters were estimated 

by fitting the model to patient-specific tumor enhancement volume kinetics data (i.e., � and �;). 

The model was solved numerically as an initial value problem in MATLAB R2018a 

(MathWorks, Massachusetts, USA) using the built-in function ode45 and nonlinear least-squares 

fitting of the model to clinical data was performed using the built-in function lsqcurvefit.  

 

 

Binary classification and cross-validation 
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Binary classifications were performed to obtain thresholds for i) qEASL-derived measures for 

treatment evaluation and ii) model-derived parameters (�) for outcome prediction. In both cases, 

we used the entire dataset (n = 154) to train the binary classifiers. A logistic regression model 

was fitted between the predictor (i.e., percent change in enhanced volume for the first classifier 

and growth rate constant � for the second classifier) and response variables (i.e., LC-based 

assessment of treatment outcome) using the built-in MATLAB function fitglm, and a receiver 

operating characteristic (ROC) curve was computed with the built-in MATLAB function 

perfcurve. Subsequently, using the Jaccard index (&) as a metric for classifier performance, the 

optimal operating point (or cutoff point) on the ROC curve was obtained for the two classifiers. 

Note that & can be obtained from a confusion matrix as & � TP �TP ) FP ) FN�⁄ , where TP, FP, 

and FN represent true positive, false positive, and false negative cases, respectively, and the 

operating point that yields the highest value of & is chosen as the optimal operating point. Based 

on the optimal operating point, the performance of the classifier was assessed from the confusion 

matrices by measuring the sensitivity (TP/(TP + FN)), specificity (TN/(TN + FP)), and accuracy 

((TP + TN)/(TP + TN + FP + FN)), where TN represents true negatives.   

The leave-one-out cross-validation (LOOCV) technique was used to validate the 

predictive ability of the binary classifiers. (34) For this, n-1 training datasets were generated 

from the total n data points by iteratively removing one data point. Each training dataset was 

used to generate a new ROC curve and to select a cutoff point (based on the calculations of &) to 

classify the left-out test data point. The prediction results from all the iterations were pooled to 

calculate the overall sensitivity, specificity, and accuracy of the classifiers. Note that these two 

classifications are mutually exclusive.  
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Statistical analysis 

Statistical analysis was performed using JMP Pro 16 (SAS Institute Inc., Cary, NC, USA) and 

Stata/SE 17.0 (StataCorp, College Station, TX, USA) software. Fisher’s exact test was used to 

compare the distributions of categorical variables between patient groups. Survival curves were 

constructed using the Kaplan-Meier method. The proportional hazards assumption was evaluated 

using tests of Schoenfeld residuals; all tests yielded P>0.05; thus, we failed to reject the null 

hypotheses that hazards were proportional. Cox proportional hazards models were used for 

univariate and multivariable survival analyses. Welch’s t-test (due to unequal sample sizes) was 

performed to evaluate differences in sample means for the modeling-related parameter values. A 

P-value ≤0.05 was considered significant for all analyses. To further test the predictive power of 

viability volume features, we used it to classify long-term (>24 months) versus short-term 

survival (≤24 months).  

 

Results 

Patient characteristics 

Patient characteristics are shown in Table 1. The analytic cohort consisted of 154 patients. The 

median age was 64 years (range, 29-88 years), and 74 (48%) patients were female. The median 

RT dose was 62.5 Gy (range, 35-100 Gy), and the median number of fractions was 15 (range, 3-

31 fractions). The median interval between the end of RT and post-RT CT scan was 1.8 months 

(range, 0.1-10.9 months). RT technique was proton in 37 patients and photon in 117 patients 

based on physician preference.  

 

Disease outcomes 
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Patient outcomes following RT have been previously reported by our institution. (3,5) In the 

current cohort, updated with the last available follow-up, the median follow-up time was 64 

months (range, 43-80 months) following RT. At latest follow up, 63 patients (41%) had 

experienced local failure and 127 (82%) had died. The median LC was 30 months (95% 

confidence interval [CI] 19-44 months), and median OS was 18 months (95% CI, 15-21 months). 

 

RECIST 1.1 assessment 

Patients were classified by RECIST 1.1 criteria as having complete response (CR; no visible 

tumor), partial response (PR; decrease of ≥30% in sum of longest diameter), progressive disease 

(PD; increase of ≥20% in sum of longest diameter), or stable disease (SD; all others). (19) At the 

first follow up scan after completion of RT, the median longest tumor diameter did not 

significantly change; the median was 7.2 cm (interquartile range [IQR], 5.2-10.3 cm) before RT 

and  6.8 cm (IQR, 4.9-10.0 cm; P=0.115) after RT. Utilizing the RECIST 1.1 criteria, the 

training set had 8 patients with PR to RT, 86 patients with SD, 14 patients with PD, and no 

patients with CR. As shown in Figure 2A-B, there was no significant difference in OS between 

the various response categories (P=0.7052), but there was a significant difference in LC 

(P=0.0137) when patients were stratified by RECIST 1.1 response.  

 

qEASL assessment 

Baseline characteristics stratified by qEASL ( responders and non-responders) are shown in 

Table 1. A key difference was greater use of proton therapy in the qEASL-responder cohort. As 

shown in Table S2, univariate Cox analysis showed that a decrease in qEASL-derived viable 

volume was associated with prolonged OS (P<0.001) but not LC (P=0.083). Similarly, in 
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multivariable analysis, a decrease in viable volume as a continuous variable was significantly 

associated with longer OS (P<0.001) but not LC (P=0.088) after adjusting for age, stage, and 

BED. The change in viable volume (%) was evaluated for its ability to distinguish responders 

from non-responders.  

Using binary classification, a cut-off point of 33% decrease in viable volume was 

determined to optimally predict prolonged LC (>24 months), i.e., being a responder (Figure 1E; 

area under the ROC curve (AUC) = 0.78). The corresponding sensitivity, specificity, and 

accuracy of the classifier were 85.3%, 65.0%, and 69.5%, respectively. Further, as shown in 

Figure 1F, LOOCV upheld the validity of the classifier with an average AUC of 0.77,0.003 and 

sensitivity, specificity, and accuracy of predicting the left-out data point at 85.3%, 64.2%, and 

68.8%, respectively. Furthermore, patients classified as responders according to the qEASL 

criteria demonstrated a significantly longer median OS (34 vs. 13 months; P<0.0001) and 

median LC (44 vs. 15 months; P<0.0001) (Figure 2C-D). 

 

Molecular correlates of response to treatment 

 Mutational frequencies and their associations with treatment responses are shown in 

Table S3. The most commonly observed mutations were in TP53, IDH1, BAP1, and ARID1A. 

Univariate linear regression was performed to identify potential relationships between mutations 

and treatment response, as measured by the percentage change in enhancement volume following 

RT. Only one potential association was identified: ARID1A mutation was associated with a 281% 

increase in enhancement volume vs. a 13% decrease in enhancement volume in ARID1A wild 

type patients (P=0.034). 
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Modeling-derived predictor of treatment response  

As shown in Figure 3A,B, the model-fitted trajectory of patient tumor enhancement 

volume over time (orange line), under the patient-specific radiation treatment implemented in the 

simulation (blue line), demonstrates the difference in the evolution of tumor dynamics in a 

representative responder (patient ID 54; Figure 3A) and non-responder (patient ID 47; Figure 

3B). The key model parameter values, estimated from CT imaging (i.e., BVF) and model fitting 

(i.e., � and �), shown in the inset of the figures, suggest that in the specific examples, despite the 

same dose and fractions given to the two patients, the tumor response varied significantly owing 

to differences in tumor growth rate � and BVF. A responder has a slower growth rate and higher 

BVF than a non-responder. As we know from the model equation, because of the difference in 

BVF, the ���
��� in the two cases varied by an order of magnitude, such that the potency of 

radiation in the non-responder appears to be much lower than that in a responder. In addition, a 

larger value of � obtained for a non-responder suggests a more aggressively growing tumor, 

indicating a net positive growth rate under treatment. 

Furthermore, the model was fit individually to every patient (Figure S1), and parameter 

estimates were obtained (Figure 3E, Table S5). Using the average parameter values shown in 

Figure 3E, we simulated the tumor response dynamics for an average responder and an average 

non-responder, starting with the average initial tumor enhancement volume across all patients, 

that is, ~25 cm3 and ~17 cm3, respectively (Figure 3C-D). From these simulations, we observed 

that the average responder showed a ~51% reduction in enhancement, whereas the average non-

responder exhibited only ~11% decrease in enhancement during the course of treatment. 

Extending the simulation beyond the end of treatment up to day 150 demonstrated that as the 

dose washes out, tumor enhancement eventually begins to increase, although at much different 
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rates for the two groups (due to significant differences in their � parameter values), such that the 

enhancement volumes at day 150 were 6 cm3 and 22.5 cm3 for responders and non-responders, 

respectively. 

The above observations can be contextualized from the parameter estimates shown in 

Figure 3E. The tumor growth rate constant �, radiation resistance coefficient �, effective half-

maximal inhibitory radiation dose or radiation potency ���
���, and pre-RT viable volume were the 

only parameters that were significantly different between the responder and non-responder 

groups (Welch’s t-test, P<0.05). This indicates that owing to relatively smaller growth rates, 

lesser radiation resistance, and higher radiation potency, the responder group showed better 

treatment outcomes to the standard RT regimens. Note that while the pre-RT tumor volumes 

were significantly smaller in the responder cohort, the corresponding difference between the 

BVF values (which is the ratio of pre-RT tumor enhancement volume to pre-RT tumor volume) 

between the two groups was insignificant. This suggests that ���
��� (= 

���

����
) is predominantly 

affected by the desensitization coefficient �.   

We further tested the four parameters identified as significantly different between the 

responder and non-responder groups for their ability to predict treatment outcomes by 

performing logistic regression-based binary classification. As shown in Figure 4A, the ROC 

curves obtained for the four classifiers (�, �, ���
���, and pre-RT tumor volume) had AUC values 

of 0.71, 0.81, 0.69, and 0.57, respectively. Based on the obtained AUC values, we proceeded 

with growth rate � as a potential model-derived predictor of treatment outcomes and calculated 

the optimal operating point on the ROC curve using the Jaccard index (Figure 4B). From this 

analysis, 0.0042 d-1 ( doubling time of 165 d) was identified as the cutoff value to differentiate 

responders from non-responders, such that patients with estimated tumor growth rates -0.0042 
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d-1 were more likely to be responders, while those with growth rates >0.0042 d-1 were more 

likely to be non-responders. Although the ability of � to correctly identify true responders was 

somewhat low (sensitivity = 61.8%), its ability to correctly identify true non-responders was 

quite high (specificity = 85.8%), leading to an overall prediction accuracy of 80.5%. The results 

were validated using the LOOCV method, which led to an average AUC value of 0.816 , 

0.0032 calculated across the 154 ROC curves obtained by retraining the classifier 154 times 

upon removing a new data point every time (Figure 4C). The ability of the classifier to correctly 

predict the left-out data point during LOOCV led to a specificity of 83.3%, sensitivity of 52.9%, 

and an overall accuracy of 76.6%. The corresponding confusion matrices are shown in Figure 

S2. 

The classifier was further tested for its ability to predict survival using Kaplan-Meier 

survival curves, log-rank test, and Cox analysis. The survival curves for OS and LC stratified by 

the growth rate-based binary classifier are shown in Figure 4D-E. A clear separation was 

observed between the two cohorts for both OS and LC (P<0.001 for both). The median OS for 

responders and non-responders was 36 months (95% CI 24-48) and 14 months (95% CI 12-17), 

respectively. The median LC for non-responders was 19 months (95% CI 15-29) and the median 

LC for responders was not reached at last follow up. In univariate Cox analysis, compared to as a 

non-responders, classification as a responder was associated with an HR of 0.40 (95% CI 0.26-

0.61; P<0.001) for death and a HR of 0.29 (95% CI 0.15-0.56; P<0.001) for local progression. 

(Table S4) 

Finally, to establish the validity of the model-based � classifier to work on the qEASL-

based measure of treatment response or as a surrogate for the (%) change in the viable volume 

classifier, we assessed the correlation between model-derived � and the percentage change in 
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viable volume. As shown in Figure 4F, a strong monotonic correlation was observed between the 

two variables, indicated by Spearman’s rank correlation coefficient . = 0.85, and defined by the 

function /�0� � 0.0153 · �1 � ���.��$%·&� ) 0.01. This suggests that the model-predicted � 

values are likely to correctly classify the patient outcomes evaluated using the qEASL-based 

response measure. 

 

Model-based treatment optimization 

As shown in Figure 5, the model was tested as a means to optimize or personalize the treatment 

regimen to improve outcomes. In Figure 5A,B, the dashed black lines represent the tumor 

enhancement volume kinetics of the average responders and non-responders examined in Figures 

3C,D. The model was used to simulate different clinically relevant treatment protocols and to 

predict the corresponding tumor enhancement volume kinetics while keeping the model 

parameter values constant and equal to the values for the average subjects. As observed, for both 

responders and non-responders, the only treatment regimen that outperformed the average 

behavior was 100 Gy in 25 fractions (BED10 140 Gy). Simulations were conducted to assess the 

differential impact of latency to RT starting from the time of initial radiographic imaging by 

examining the predicted change in enhancement on day 60 following the conclusion of RT 

(Table S6). Specifically, the model predicts that starting RT seven days sooner may benefit 

patients who ultimately do not respond to RT.  

 

Discussion 

Early identification of responders and non-responders to RT for patients with iCCA has 

been elusive, owing in part to suboptimal prediction while using traditional size-based 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 12, 2024. ; https://doi.org/10.1101/2024.09.11.24313334doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.11.24313334
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

radiographic criteria. Without prompt assessment of the response to treatment, clinicians cannot 

make informed decisions about the most appropriate modifications to a patient’s treatment 

course. In the current study, we developed a mechanistic model using changes in tumor 

enhancement following RT to better understand tumor growth kinetics and accurately predict the 

response to treatment. We found that tumor viability, as estimated by the degree of post-contrast 

enhancement, outperformed the traditional size-based criteria and effectively stratified patients 

with respect to LC and OS following RT, independent of other clinical characteristics, treatment 

parameters, or prognostic features. Furthermore, mathematical modeling of viable tumor 

volumes revealed earlier initiation of RT as a potential strategy to overcome anticipated non-

response to RT. 

Personalization of RT dose and fractionation is a captivating potential application of the 

results of the current study. The developed mathematical model provides a mechanistic 

description of tumor response to radiation and helps identify a translatable outcome predictor for 

prospective clinical applications. The model accounts for tumor growth dynamics and radiation-

induced tumor death, while considering the role of tumor perfusion (BVF) and other molecular 

factors (�) in radiation resistance. Since the model is built on qEASL-derived data for viable 

tumor volume, it may enable more accurate prediction of radiation response, given that the 

functional or viable volume of the tumor is a more realistic determinant of treatment response, 

unlike the gross size measured via RECIST, which did not predict outcomes as well as qEASL. 

Therefore, through characterization of tumor- and treatment-specific parameters from routine 

clinical measurements or population averages, our  model can predict viable tumor volume 

trajectories, which can provide the basis for treatment design optimization or adaptation in real 

time for improved outcomes. Importantly, modeling-based analysis revealed the significance of 
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tumor growth rates in determining treatment outcomes, as demonstrated by the high accuracy of 

� (AUC of ROC = 0.81) in classifying patient responses. This suggests that a net positive growth 

rate is maintained by tumors of non-responders, which can perhaps be attributed to molecular 

factors that upregulate cell proliferation or induce anti-apoptotic genes. (31) This is consistent 

with  the literature, where pre-treatment tumor growth rates in various solid tumors have been 

found to negatively affect treatment outcomes with immune checkpoint inhibitors (35,36) and 

chemoradiotherapy (37-39). We foresee the application of this finding to estimate tumor growth 

rate using pre-treatment imaging, thereby predicting treatment outcomes and allowing adaptation 

of treatment design for improved outcomes.  

Furthermore, as a representative example, through model simulations, we demonstrated 

that longer fractionation schedules (25 fractions), combined with higher doses (100 Gy), 

appeared to be correlated with greater decreases in tumor enhancement, capable of transforming 

the average non-responder into a responder. These results are consistent with prior work showing 

a potential LC and OS benefit to ablative doses of RT. (3) We also show that the timing of RT 

may have a significant impact on change in enhancement following RT, particularly for the 

group of patients who were deemed to be non-responders. As a next step, identification of non-

responders using pre-RT or even earlier CT-based features will be crucial in further investigating 

if a cohort of patients for whom more prompt treatment, longer fractionation, or higher doses 

may be warranted. 

As shown in our study population, radiographic assessment using size-based criteria does 

not provide a complete picture of response to therapy. Consideration of post-treatment 

morphological changes is essential for a deeper understanding of treatment effects and the 

different patterns of tumor response. With tumor evaluation using RECIST, most patients in this 
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study (82%) would have been categorized as “stable disease”, despite the wide variability in both 

tumor control and survival in this cohort. This highlights the relative insensitivity of size-based 

response criteria in predicting outcomes. Conversely, qEASL has been shown to have higher 

sensitivity and specificity in estimating tumor response than size-based assessments. (40) With 

the present analysis, we have now extended the findings of qEASL response to patients with 

iCCA treated with RT, supporting the idea that enhancement metrics in hepatobiliary cancers are 

linked to disease biology and treatment response. (40-45) 

As an exploratory analysis, we reviewed molecularly characterized patients and identified 

two potential relationships between mutation status and changes in enhancement. Although the 

subgroup sample sizes were small, ARID1A mutation was associated with an increase in 

enhancement volume. Outcome data for patients with ARID1A mutations in biliary tract cancers 

are limited, but a few studies have suggested a poorer prognosis for these patients, which is 

consistent with the observed increases in enhancement. (46,47) Further data are needed to more 

robustly characterize the associations between molecular profile and treatment response. 

We acknowledge that our study was limited by its retrospective nature and number of 

patients. This cohort spanned 20 years, during which time treatment strategies have evolved. As 

such, there is heterogeneity in radiation doses and techniques, chemotherapeutic agents, and 

criteria for patient selection for therapy, which may limit the generalizability of our findings. 

Nevertheless, the ability to measure enhancement over a long period of time despite the use of 

different treatment modalities is also a strength of the methodology, indicating that assessment 

by qEASL can be used over a variety of acquisition parameters and clinical practices. Our future 

directions include independent validation of the reported findings, improvement of tumor 

registration accuracy through the implementation of biomechanical-registration modeling, 
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ascertainment of the impact of upfront systemic therapy, and investigation of the enhancement 

pattern mapping of these tumors. (48-50)  

In summary, mathematical models utilizing tumor enhancement volume changes 

following RT may be used to assess response to therapy as early as the first follow-up scan. This 

measurement outperforms RECIST, which is the standard criterion used for assessing 

radiographic response. In addition, measurement of tumor growth rate pre-treatment can serve as 

a predictor of treatment outcomes, which, upon integration with the mathematical model, can be 

used for treatment personalization. Further validation of these findings using prospective data 

will help establish viable volume changes as an early signal of treatment response, which may 

better guide the subsequent management of iCCA patients treated with RT. 

 

List of abbreviations 

RT, radiotherapy; A-RT, ablative radiotherapy; iCCA, intrahepatic cholangiocarcinoma; 

RECIST, Response Evaluation Criteria in Solid Tumors; qEASL, Quantitative European 

Association for the Study of Liver criteria; LOOCV = Leave-one-out cross validation; OS, 

overall survival; LPFS, local progression-free survival; World Health Organization (WHO), 1D 

= 1-dimensional, 2D = 2-dimensional, 3D = 3-dimensional, TACE transarterial 

chemoembolization; ROC, receiver operating characteristic; CR, complete response; PR, partial 

response; PD, progressive disease; SD, stable disease; ROC, receiver operating characteristic; 

AUC, area under the curve; BED, biologically effective dose 
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Figure 1. Binary classification of qEASL-based classifier. Representative CT images from 
A,C) pre-RT and B,D) post-RT in patients who were identified as A,B) a qEASL responder and 
C,D) a qEASL non-responder. E) ROC curve to determine qEASL-based cutoff point for 
percentage change in enhancement volume following RT. Red circle on the ROC curve denotes 
the optimal operating point identified through the Jaccard index. F) Cross validation of the 
binary classifier. The corresponding confusion matrices are displayed below the figures.  
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Figure 2. Comparison of survival curves stratified by RECIST and qEASL-based evaluations. Overall survival (A) and local 
control (B) among patients stratified by response as measured by RECIST 1.1 and overall survival (C) and local control (D) among 
patients stratified by response as measured by qEASL. 
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Figure 3. Representative model simulations and parameter estimates. Model fits to tumor 
enhancement volume data (orange) are shown, along with the simulated, patient-specific 
radiation treatment cycles (blue) for a representative A) responder (patient ID 54) B) non-
responder (patient ID 47), C) average responder, and E) average non-responder subject. Orange 
circles denote the raw data for enhancement volumes obtained from CT images. Parameter 
estimates for the corresponding cases are given in the inset. E) Model and data-derived 
parameter estimates. The height of each bar represents the mean (n=154) and error bars represent 
standard error of the mean. Welch’s t-test was used to identify differences between responders 
(R) and non-responders (NR). * P< 0.05; *** P< 0.0001; ns: non-significant. Note that treatment 
gap (days) represents the average time interval between two fractions.  
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Figure 4. Binary classification of mathematical model-based classifier. A) ROC curves 
corresponding to �, �, ���

���, and pre-RT tumor volume as binary classifiers. The associated AUC 
values of the curves are given in the legend. B) ROC curve corresponding to the � classifier, 
highlighting the optimal operating point (red circle) and performance metrics (in the inset). C) 
LOOCV of the � classifier showing 154 ROC curves. The corresponding confusion matrices are 
displayed in Figure S2. Survival curves stratified by qEASL growth rate. Overall survival (D) 
and local control (E) among patients stratified by qEASL-based growth rate. F) Spearman’s 
correlation between model-derived predictor of response (�) and qEASL-derived measure of 
treatment outcome assessment (% change in enhancement volume). 
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Figure 5. Treatment optimization simulations. Model-based predictions of tumor 
enhancement volume kinetics corresponding to a,c) the average responder and b,d) average non-
responder subject under different treatment conditions. Dashed black lines represent the response 
kinetics corresponding to the average subject simulated in Figure 4c,d. In c,d) treatment was 
initiated seven days sooner than in a,b). Red arrow indicates the initiation time of treatment, and 
the other colored arrows denote the termination time of a given treatment (described in legend). 
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Table 1. Patient characteristics among all patients and stratified by qEASL response 
 
  

All patients qEASL 
responders 

qEASL 
non-
responders 

P-
value 

Number 154 72 82  
Age, median [range] 64 [29-88] 63 [29-86] 65 [33-88] 0.069 

Sex   
0.747    Female 74 36 38 

   Male 80 36 44 
Time interval between end of RT and post-RT CT 
scan (months), median [range]   

1.8 [0.1-
10.9] 

1.9 [0.2-9.3] 1.8 [0.1-10.9] 0.051 

AJCC 8th edition stage 

0.385 

   I 12 7 5 
   II 29 16 13 
   III 20 6 14 
   IVA 44 22 22 
   IVB 49 21 28 

Tumor largest dimension (mm), median [range]  72 [17-179] 74 [17-179] 72 [24-176] 0.865 

Intrahepatic satellites at diagnosis   
0.202    Yes 76 31 45 

   No 78 41 37 
ECOG scale   

0.687 
   0 52 22 30 
   1 90 44 46 
   2 11 6 5 
   3 1 0 1 

Concurrent chemotherapy    
0.234    No 52 28 24 

   Yes 102 44 58 
Radiation dose Gy median [range]  62.5 [35-

100] 66 [50-100] 60 [35-100] 0.124 

BED ≥ 80.5   
0.069    Yes 113 58 55 

   No 41 14 27 
Technique 

0.004*   Photon 117 47 70 
  Proton 37 25 12 

* Significant at 5% level. Abbreviations: AJCC: American Joint Committee on Cancer; BED: 
Biologically effective dose; CT: Computed tomography; Gy: Gray; ECOG: Eastern Cooperative 
Oncology Group; qEASL, Quantitative European Association for the Study of Liver Criteria 
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