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Abstract

Significant progress has been achieved toward elucidating the molecular mechanisms that underlie breast cancer
progression; yet, much less is known about the associated cellular biophysical traits. To this end, we use time-lapsed
confocal microscopy to investigate the interplay among cell motility, three-dimensional (3D) matrix stiffness, matrix
architecture, and transforming potential in a mammary epithelial cell (MEC) cancer progression series. We use a well
characterized breast cancer progression model where human-derived MCF10A MECs overexpress either ErbB2, 14-3-3f, or
both ErbB2 and 14-3-3f, with empty vector as a control. Cell motility assays showed that MECs overexpressing ErbB2 alone
exhibited notably high migration speeds when cultured atop two-dimensional (2D) matrices, while overexpression of 14-3-
3f alone most suppressed migration atop 2D matrices (as compared to non-transformed MECs). Our results also suggest
that co-overexpression of the 14-3-3f and ErbB2 proteins facilitates cell migratory capacity in 3D matrices, as reflected in cell
migration speed. Additionally, 3D matrices of sufficient stiffness can significantly hinder the migratory ability of partially
transformed cells, but increased 3D matrix stiffness has a lesser effect on the aggressive migratory behavior exhibited by
fully transformed cells that co-overexpress both ErbB2 and 14-3-3f. Finally, this study shows that for MECs possessing partial
or full transforming potential, those overexpressing ErbB2 alone show the greatest sensitivity of cell migration speed to
matrix architecture, while those overexpressing 14-3-3f alone exhibit the least sensitivity to matrix architecture. Given the
current knowledge of breast cancer mechanobiology, these findings overall suggest that cell motility is governed by a
complex interplay between matrix mechanics and transforming potential.
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Introduction

The vast majority of breast cancer-related deaths result

from metastatic tumors; thus, understanding the interplay

between the cellular microenvironment and breast cancer

metastatic potential is critically important to the development

of effective treatments for this disease. Significant progress has

been achieved toward revealing the molecular mechanisms that

underlie breast cancer progression [1,2]; however, quantitative

characterization of the associated cellular biophysical attri-

butes remains incomplete. Fundamentally, metastasis proceeds

via the migration and invasion of cancer cells through variable

extracellular matrix (ECM) environments, and studies have

shown that cell migration is indeed sensitive to matrix

mechanical properties [3,4,5]. Yet, the systems level relationships

among matrix mechanics, disease progression, and cell motility

in breast cancer are not well understood, especially with res-

pect to physiologically relevant three-dimensional (3D) matrix

environments.

Over the past two decades, key breast cancer biomarkers have

been identified and linked to specific stages of the disease. Two

notable factors are the ErbB2 (HER2/neu) and 14-3-3f proteins,

both of whose overexpression has been correlated with poor

clinical prognoses of breast cancer patients [6,7]. ErbB2 and 14-3-

3f have been similarly shown to induce cellular features in

vitro that are comparable to clinical presentations. ErbB2 is a

transmembrane receptor tyrosine kinase of the epidermal growth

factor receptor family of proteins and is involved in multiple

signaling pathways that modulate cell growth, differentiation,

apoptosis, and other critical cellular processes [8]. Analogously,

MECs that are engineered to overexpress ErbB2 have been shown

to exhibit hyperplasia and luminal filling in 3D culture, though not

full transformation and invasion [9,10]. ErbB2 is undoubtedly one

of the most studied molecules in the field of breast cancer [11] and

is a critical target for drug development. In fact, given its ability to

confer resistance to certain types of cancer therapy and its

prognostic value, determining its status with respect to newly

diagnosed breast cancer cases has become a standard practice
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[12]. Strikingly, the ErbB2 protein is overexpressed in over 50% of

early stage non-invasive breast cancers (ductal carcinoma in situ,

DCIS) [13]; yet, it is overexpressed in only approximately 25% of

later stage invasive and metastatic breast cancers [7]. Explanation

of these seemingly inconsistent ErbB2 expression profiles has

eluded researchers to date; however, the results reported here

suggest that this phenomenon may be explained in part by a

mammary epithelial cell (MEC) sensitivity to matrix architecture.

The 14-3-3f protein belongs to a larger family of seven 14-3-3

regulatory proteins that are widely expressed and involved in a

variety of cellular homeostatic processes, including a general cell

survival/anti-apoptotic mechanism [14]. It has been shown that

overexpression of 14-3-3f confers MECs in 3D culture with a

significant resistance to anoikis [15] (a type of apoptosis that occurs

when epithelial cells detach from extracellular ligands), which

promotes luminal filling and drives MECs towards transformation

[16]. Overexpression of 14-3-3f has also been shown to induce

notable morphological features of epithelial-mesenchymal transi-

tion, which are characteristic of progression towards an invasive

phenotype [9,15,17]. Moreover, analyses of patient biopsies

indicate that over 40% of metastatic breast cancers overexpress

this protein [6]. Despite their abilities to bestow non-transformed

cells with oncogenic attributes, overexpression of neither ErbB2

nor 14-3-3f alone is sufficient to confer a complete transformation

in vitro. However, their cooperative overexpression has been

shown to promote progression from non-invasive carcinoma to

invasive cancer in vitro and is also associated with progression of

DCIS to invasive and metastatic breast cancer in patients [9].

Given previously established correlations between breast cancer

biomarkers and metastatic progression, as well as the current

knowledge of substrate-dependent cell motility and cell-matrix

interactions, the following fundamental questions remain unan-

swered for individual MECs with respect to matrix mechanics: (1)

Is MEC motility responsive to 3D matrix stiffness? (2) Is this

responsiveness related to transforming potential? And (3), is there a

relationship between cell motility and transforming potential,

given a determined matrix architecture? In this study, we

quantitatively investigated these questions by employing time-

lapsed confocal microscopy to investigate the effect of matrix

stiffness and architecture on migration speed and persistence of

individual MECs that are cultured atop 2D matrices and those

that are embedded within 3D matrices of differing elastic moduli.

We examined human-derived MECs of varied transforming

potential with respect to matrices formulated from native Type I

collagen, which is the primary structural component of the

mammary stroma. Our studies provide novel insights into breast

cancer mechanobiology by demonstrating that matrix stiffness and

architecture couple with transforming potential to govern the

migratory capabilities of MECs.

Results

In order to explore the relationships between breast cancer

transforming potential and cell motility with respect to matrix

mechanics, we analyzed a well characterized cancer progression

series established from the non-transformed, human-derived

MCF10A cell line. We examined four MCF10A sublines, whose

extent of transforming potential is characterized according to their

growth traits and morphological features when forming acinar

structures in 3D culture [9]. As described previously [9,17], the

sublines (Fig. 1A) consisted of [1] 10A.vec—a non-transformed

control cell line, [2] 10A.ErbB2—a hyperplastic, apoptosis-

resistant partially transformed cell line that overexpresses ErbB2,

[3] 10A.14-3-3f—a depolarized, apoptosis-resistant, and morpho-

logically abnormal partially transformed cell line that overexpress-

es 14-3-3f, and [4] 10A.ErbB2.f—an invasive, fully transformed

cell line that overepxresses both ErbB2 and 14-3-3f.

Effect of transforming potential on cell motility atop 2D
matrices

Cell motility was first examined with respect to the 2D matrix

architecture, which is analogous to the MEC layer that lines the

inner surface of the ductal basement membrane at the initial stage

of invasion into the underlying collagen I-rich stroma in vivo

(Fig. 1A). In this environment, MECs overexpressing ErbB2 alone

migrated with the fastest average migration speed ,S. (Fig. 1B).

Non-transformed cells exhibited the second highest degree of

motility, followed by sublines overexpressing 14-3-3f (Fig. 1B).

Two-dimensional motility patterns of partially transformed and

fully transformed cells are also consistent with transwell motility

behavior that has been reported previously: 10A.ErbB2 cells

moved with the highest speeds, followed by 10A.ErbB2.f and then

by 10A.14-3-3f [9]. Persistence time P (obtained from curve fitting

to the persistent random walk model [18], see Materials and

Figure 1. MCF10A cell motility atop 2D matrices. (A) Ductal/single lobe cross-sectional depiction of MCF10A breast cancer progression series:
10A.vec (non-transformed), 10A.ErbB2 (partially transformed), 10A.14-3-3f (partially transformed), and 10A.ErbB2.f (fully transformed). (B) Mean cell
migration speed ,S. atop 2D matrices; p-values are with respect to ,S. of 10A.vec cells. (C) Cell population persistence time P atop 2D matrices
(average R = 0.87). All p-values (*,p#0.05; **, p#0.01; ***, p#0.001) determined from t-tests for unpaired samples.
doi:10.1371/journal.pone.0020355.g001

Mechanics and Transforming Potential in Migration
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Methods) of non-transformed cells was greater than that of all

sublines possessing transforming potential (Fig. 1C).

Effect of transforming potential on cell motility within 3D
matrices

Next, cell motility was assessed with respect to the 3D matrix

architecture, which is analogous to the in vivo environment where

genetically altered (partially or fully transformed) cells have

invaded their local basement membrane and penetrated into the

underlying stroma (Fig. 1A). Cell motility assays showed that

transforming potential had a notable effect on migration speed

,S. within relatively compliant 3D matrices (Fig. 2A, stiffness

G9
c = 104 Pa). Non-transformed MECs (10A.vec) exhibited

the slowest average speed, whereas fully transformed MECs

(10A.ErbB2.f) migrated with the fastest speed (Fig. 2B). MECs

overexpressing ErbB2 or 14-3-3f alone, although partially

transformed, did not show a notable change in motility rela-

tive to 10A.vec cells (Fig. 2B) in compliant 3D matrices.

Furthermore, migration speed ,S. in compliant matrices

negatively correlated with the sphericity cell morphology index

Y that we previously reported of these sublines when cultured in

the same 3D matrices [17]. As shown in Fig. 2B (inset) [17], Y
decreases as ,S. increases, according to MEC transformation

profile. In compliant matrices, cell population persistence time P

was lowest for fully invasive cells (Fig. 2E).

Effect of 3D matrix stiffness on cell motility
In relatively stiffer 3D matrices (Fig. 2A, stiffness G9

c = 391 Pa),

cell motility assays revealed a behavior significantly different from

that observed in compliant matrices. In the stiffer matrix

environment, fully transformed MECs migrated faster than all

other sublines (Fig. 2C). However, partially transformed cells

(10A.ErbB2 and 10A.14-3-3f) migrated notably slower than both

non-transformed and fully transformed cells. The shift in cell

motility between compliant and stiff matrices is further displayed

as a percent decrease in migration speed, according to transfor-

mation profile (Fig. 2D); this depiction shows that among the

sublines whose migration speed was sensitive to 3D matrix

stiffness, the motility of fully transformed cells was least affected

by the increase in matrix stiffness. As compared to cells in

Figure 2. MCF10A cell motility in 3D matrices. (A) Scanning electron micrographs of compliant (104 Pa) and stiff (391 Pa) 3D matrices; scale bar
is 2 mm. (B) Mean cell migration speed ,S. in compliant 3D matrices. (Inset) cell sphericity Y as taken from Baker et al. [17]; p-values are with respect
to ,S. (and Y) of 10A.vec cells. (C) Mean cell migration speed ,S. in stiff 3D matrices; p-values are with respect to ,S. of 10A.vec cells. (D)
Percent decrease in ,S. of cells within compliant matrices relative to cells in stiff matrices. The p-values shown in black reflect the difference in ,S.

between cells within compliant matrices and the same cells within stiff matrices; the p-values shown in red reflect the difference in % decrease in
,S. among the sublines. (E) Cell population persistence time P in compliant and stiff 3D matrices (average R = 0.87). (F) Percent decrease in ,S. of
cells atop 2D matrices relative to cells within compliant 3D matrices. The p-values shown in black reflect the difference in ,S. between cells atop 2D
matrices and the same cells within compliant 3D matrices; the p-values shown in red reflect the difference in % decrease in ,S. among the sublines.
All p-values (*,p#0.05; **, p#0.01; ***, p#0.001) determined from t-tests for unpaired samples.
doi:10.1371/journal.pone.0020355.g002
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compliant 3D matrices, cell persistence time P in stiff 3D matrices

(Fig. 2E) was lower for cells possessing partial or full transforming

potential, but notably higher for non-transformed cells (10A.vec).

Integrated effects of matrix architecture, matrix stiffness,
and transforming potential on cell motility

Comparing migration speeds of cells atop 2D matrices to those

embedded within similar 3D matrices shows that matrix

architecture has a significant effect on cell motility. Figure 2F

depicts this shift in motility as a percent decrease in speed of cells

atop 2D matrices as compared to those within compliant (104 Pa)

3D matrices. Indeed, motility in 3D matrices is significantly

reduced for all cell sublines examined; however, of the sublines

possessing partial or full transforming potential, cells overexpress-

ing ErbB2 alone (10A.ErbB2) showed the greatest sensitivity to

matrix architecture. The 10A.ErbB2 subline experienced a

significant 94% decrease (15-fold reduction) in cell migration

speed when in 3D matrices as compared to that when these cells

were attached to 2D matrices.

Examination of 3D Windrose plots (Fig. 3) provides a broad,

summary view of the migratory character exhibited by this

MCF10A progression series (rows represent matrix condition,

while columns represent subline). XY-plane confocal images

(Fig. 4) also show typical representative cells and morphological

features exhibited by each of the four sublines, which may bear some

association to migratory data presented here, as well as cell stiffness

findings that we have reported previously [17]. MECs overexpress-

ing 14-3-3f alone exhibited tubular-shaped protrusions (Fig. 4, green

arrows) [19] across all matrix conditions, while those co-overex-

pressing both ErbB2 and 14-3-3f exhibited thin, rod-like extensions

(Fig. 4, yellow carats) for all matrix conditions. Cells overexpressing

ErbB2 alone showed minimal rod-like extensions and only when

embedded within relatively stiff (391 Pa) matrices, while the

remaining MEC sublines displayed similar degrees of protrusion

in both compliant and stiff matrices. The fastest migrating cells on

2D matrices (10A.vec and 10A.ErbB2) exhibited sheet-like cellular

processes in this environment (Fig. 4, blue brackets).

Discussion

Cell motility can be influenced by a number of parameters,

including extracellular chemical gradients [20], matrix mechan-

ical properties [4], matrix degradation [21], intracellular contrac-

tility [5], and cell adhesivity [22]. Increasingly, cancer cells have

become the focus of studies that explore the effect of the

extracellular environment on cellular homeostasis [4,23], cellular

viscoelasticity [24,25], and cell motility. While significant pro-

gress has been achieved in uncovering some of the molecular

mechanisms and signaling pathways that underlie breast and

other cancers [8,14], much less is known about the associated

cellular biophysical attributes. It has long been established that

Figure 3. Windrose plots of MCF10A cell migration. Top row lists cell line; left column lists matrix condition. Cells in 2D matrices exhibited the
highest degree of motility, followed by cells within compliant (104 Pa) 3D matrices and then by cells within stiff (391 Pa) 3D matrices.
doi:10.1371/journal.pone.0020355.g003
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breast cancer metastasis is fundamentally executed by cell

migration from a primary tumor mass through the underlying

stroma and that breast collagen density is correlated with breast

cancer progression [26]. Moreover, cancer cell migratory

capability can be influenced by the stiffness of the ECM [5].

However, the relationship between the external cellular mechan-

ical environment and the motility of breast cancer cells is not

understood. The interplay between these parameters is further

confounded by the stage of breast cancer progression and may

also bear relation to intracellular mechanical properties [17]. In

order to investigate the interplay among matrix mechanics, cell

motility, and transforming potential in breast cancer, we have

utilized time-lapsed confocal microscopy to gauge the migration

speed and persistence of MECs that are attached to 2D matrices

and those that are embedded within 3D matrices, both comprised

of native Type I Collagen. By examining a breast cancer

progression series of sublines that derive from a single MEC

parent line, we are able to directly compare kinesis of cells that

possess varying transforming potential.

The in vivo extracellular microenvironment is a heterogeneous

medium that consists of several components, with the relative

balance and significance of these components depending upon the

extent of cancer progression. In this study, we have probed the

motility of MECs that have the capacity to freely navigate their

ECM. For the case of 3D matrices, this is physiologically most

comparable to individual MECs that have invaded their local

ductal basement membrane and may migrate within the

underlying stroma (Fig. 1A); for the case of 2D matrices, this is

most analogous to early stage cancer cells that may exhibit

enhanced motility along the inner ductal basement membrane at

the initial stage of invasion into the underlying collagen I-rich

stoma (Fig. 1A). We examined single cells that are wholly engaged

with the matrix (but unattached to other cells) in order to

experimentally control the degree and type of cell surface

attachment; thus, the MECs examined here form cell-matrix

attachments via b1 integrins [27].

Examining cell migration with respect to both 2D and 3D

matrices offers a broad perspective of MEC motility (Fig. 3).

Overexpression of ErbB2 has been shown previously to bestow

MECs with increased proliferative capacity [10], and it has also

been associated clinically with early stage breast cancer (DCIS)

[9]. In fact, the matrix environment of early stage breast cancers

(DCIS) more closely resembles that of a 2D matrix architecture

than it does a 3D matrix environment (Fig. 1A). When cultured

atop 2D matrices, MECs overexpressing ErbB2 alone migrated

with the fastest speed (Fig. 1B); non-transformed cells exhibited the

second highest degree of motility, followed by sublines overex-

pressing 14-3-3f (Fig. 1B). The significantly reduced migration

speed of 14-3-3f-overexpressing sublines relative to the remaining

two sublines suggests that 14-3-3f-mediated downregulation of

E-cadherin [9,15] may yield a lesser effect on cell motility atop 2D

matrices than on MECs that are tasked with navigating a 3D

matrix environment. This again underscores the complex

interplay between transforming potential and matrix mechanics

in governing cell motility. High persistence of non-transformed

cells relative to the remaining genetically altered sublines (Fig. 1C)

indicates that transforming potential may grant MECs with a

heightened sensitivity to 2D matrix topography, which would be

reflected in randomly changing cell trajectories as compared to

more directed cell movements of non-transformed cells. An

increased sensitivity to matrix topographical cues should be

advantageous to cells that seek to invade their local basement

membrane.

Our results suggest that within relatively compliant 3D matrices

(104 Pa), transforming potential in association with morphological

features are the dominate factors that influence cell motility. As

shown in Fig. 2 B, fully transformed cells (10A.ErbB2.f) migrated

with the fastest speed ,S. in this environment, followed by

morphologically altered 14-3-3f-overexpressing cells, and 19]. As

displayed in Fig. 4, 3D tubular protrusive structures are evident in

both sublines that overexpress 14-3-3f. Several previous studies

indicate that this morphological phenotype is mediated by

Figure 4. Single-plane confocal images of MCF10A cells embedded within 3D Type I collagen matrices and cultured atop 2D Type I
collagen matrices. Top row lists cell line; left column lists matrix condition. Yellow carats indicate thin, rod-like cellular processes. Green arrows
indicate tubular-shaped cellular protrusions. Blue brackets indicate sheet-like cellular protrusions.
doi:10.1371/journal.pone.0020355.g004
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downregulation of E-cadherin [15], which serves to impart

mechanical integrity to epithelial tissues by anchoring epithelial

cells to one another along the basement membrane. Knockdown

of E-cadherin function thereby disrupts cell polarity and

characteristically round morphological phenotypes [9,15]. There-

fore, the motility results reported here (Fig. 2B), taken with our

previously reported sphericity data [17], underscore prior

investigative conclusions that 14-3-3f is a negative effector of

E-cadherin [9,15]. Examination of cell persistence time P in

compliant matrices (Fig. 2E) indicates that fully transformed cells

navigate their environment in a much less directed manner

than do cells that only possess partial transforming potential

(10A.ErbB2 and 10A.14-3-3f). Again, this agrees with cell

morphological observations that reveal extended rod-like cell

surface protrusions on fully invasive cells (Fig. 4), which are known

to mediate surveillance of environmental gradients and steric

barriers imposed by matrix fibers [19].

Comparing MEC motility in compliant matrices to that of

MECs in stiffer matrices suggests that cell migratory ability is not

simply an effect of transforming potential; rather, it is governed by

a balance of intrinsic cell biophysical attributes along with matrix

mechanics. The slight enhancement of thin, rod-like extensions

exhibited by 10A.ErbB2 cells in stiffer matrices (Fig. 4), although

subtle, may bear association to the high stiffness sensing capability

that we have previously reported of this subline [17]. However,

although morphological features of a given subline were similar in

3D matrices of differing stiffness (Fig. 4), the system-wide

migration speed profiles show distinct patterns relative to matrix

stiffness (Fig. 2B and C and Fig. 3). In both matrix environments,

non-transformed MECs migrated more slowly than fully trans-

formed MECs, which migrated with the fastest speeds. However,

in the stiffer matrices (391 Pa), partially transformed cells

(10A.ErbB2 and 10A.14-3-3f) migrated significantly slower than

non-transformed cells. Increased matrix stiffness resulted in a

decreased migratory ability for fully transformed cells, but this

effect was even more pronounced for partially transformed cells

(Fig. 2D). These results suggest that sufficient density-dependant

3D matrix stiffness may play a role in significantly hindering the

migratory ability of partially transformed cells; however, this

increase in 3D matrix stiffness may not be ample to overcome the

aggressive behavior exhibited by fully invasive cells, as evidenced

by the only moderate reduction in migration speed of

10A.ErbB2.f cells (Fig. 2D). Results from our prior study of these

sublines showed that in the stiffer matrices, 10A.ErbB2 cells

exhibit the highest intracellular stiffness, while fully transformed

10A.ErbB2.f cells exhibit a moderate stiffness, and 10A.14-3-3f
cells exhibit a relatively low stiffness [17]. In total, considering the

current motility data in conjunction with the results of our

previous investigations suggests that MEC migration in 3D

environments proceeds at an optimal balance among genetic

transformation profile, intracellular stiffness, advantageous mor-

phological features, and matrix stiffness. Thus, an increase in cell

migratory speed that may otherwise result from partial or full

transformation may be mitigated in part by density-dependant

matrix stiffness.

The final analysis of this study (Fig. 2F) presents a very

provocative result, given that the ErbB2 oncogene is detected with

lower frequency in invasive and metastatic breast cancers than it is

in early stage breast cancers. In fact, the prevalence of ErbB2

overexpression in invasive and metastatic breast cancer is only half

that of early stage cancers [9], which has been a perplexing

phenomenon. The results from our motility assays suggest that a

shift in matrix architecture may be associated with this behavior.

When MECs transition from a non-invasive early stage cancer to

an invasive and then metastatic cancer, they migrate from atop a

2D basement membrane surface to within a surrounding 3D

stroma and thus experience a shift in matrix architecture (Fig. 1A).

In this study, the motility of 10A.ErbB2 cells shows the greatest

sensitivity to a shift in matrix architecture, as compared to the

other sublines that possess partial or full transforming potential

(Fig. 2F). It follows that cells exhibiting a significantly diminished

stromal migratory ability may be less likely to completely invade

their local boundaries and further traverse the surrounding stroma

to later manifest as metastatic breast cancer. It should also be

noted that overexpression of 14-3-3f significantly suppressed 2D

migration (Fig. 1B), while synergistically enhancing 3D migration

when ErbB2 was also overexpressed (Fig. 2B and C). Thus, the

motility of cells overexpressing 14-3-3f alone exhibited the least

sensitivity to matrix architecture, as compared to 10A.ErbB2 and

10A. ErbB2.f cells (Fig. 2F).

In summary, the present study provides novel insights into

breast cancer motility by demonstrating that transforming

potential couples with matrix stiffness and architecture to influence

the migration speed and persistence of MECs. Numerous prior

investigations have significantly contributed to the present

understanding by examining ErbB2 and 14-3-3f-mediated effects

on intracellular stiffness [17], MEC motility in soluble chemical

gradients [20], cancer cell migration with respect to ligand

availability [5], and motility-induced matrix remodeling [28]. By

employing time-lapsed imaging, we have added to this knowledge

by directly measuring the migration speed of MECs both cultured

atop 2D matrices and embedded within 3D matrices. The

relationships between breast cancer cell motility and substrate

characteristics are complex; further clarification of these connec-

tions may arise from additional future studies that examine the

effects of 2D matrix stiffness and matrix protein constitution on the

motility of the sublines examined here. A clearer understanding of

MEC-matrix interactions holds broad promise that may ultimately

direct the development of targeted therapies and cancer-focused

translational research.

Materials and Methods

Cell culture
Motility assays were performed on stable sublines that were

established as described previously [9] from the non-cancerous,

human-derived MCF10A MEC line (provided by Dr. Robert

Pauley of the Karmonos Cancer Institute, Detroit, MI). Cell lines

were maintained in 2D monolayer culture in DMEM/F12 growth

media [29] within a humidified incubator at 37uC, 5% CO2 until

the time of experimentation.

Collagen matrix preparation and characterization
Two-dimensional matrices were created by diluting high

concentration Type 1 collagen to 2 mg/mL using 20 mL of

ethanol-dialized 2.0 mm carboxylated, yellow-green fluorescent

polystyrene tracer beads (Molecular Probes, Carlsbad, CA)

(approximately 2% solid) and a balance of 0.01 M HCl; 1.5 mL

of the solution was then deposited into the well of a 35 mm glass

bottom dish and allowed to incubate at room temperature for 1 h.

Following this period, the solution was aspirated, leaving only the

bead-impregnated collagen coat that had adhered to the glass

bottom (see Fig. S1 A). Dishes were then rinsed twice with PBS and

stored at 37uC, 5% CO2 for 45 min until fluorescently labeled cells

were deposited into the dish.

Three-dimensional matrices were formulated from high con-

centration Type I collagen (BD Biosciences, San Jose, CA), which

was diluted to two concentrations of 2 and 4 mg/mL. Equal parts

Mechanics and Transforming Potential in Migration
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collagen and neutralizing solution (100 mM Hepes in 2X PBS at

pH 7.3) were mixed with 20 mL of the bead suspension and a

balance of 56105 fluorescently labeled cells suspended in growth

media to achieve the final concentration [30] (see Fig. S1 B). Each

matrix solution (1 mL) was then deposited across the surface of a

35 mm glass bottom dish (MatTek, Ashland, MA). Matrix

solutions were allowed to gel for 90 min at 37uC, 5% CO2, upon

which 1.5 mL of growth media were deposited atop the 3D

matrices to provide cells with adequate nutrients during a

subsequent 4.5 h incubation period at 37uC, 5% CO2. Matrix

stiffness was measured using cone and plate rheometry and

quantified in terms of the bulk shear elastic modulus of the

collagen gel G9
c, which is reported as 104 and 391 Pa for 3D Type

I collagen gels of concentration 2 and 4 mg/mL, respectively, as

described previously [17]. In this manuscript, matrices of modulus

104 Pa are referred to as relatively compliant, while those of

modulus 391 Pa are described as relatively stiff. These elastic

moduli are consistent with those reported previously for non-

cancerous and breast cancer-associated stroma [31]. Three-

dimensional matrices were visualized using a Zeiss Supra 40 VP

scanning electron microscope (see Text S1).

Cell tracking
At the time of experimentation, adherent monolayer cell

cultures were stained with fluorescent Cell Tracker Orange

CMTMR (Molecular Probes) and subsequently detached using

0.05% Trypsin/0.53 mM EDTA (Cellgro, Manassas, VA). For the

3D matrix assay, cells were imaged following a total incubation

period of 6 h within the matrices (see Collagen matrix preparation and

characterization). Time-lapsed image z-stacks of total thickness 120–

150 mm were collected every 10 min for a total of 4 h at a

magnification of 20X using the LSM 5 Live (Carl Zeiss,

Thornwood, NY) (see Fig. S1 C). Z-stack images were collected

at intervals of 1.65 mm, as optimally computed by the LSM

software. For the 2D matrix assay, 26105 fluorescently labeled

cells suspended in 1.5 mL of growth media were deposited atop

the coated glass bottom dish and incubated for 6 h prior to

imaging. Time-lapsed image z-stacks of total thickness 25–30 mm

were collected as described for the 3D matrix assay. During

imaging, both 2D and 3D cultures were housed within a

microscope-mounted incubation chamber that was maintained

at 37uC, 5% CO2.

Motility analyses
Following image collection, cell trajectories and extracellular

bead trajectories were generated using the spots detection and

position tracking features of Imaris image analysis software

(Bitplane, St. Paul, MN). Extracellular tracer beads were used to

track overall sample drift during imaging.Cell migration speed S

was calculated as the total cell track length divided by the total

time over which each cell was recorded in the image field of view.

At each time interval, the incremental cell trajectory was corrected

by adjusting for the sample drift (computed as the average

displacement vector of all tracer beads) that occurred during the

same time interval. Thus, sample drift was accounted for and is

not reflected in the reported values of average population cell

speed ,S. and population persistence time P. Population

persistence time was determined by fitting the (adjusted) mean

squared cell displacements ,d2(t). to the persistent random walk

model [18], Sd2(t)T~2SST2P t{P(1{e{t=P)
� �

, where t is the

elapsed time. The average correlation coefficient for the random

walk curve fits was R = 0.87. Three-dimensional Windrose plots

display (adjusted) cell tracks for each matrix condition (Fig. 3). Cell

motility assays were performed 3–4 times per 3D matrix per

condition per cell line and twice per cell line for the 2D matrix

architecture. An average total of N = 48 cells were imaged per

combination of 3D matrix and cell line, with an average of

M = 125 tracer beads imaged per experiment; an average total of

N = 61 cells were imaged per cell line for the 2D matrix

architecture, with an average of M = 6 tracer beads imaged per

experiment. All calculations were performed using MATLAB.

Supporting Information

Figure S1 Experimental systems utilized for cell motil-
ity assays. (A) Illustration of 2D assay; cells were attached to a

Type I collagen coat embedded with tracer beads. (B) Illustration

of 3D assay; both cells and tracer beads were wholly suspended

within 3D Type I collagen matrices. (C) Maximum intensity

projection of confocal z-stack; mammary epithelial cells (orange)

and 2 mm tracer beads (green) embedded within a 3D Type I

collagen matrix. Tracer beads serve as reference markers to

account for global sample drift.

(TIF)

Text S1

(DOC)
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