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Abstract
Background: Boar taint is a major obstacle when using uncastrated male pigs for swine production. One of the
main compounds causing this taint is androstenone, a pheromone produced in porcine testis. Here we use
microarrays to study the expression of thousands of genes simultaneously in testis of high and low androstenone
boars. The study allows identification of genes and pathways associated with elevated androstenone levels, which
is essential for recognising potential molecular markers for breeding purposes.

Results: Testicular tissue was collected from 60 boars, 30 with extreme high and 30 with extreme low levels of
androstenone, from each of the two breeds Duroc and Norwegian Landrace. The samples were hybridised to
porcine arrays containing 26,877 cDNA clones, detecting 563 and 160 genes that were differentially expressed (p
< 0.01) in Duroc and Norwegian Landrace, respectively. Of these significantly up- and down-regulated clones, 72
were found to be common for the two breeds, suggesting the possibility of both general and breed specific
mechanisms in regulation of, or response to androstenone levels in boars. Ten genes were chosen for verification
of expression patterns by quantitative real competitive PCR and real-time PCR. As expected, our results point
towards steroid hormone metabolism and biosynthesis as important biological processes for the androstenone
levels, but other potential pathways were identified as well. Among these were oxidoreductase activity, ferric iron
binding, iron ion binding and electron transport activities. Genes belonging to the cytochrome P450 and
hydroxysteroid dehydrogenase families were highly up-regulated, in addition to several genes encoding different
families of conjugation enzymes. Furthermore, a number of genes encoding transcription factors were found both
up- and down-regulated. The high number of clones belonging to ferric iron and iron ion binding suggests an
importance of these genes, and the association between these pathways and androstenone levels is not previously
described.

Conclusion: This study contributes to the understanding of the complex genetic system controlling and
responding to androstenone levels in pig testis. The identification of new pathways and genes involved in the
biosynthesis and metabolism of androstenone is an important first step towards finding molecular markers to
reduce boar taint.
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Background
The production of uncastrated male pigs is profitable to
the swine production, because it leads to improved feed
efficiency and greater lean yield of the carcass [1]. How-
ever, production of entire males is a challenge due to boar
taint, an unpleasant odour and flavour often present in
the meat of un-castrated male pigs [2]. Castration is unde-
sirable both for ethical as well as for economical reasons
and thus alternative methods are needed to prevent
tainted meat. Boar taint is primarily caused by high levels
of the two components androstenone and/or skatole in
the pig carcasses [3,4]. Moderate to high heritabilities
have been shown for both androstenone and skatole lev-
els in fat [5-7]. For example, a recent study of Duroc and
Norwegian Landrace showed heritabilities ranging from
0.5–0.6 for androstenone and 0.23–0.56 for skatole [8].

Androstenone (5α-androst-16-en-3-one) is a 16-andros-
tene steroid produced from pregnenolone in the steroid
hormone pathway in boar testis near sexual maturity. It is
released into the blood and transported to salivary glands
[9], where it regulates reproductive functions in female
pigs [10]. Due to its lipophilic properties, it is also easily
stored in the adipose tissue [11], causing boar taint when
the fat is heated. Another steroid produced from pregne-
nolone in the same pathway is testosterone. Testosterone
stimulates growth and fertility and the challenge is to
reduce the level of androstenone without affecting the
level of testosterone. Genes specifically affecting the pro-
duction of androstenone in the testis are therefore of
interest, as well as genes involved in degradation and
elimination of this steroid.

Several candidate genes have been suggested to affect lev-
els of androstenone. The biosynthesis of 16-androstenes
from pregnenolone is catalysed by the andien-β synthase
enzyme system [12], which consists of cytochrome P450-
C17 (CYP17) and cytochrome b5 (CYB5) [13]. Although
CYP17 has been proposed as a very potent candidate gene
affecting levels of androstenone, studies so far have not
found significant effects of SNPs within the CYP17 gene
and androstenone levels [14,15]. Similarly, it has not
been possible to find a significant correlation between lev-
els of CYP17 and levels of 16-androstene steroids in fat
[14]. CYB5 has been found positively correlated to the
production of androstenone [14]. In addition, a SNP in
the 5' un-translated region of porcine CYB5 is found to be
associated with decreased fat androstenone levels [16].

Another potent class of candidate genes is the sulpho-
transferase (SULT) enzymes whose main function is to
transfer a sulfo group to a range of molecules including
for example steroid hormones [17]. The SULTs have been
proposed to regulate the amount of unconjugated 5α-
androstenone available for accumulation in fat [18], and

high proportions of sulphoconjugated to unconjugated
16-androstene steroids are observed in porcine plasma
and Leydig cells [18,19].

The levels of androstenone vary between breeds, with e.g.
higher androstenone levels in Duroc and Hampshire
compared to Landrace and Yorkshire [20]. It is therefore
of interest to investigate gene expression patterns in indi-
viduals with high or low levels of androstenone in differ-
ent breeds. In this study boars with extreme levels of
androstenone were selected from the two commercial
breeding populations in Norway, Duroc and Norwegian
Landrace, for gene expression analysis in testis using
microarray technology. The objective of the study was to
identify differentially expressed genes that could point
towards pathways associated with extreme levels of
androstenone in pigs. To our knowledge, this is the first
microarray experiment performed in this context.

Results
Porcine cDNA microarrays containing 26,877 clones were
used to examine the transcript profile of Duroc (D) and
Norwegian Landrace (NL) pigs with high (H) and low (L)
levels of androstenone. A total of 1533 NL boars and 1027
D boars were analysed and average androstenone levels
were 1.17 ± 1.15 µg/g and 3.22 ± 2.68 µg/g for NL and D,
respectively. 30 high and 30 low androstenone boars were
selected from each breed and average values were 5.91 ±
2.41 µg/g for NL high androstenone (NLH), 0.15 ± 0.04
µg/g for NL low androstenone (NLL), 10.27 ± 2.68 µg/g
for D high androstenone (DH) and 0.42 ± 0.13 µg/g for D
low androstenone (DL). Testicle derived samples were
hybridised using a balanced block design and significantly
affected genes were identified using linear models
(Limma). Box plots (See Additional file 1: Boxplot of the
arrays) show that the deviation of the raw log ratios from
0 was successfully normalised. The statistical test detected
563 and 160 clones as differentially expressed in D and
NL, respectively (p < 0.01) (See Additional file 2: Microar-
ray results analysed using Limma, Duroc and Additional
file 3: Microarray results analysed using Limma, Norwe-
gian Landrace). The top 100 genes are presented for D
(Table 1) and NL (Table 2). Venn diagrams were created
to explore any overlap between breeds and 72 genes were
found in common for D and NL (See Additional file 4:
Genes common for Duroc and Norwegian Landrace at p <
0.01). Another more robust, but less powerful non-para-
metric test for statistical analysis, namely Fisher's Sign Test
(FST) was performed as well. (See Additional file 5: Micro-
array results analysed using Fisher's sign test, Duroc and
additional file 6: Microarray results analysed using
Fisher's sign test, Norwegian Landrace).

The cDNA clones found to be differentially expressed were
used to search for statistically overrepresented gene ontol-
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Table 1: Top 100 genes identified in Duroc

ID Name gene_id M adj.P.Val

211570 Similar to hypothetical protein (LOC475155) XM_532385.1 0.746 4.28e-12
103463 Cytochrome P450 17A1 (CYP17A1) NM_214428.1 1.227 6.05e-12
218005 1.100 8.28e-12
217877 Ferritin, light polypeptide (FTL) NM_000146.3 1.033 1.27e-11
209883 0.550 1.29e-11
213434 Eukaryotic translation elongation factor 1 alpha 1 (EEF1A1) NM_001402.4 1.084 1.29e-11
203529 Cystatin F (leukocystatin) (CST7) NM_003650.2 0.726 1.57e-11
102025 Cytochrome b-5 (CYB5) NM_001001770.1 0.529 1.57e-11
210231 Ferritin, light polypeptide (FTL) NM_000146.3 1.032 1.57e-11
215500 Ferritin, light polypeptide (FTL) NM_000146.3 0.986 5.24e-11
210851 Ferritin, light polypeptide (FTL) NM_000146.3 1.006 6.23e-11
216813 Kallikrein 6 (neurosin, zyme) (KLK6), transcript variant C NM_001012965.1 0.892 6.45e-11
211448 Golgi phosphoprotein 3-like (GOLPH3L) NM_018178.3 0.927 1.55e-10
103177 Cytochrome b-5 (CYB5) NM_001001770.1 0.768 9.43e-10
216525 Chromosome 22 open reading frame 16 (C22orf16) NM_213720.1 0.639 1.52e-09
214052 Carbonyl reductase/NADP-retinol dehydrogenase (DHRS4) NM_214019.1 0.889 1.64e-09
218092 Procollagen C-endopeptidase enhancer (PCOLCE) NM_002593.2 0.606 1.69e-09
100650 Brain expressed, X-linked 1 (BEX1) NM_018476.2 0.537 1.98e-09
216417 DNA helicase HEL308 (HEL308) NM_133636.1 0.757 2.11e-09
217089 Chromosome 20 open reading frame 22 (C20orf22) NM_015600.2 0.812 2.19e-09
211821 Phosphatidylserine receptor (PTDSR) NM_015167.1 0.891 2.61e-09
213358 Microtubule-associated protein 1 light chain 3 alpha (MAP1LC3A) NM_032514.2 0.811 3.78e-09
206784 Ferritin heavy-chain (FTH1) NM_213975.1 0.478 4.72e-09
216513 Prostate androgen-regulated transcript 1 (PART1) NM_016590.2 0.693 4.72e-09
101322 Ferredoxin (FDX1) NM_214065.1 0.498 8.99e-09
215969 N-acetylglucosamine-1-phosphotransferase, gamma subunit (GNPTG) NM_032520.3 0.517 1.67e-08
211898 POU domain, class 3, transcription factor 2 (POU3F2) NM_005604.2 0.643 3.56e-08
209731 Ferritin heavy-chain (FTH1) NM_213975.1 0.595 3.56e-08
214602 Acetyl-Coenzyme A carboxylase alpha (ACACA), transcript variant 2 NM_198839.1 0.473 6.06e-08
100718 Adenylate kinase 3 (AK3) NM_016282.2 0.445 6.06e-08
213748 Hypothetical protein LOC284106 (LOC284106) XM_375449.1 0.304 7.54e-08
216045 Phosphodiesterase 4D, cAMP-specific (PDE4D) NM_006203.3 0.670 7.54e-08
218317 Ferritin heavy-chain (FTH1) NM_213975.1 0.332 8.53e-08
211683 Ferritin heavy-chain (FTH1) NM_213975.1 0.537 9.79e-08
202380 Protein phosphatase 1, regulatory subunit 2 pseudogene 3 (PPP1R2P3) NR_002168.1 0.497 1.16e-07
103450 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 (soluble) (HMGCS1) NM_002130.4 0.387 1.16e-07
210738 Ferritin heavy-chain (FTH1) NM_213975.1 0.538 1.65e-07
217101 Leucine zipper protein 1 (LUZP1) NM_033631.2 0.741 1.84e-07
209872 Aldo-keto reductase family 1, member C4 (AKR1C4) NM_001818.2 0.634 3.65e-07
101435 Muscle-specific intermediate filament desmin (LOC396725) NM_001001535.1 0.559 4.57e-07
207680 Myelin expression factor 2 (MYEF2) NM_016132.2 0.344 8.37e-07
103619 Glucan (1,4-alpha-), branching enzyme 1 (GBE1) NM_000158.1 0.417 1.44e-06
205158 Glutathione S-transferase (MGST1) NM_214300.1 0.447 1.59e-06
103416 Peroxiredoxin 3 (PRDX3), nuclear gene encoding mitochondrial protein NM_014098.2 0.436 1.68e-06
210951 Ferritin heavy-chain (FTH1) NM_213975.1 0.491 1.94e-06
214541 Homeo box (H6 family) 1 (HMX1) NM_018942.1 0.334 2.17e-06
217401 Phosphate regulating gene (Phex) NM_011077.1 0.592 2.82e-06
201622 Hypothetical protein LOC285016 (LOC285016) NM_001002919.1 0.591 3.08e-06
217377 0.607 3.40e-06
217497 Similar to coronin, actin binding protein, 2B (LOC517030) XM_595194.1 0.507 3.43e-06
101570 Sorting nexin 3 (SNX3), transcript variant 1 NM_003795.3 0.230 3.61e-06
216333 Brca1 associated protein 1 (Bap1) NM_027088.1 0.297 3.74e-06
101369 Translocase of inner mitochondrial membrane 13 homolog (TIMM13) NM_012458.2 0.333 3.98e-06
216897 Zinc finger protein 229 (ZNF229) NM_014518.1 0.696 3.98e-06
201672 0.411 4.07e-06
100874 Ubiquitin-conjugating enzyme E2R 2 (UBE2R2) NM_017811.3 -0.453 4.31e-06
217389 SMAD, mothers against DPP homolog 1 (Drosophila) (SMAD1) NM_001003688.1 0.623 5.08e-06
103364 Sulfotransferase family, cytosolic, 2A, member 1 (SULT2A1) NM_003167.2 0.325 5.08e-06
214446 0.484 5.08e-06
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103263 Retinol dehydrogenase 12 (all-trans and 9-cis) (RDH12) NM_152443.1 0.336 6.64e-06
220907 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 (soluble) (HMGCS1) NM_002130.4 0.363 7.29e-06
217413 Suppressor of cytokine signaling 5 (SOCS5), transcript variant 1 NM_014011.4 0.609 8.04e-06
209887 0.416 8.52e-06
211211 KIAA0999 protein (KIAA0999) NM_025164.3 0.284 9.46e-06
104110 Cytochrome P450 51 (CYP51) NM_214432.1 0.365 9.98e-06
204992 0.381 1.12e-05
100545 Isopentenyl-diphosphate delta isomerase (IDI1) NM_004508.2 0.365 1.38e-05
100618 Myelin basic protein (MBP) NM_001001546.1 0.272 1.38e-05
104176 Aminolevulinate, delta-, synthase 1 (ALAS1), transcript variant 1 NM_000688.4 0.407 1.42e-05
211043 Testis expressed sequence 261 (TEX261) NM_144582.2 0.390 1.42e-05
209191 Chromosome 20 open reading frame 50 (C20orf50) XM_046437.7 0.416 1.42e-05
221311 0.331 1.42e-05
201823 Cytochrome b-5 (CYB5) NM_001001770.1 0.439 1.66e-05
209002 Malic enzyme 2, NAD(+)-dependent, mitochondrial (ME2) NM_002396.3 -0.232 1.66e-05
212725 Immunoglobulin superfamily, member 8 (IGSF8) NM_052868.1 0.181 1.89e-05
203290 Hypothetical protein MGC33214 (MGC33214) NM_153354.2 -0.268 2.10e-05
103537 Regulatory factor X, 2 (influences HLA class II expression) (RFX2) NM_000635.2 0.495 2.16e-05
211919 0.430 2.16e-05
220629 Chromosome 6 open reading frame 89 (C6orf89) gi|47271470|ref| -0.451 2.16e-05
200365 HDCMA18P protein (HDCMA18P) NM_016648.1 -0.342 2.23e-05
207244 Superoxide dismutase 1, soluble (SOD1) NM_000454.4 0.267 2.26e-05
102085 Steroid membrane binding protein (PGRMC1) NM_213911.1 0.265 2.33e-05
103751 Glutathione peroxidase 4 (GPX4) NM_214407.1 0.447 2.34e-05
204615 Solute carrier organic anion transporter family, member 1B3 (SLCO1B3) NM_019844.1 0.297 2.65e-05
102131 Integral membrane protein 2B (ITM2B) NM_021999.2 0.327 2.95e-05
100094 Poly(A) binding protein, cytoplasmic 1 (PABPC1) NM_002568.3 0.375 3.07e-05
201085 0.344 3.16e-05
219913 Similar to Probable RNA-dependent helicase p68 (LOC505151) XM_581395.1 0.418 3.21e-05
215566 Protein phosphatase 4 (formerly X), catalytic subunit (PPP4C) NM_002720.1 0.330 3.37e-05
216418 Similar to omega protein (LOC91353) NM_001013618.1 0.240 3.54e-05
215949 Hypothetical LOC400120 (LOC400120) NM_203451.1 0.604 3.56e-05
103431 C-myc binding protein (MYCBP) NM_012333.3 0.236 3.98e-05
101450 0.306 4.34e-05
209773 Similar to protein RAKc (LOC439947) XM_495795.1 0.462 4.46e-05
105008 Cytochrome P450 19A2 (CYP19A2) NM_214430.1 0.418 5.57e-05
103550 Phosphoenolpyruvate carboxykinase 1 (soluble) (PCK1) NM_002591.2 -0.299 5.57e-05
206124 Solute carrier family 24, member 5 (SLC24A5) NM_205850.1 -0.211 5.96e-05
212000 Upstream of NRAS (UNR), transcript variant 2 NM_007158.4 0.239 5.96e-05
214660 HSPC038 protein (LOC51123) NM_016096.2 0.232 6.01e-05

Gene profiling was done using 30 arrays and analysed using linear models. Fold change (M-values) and statistical significance (FDR-adjusted p-values) 
is shown. The clone names refer to hits to human, mouse or pig genes. Some genes are represented by several different clones on the array and 
may therefore show up more than once in the table, while some have no hits to the abovementioned species.

Table 1: Top 100 genes identified in Duroc (Continued)
ogy (GO) terms compared with the GOs represented by
all the genes on the array. The most significant terms ana-
lysed for molecular function in D were ferric iron binding,
iron ion binding, oxidoreductase activity and steroid
binding (Figure 1). For NL we also found terms related to
functions like electron transport and steroid dehydroge-
nase activity (Figure 1). Furthermore, the genes were clas-
sified according to their biological processes (Figure 2)
and cellular components (See Additional file 7: Gene
ontology (GO) results for the cellular component ontol-
ogy, Duroc and Additional file 8: Gene ontology (GO)
results for the cellular component ontology, Norwegian
Landrace). The biological processes most significant in
both breeds were steroid biosynthesis and steroid metab-
olism.

Both real competitive PCR (rcPCR) and real-time PCR
were used to validate expression profiles for ten of the
interesting differentially expressed genes from the micro-
array experiment. Real-time PCR was used to confirm the
expression of CYP17, CYB5, ferritin light polypeptide
(FTL) and translation elongation factor 1 alpha 1
(EEF1A1) in the D samples. The NL pigs were not
included in this study. The expression levels of all genes
were normalized to β-actin (ACTB) and 18S rRNA. Three
of the four genes, FTL, CYB5 and CYP17, were confirmed
by this method, while for EEF1A1 no significant differ-
ence was found (Table 3). rcPCR was used to analyse gene
expression profiles of sphingomyelin phosphodiesterase
1 (SMPD1), steroidogenic acute regulatory protein
(StAR), sulfotransferase family 2A, dehydroepiandroster-
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Table 2: Top 100 genes identified in Norwegian Landrace

ID Name gene_id M adj.P.Val

214052 Carbonyl reductase/NADP-retinol dehydrogenase (DHRS4) NM_214019.1 1.106 1.94e-08
213358 Microtubule-associated protein 1 light chain 3 alpha (MAP1LC3A) NM_032514.2 0.805 2.41e-08
210231 Ferritin, light polypeptide (FTL) NM_000146.3 0.884 2.49e-08
103463 Cytochrome P450 17A1 (CYP17A1) NM_214428.1 1.278 3.06e-08
209574 KIAA1423 (KIAA1423) XM_376550.2 0.466 3.06e-08
215500 Ferritin, light polypeptide (FTL) NM_000146.3 0.820 3.27e-08
210851 Ferritin, light polypeptide (FTL) NM_000146.3 0.910 4.39e-08
211570 Similar to hypothetical protein (LOC475155) XM_532385.1 0.488 9.99e-08
217877 Ferritin, light polypeptide (FTL) NM_000146.3 0.838 1.76e-07
218005 0.902 1.82e-07
220047 Cell division cycle associated 7 (CDCA7), transcript variant 1 NM_031942.3 -0.524 2.21e-07
203529 Cystatin F (leukocystatin) (CST7) NM_003650.2 0.727 3.30e-07
211448 Golgi phosphoprotein 3-like (GOLPH3L) NM_018178.3 0.778 4.07e-07
213434 Eukaryotic translation elongation factor 1 alpha 1 (EEF1A1) NM_001402.4 0.884 4.76e-07
213869 PRA1 domain family, member 2 (PRAF2) NM_007213.1 0.258 1.79e-06
105119 Steroidogenic acute regulatory protein (STAR) NM_213755.2 0.378 1.79e-06
100252 Ras homolog gene family, member Q (Rhoq) NM_053522.1 0.330 4.40e-06
209883 0.442 7.35e-06
211898 POU domain, class 3, transcription factor 2 (POU3F2) NM_005604.2 0.541 7.81e-06
102025 Cytochrome b-5 (CYB5) NM_001001770.1 0.397 8.88e-06
209731 Ferritin heavy-chain (FTH1) NM_213975.1 0.421 2.15e-05
201622 Hypothetical protein LOC285016 (LOC285016) NM_001002919.1 0.602 2.60e-05
101322 Ferredoxin (FDX1) NM_214065.1 0.420 2.69e-05
206784 Ferritin heavy-chain (FTH1) NM_213975.1 0.345 4.90e-05
209887 0.378 5.19e-05
215969 N-acetylglucosamine-1-phosphotransferase, gamma subunit (GNPTG) NM_032520.3 0.362 5.50e-05
211014 Elastin microfibril interfacer 2 (EMILIN2) NM_032048.2 0.235 5.50e-05
211919 0.393 5.50e-05
210951 Ferritin heavy-chain (FTH1) NM_213975.1 0.401 6.77e-05
105008 Cytochrome P450 19A2 (CYP19A2) NM_214430.1 0.338 8.16e-05
210738 Ferritin heavy-chain (FTH1) NM_213975.1 0.424 8.16e-05
201823 Cytochrome b-5 (CYB5) NM_001001770.1 0.454 8.16e-05
100826 Chromosome 15 open reading frame 24 (C15orf24) NM_020154.2 -0.230 8.39e-05
101872 Anthrax toxin receptor 1 (ANTXR1), transcript variant 1 NM_032208.1 0.339 8.39e-05
211040 Cytochrome P450 11A1 (CYP11A1) NM_214427.1 0.479 9.63e-05
103622 Chaperonin containing TCP1, subunit 4 (delta) (CCT4) NM_006430.2 0.222 0.00010
211683 Ferritin heavy-chain (FTH1) NM_213975.1 0.390 0.00010
209678 Parvin, gamma (PARVG) NM_022141.4 0.354 0.00012
211043 Testis expressed sequence 261 (TEX261) NM_144582.2 0.321 0.00014
100650 Brain expressed, X-linked 1 (BEX1) NM_018476.2 0.410 0.00017
102207 Similar to RUN and FYVE domain-containing 2 (LOC441022) XM_496700.1 0.322 0.00019
202502 A disintegrin and metalloproteinase domain 5 (ADAM5) NR_001448.1 0.265 0.00019
221253 Adaptor-related protein complex 1, mu 2 subunit (AP1M2) NM_005498.3 0.277 0.00019
210077 Cytochrome P450 2C49 (CYP2C49) NM_214420.1 0.211 0.00020
201085 0.288 0.00021
211785 Zinc finger, DHHC domain containing 14 (ZDHHC14) NM_153746.1 0.346 0.00023
104944 GTP cyclohydrolase 1 (dopa-responsive dystonia) (GCH1) NM_000161.1 -0.593 0.00024
201672 0.293 0.00026
102125 Hypothetical protein HSPC138 (HSPC138) NM_016401.2 0.209 0.00026
211821 Phosphatidylserine receptor (PTDSR) NM_015167.1 0.726 0.00033
204992 0.415 0.00036
202380 Protein phosphatase 1, regulatory subunit 2 pseudogene 3 (PPP1R2P3) NR_002168.1 0.422 0.00037
213748 Hypothetical protein LOC284106 (LOC284106) XM_375449.1 0.221 0.00037
103177 Cytochrome b-5 (CYB5) NM_001001770.1 0.566 0.00037
103075 Emopamil binding protein (sterol isomerase) (EBP) NM_006579.1 0.227 0.00038
210827 Membrane-associated protein 17 (MAP17) NM_001001769.1 0.269 0.00039
213497 NADH dehydrogenase (ubiquinone) 1, 1, 6kDa (NDUFC1) NM_002494.2 0.271 0.00039
104615 Superoxide dismutase 1, soluble (SOD1) NM_000454.4 0.268 0.00040
103619 Glucan (1,4-alpha-), branching enzyme 1 (GBE1) NM_000158.1 0.291 0.00046
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one-preferring, member 1 (SULT2A1), 17-beta-hydroxys-
teroid dehydrogenase IV (HSD17B4), aldo-keto reductase
family 1, member C4 (AKR1C4), and cytochrome P450,
subfamily XIA, polypeptide 1 (CYP11A1). The expression
levels of all genes were normalised using the housekeep-
ing gene hypoxanthine guanine phosphoribosyltrans-
ferase 1 (HPRT). StAR, SULT2A1, HSD17B4, AKR1C4 and
CYP11A1 were all differentially expressed in both D and
NL (p < 0.01), while SMPD1 was not significantly differ-
entially expressed in either of the two breeds (Table 4 and
5, respectively).

Discussion
The present study describes the transcriptional profiles of
testicle from animals with extreme high and low levels of
androstenone in D and NL boars. Some of these genes
have already been shown to affect levels of androstenone,
although most of them have not previously been
described in this context. Both CYB5 and CYP17 were up-
regulated in both D high (DH) and NL high (NLH) ani-
mals and this was confirmed by real-time PCR. Over-
expression of CYB5 cDNA clones in high androstenone
animals agrees with results previously seen in protein
expression studies [13,14]. Earlier studies on CYP17 have
shown that polymorphisms in the coding region of the

214976 Cyclin M2 (CNNM2), transcript variant 1 NM_017649.3 0.181 0.00049
216693 Calcium/calmodulin-dependent protein kinase II beta (CAMK2B) NM_172081.1 -0.404 0.00052
101799 Sarcolemma associated protein (SLMAP) NM_007159.2 0.298 0.00052
100935 ADP-ribosylation-like factor 6 interacting protein 6 (ARL6IP6) NM_152522.2 0.246 0.00053
203697 Hypothetical protein MGC40579 (MGC40579) NM_152776.1 0.394 0.00055
101031 RIKEN cDNA B230380D07 gene (B230380D07Rik) NM_172772.1 0.354 0.00055
209872 Aldo-keto reductase family 1, member C4 (AKR1C4) NM_001818.2 0.634 0.00057
102689 Sulfotransferase family, cytosolic, 2A (SULT2A1) NM_003167.2 0.326 0.00060
214972 Similar to Bax inhibitor-1 (BI-1) (LOC451883) XM_509049.1 0.269 0.00060
209191 Chromosome 20 open reading frame 50 (C20orf50) XM_046437.7 0.342 0.00062
101010 NADH dehydrogenase (ubiquinone) flavoprotein 1, 51kDa (NDUFV1) NM_007103.2 0.195 0.00069
217625 Leucine rich repeat neuronal 1 (LRRN1) NM_020873.3 0.235 0.00070
100267 Transducer of ERBB2, 1 (TOB1) NM_005749.2 0.252 0.00070
204605 Maltase-glucoamylase (alpha-glucosidase) (MGAM) NM_004668.1 -0.273 0.00070
100575 17beta-estradiol dehydrogenase (HSD17B4) NM_214306.1 0.262 0.00070
104294 Sarcoglycan, epsilon (SGCE) NM_003919.1 0.223 0.00075
214602 Acetyl-Coenzyme A carboxylase alpha (ACACA), transcript variant 2 NM_198839.1 0.294 0.00085
100781 Protein kinase, AMP-activated, beta 2 non-catalytic subunit (PRKAB2) NM_005399.3 0.267 0.00090
204606 -0.229 0.00091
100545 Isopentenyl-diphosphate delta isomerase (IDI1) NM_004508.2 0.266 0.00111
210439 FK506 binding protein 1A, 12kDa (FKBP1A), transcript variant 12B NM_000801.2 0.233 0.00112
101524 Alpha-1,3-galactosyltransferase (GGTA1) NM_213810.1 0.274 0.00120
103263 Retinol dehydrogenase 12 (all-trans and 9-cis) (RDH12) NM_152443.1 0.297 0.00124
201437 Hypothetical protein MGC40489 (MGC40489) XM_373742.3 -0.239 0.00124
219641 Ras association (RalGDS/AF-6) domain family 4 (RASSF4) NM_032023.3 0.294 0.00124
218092 Procollagen C-endopeptidase enhancer (PCOLCE) NM_002593.2 0.330 0.00124
214348 Glycerol-3-phosphate dehydrogenase 1-like (GPD1L) NM_015141.2 0.205 0.00133
210245 Complement component 1, r subcomponent (C1R) NM_001733.2 0.221 0.00136
209875 Scavenger receptor class B member 1 (SCARB1) NM_213967.1 0.253 0.00145
105364 Tumor necrosis factor, alpha-induced protein 6 (TNFAIP6) NM_007115.2 0.241 0.00147
212682 Sulfotransferase family, cytosolic, 2B, member 1 (SULT2B1) NM_177973.1 0.206 0.00149
102760 0.310 0.00152
101913 Heat shock 60kDa protein 1 (chaperonin) (HSPD1) NM_002156.4 0.265 0.00154
214601 Serine/threonine kinase 19 (STK19), transcript variant 1 NM_004197.1 0.298 0.00160
101632 Nuclear receptor coactivator 2 (NCOA2) NM_006540.1 0.287 0.00160
210848 Annexin A7 (ANXA7), transcript variant 1 NM_001156.2 0.182 0.00160
221285 Serine (or cysteine) proteinase inhibitor, clade B member 3 (SERPINB3) NM_006919.1 0.225 0.00160
219203 Peroxiredoxin 2 (PRDX2), nuclear gene encoding mitochondrial protein NM_005809.4 0.325 0.00170
216273 0.257 0.00185
217065 Endonuclease G-like 1 (ENDOGL1) NM_005107.1 -0.364 0.00185
211482 Ubiquitin-conjugating enzyme E2R 2 (UBE2R2) NM_017811.3 0.229 0.00196

Gene profiling was done using 30 arrays and analysed using linear models. Fold change (M-values) and statistical significance (FDR-adjusted p-values) 
is shown. The clone names refer to hits to human, mouse or pig genes. Some genes are represented by several different clones on the array and 
may therefore show up more than once in the table, while some have no hits to the abovementioned species.

Table 2: Top 100 genes identified in Norwegian Landrace (Continued)
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gene are not associated with androstenone levels [15], and
that levels of the CYP17 protein are not correlated to lev-
els of 16-androstene steroids in fat [14]. Notably, up-reg-
ulation of the gene expression of CYP17 in this study may
be explained by its direct interaction with CYB5 in the
andien-β synthase enzyme system. Differential expression
of both genes was confirmed by real-time PCR in the D
boars of our study.

StAR is involved in the transport of cholesterol from the
outer to the inner mitochondrial membrane, where
CYP11A1 converts cholesterol to pregnenolone. This has
been described as the rate-limiting step in steroid hor-
mone synthesis, after which pregnenolone may exit the
mitochondria and can be metabolised to steroid hor-
mones [21]. The cholesterol side chain cleavage enzyme

system contains ferredoxin (FDX1) which functions as an
electron transport system, transferring electrons from
NADPH-dependent ferredoxin reductase to CYP11A1
[22,23]. StAR was over-expressed in NLH, while FDX1 and
CYP11A1 were over-expressed in both the DH and NLH
groups. Our rcPCR results show that both StAR and
CYP11A1 are highly up-regulated in the DH and NLH
groups, even though the microarray study was not able to
detect differences in the gene expression of StAR in DH.
Based on results from the rcPCR study, StAR seems to par-
ticularly affect the androstenone level since this gene is
up-regulated as much as five times in DH pigs and twelve
times in NLH pigs. Emopamil-binding protein (EBP),
sterol-C4-methyl oxidase-like isoform 1 (SC4MOL) and
the cytochrome P450 enzyme lanosterol 14-alpha-
demetylase (CYP51) are enzymes involved in the choles-

Gene ontology (GO) results for the biological process ontologyFigure 1
Gene ontology (GO) results for the biological process ontology. The genes differentially expressed at p < 0.01 were 
analysed for over-represented GO terms in the biological process ontology. Some terms were common for Duroc and Nor-
wegian Landrace (red) while some were only significant in Duroc (yellow) or Norwegian Landrace (blue). Number of genes is 
the number of genes that was found significantly differentially expressed (p < 0.01) for a term.
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terol biosynthesis pathway [24-26]. EBP was up-regulated
in NLH, while SC4MOL and CYP51 were up-regulated in
the DH. Isopentenyl-diphosphate delta isomerase (IDI1)
catalyses the inter-conversion of isopentenyl diphosphate
(IPP) to dimethylallyl diphosphate (DMAPP), which is
the substrate for the reaction that ultimately results in
cholesterol, and this gene was up-regulated in both DH
and NLH. The over-expression of all these genes may indi-
cate that this early stage of steroid hormone biosynthesis
is important for the production levels of androstenone.
However, since cholesterol ultimately metabolises into
both androstenone and testosterone, it might be impossi-

ble to use these genes as markers for low androstenone
without simultaneously affecting levels of testosterone.
However, further studies are needed to address this
hypothesis.

In addition to FDX1, two additional ferritin cDNA clones
were significantly up-regulated in the NLH and DH
groups: FTL and the ferritin heavy-chain (FTH1). The dif-
ferential expression of FTL was also confirmed by real-
time PCR. Ferritin is an iron storage protein and plays a
central role in numerous essential cellular functions [27].
Ferritin may also affect levels of androstenone through the
CYB5/CYP450 electron transfer as the haem-containing
cytochrome P450s need to receive electrons, e.g. from
interaction with CYB5 [28], to be activated. 5-aminole-
vulinate synthase (ALAS1) is the first and rate-limiting
enzyme in the haem biosynthesis pathway, providing
haem for e.g. CYP450s [29]. This gene is up-regulated in
DH. The gene ontology results also suggest an important
role for ferric iron/iron ion binding for the levels of
androstenone in adipose tissue.

Cytochrome P450 c19 (CYP19) encodes the enzyme aro-
matase, which catalyses the synthesis of estrogens from
androgens. The pig secretes unusually high levels of estro-
gens from the testes [30] and is the only mammal known

Gene ontology (GO) results for the molecular function ontologyFigure 2
Gene ontology (GO) results for the molecular function ontology. The genes differentially expressed at p < 0.01 were 
analysed for over-represented GO terms in the molecular function ontology. Some terms were common for Duroc and Nor-
wegian Landrace (red) while some were only significant in Norwegian Landrace (blue). Number of genes is the number of 
genes that was found significantly differentially expressed (p < 0.01) for a term.

Table 3: Results from Real-time PCR

Gene Real-time PCR fold change

ACTB 18S

CYP17A1 2.28 (p = 0.0015) 2.87 (p = 0.001)
CYB5 2.24 (p = 0.08) 2.84 (p = 0.025)
FTL 1.88 (p = 0.078) 2.58 (p = 0.0026)

EEF1A1 0.95 (p = 0.77) 1.30 (p = 0.23)

Real-time PCR was used to confirm expression variations of selected 
genes from the microarray study. Normalisation of the values was 
performed by using ACTB and 18S as control genes. Three of four 
examined genes were verified and one was contradicted.
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to express functionally distinct isoforms of this gene [31].
Our results show an up-regulation of CYP19A2 isoform in
both NLH and DH boars, whereas the CYP19A1 isoform
was up-regulated in DH. Estrogens are shown to be posi-
tively correlated with androstenone levels in fat [32] and
estrone sulfate levels in plasma have been found posi-
tively correlated with both plasma and fat levels of
androstenone [33]. SMPD1 is involved in the conversion
of sphingomyelin to ceramide, which has been shown to
inhibit CYP19 activity through induction of transcription
factors [34]. SMPD1 was down-regulated in DH animals
in the microarray study, but we were not able to confirm
this in the rcPCR analyses.

HSD17B4 was found up-regulated for both DH and NLH,
in both microarray and rcPCR analyses. The 17β-HSDs
catalyse the last step in the formation of androgens and
estrogens, and the HSD17B4 inactivates hormones very
efficiently [35]. This has been reported for the substrates
17β-estradiol and 5-androstene-3β,17β-diol [36] but the
enzyme also accepts other substrates [37]. The enzymes
have previously been assigned to porcine Leydig and Ser-
toli cells [38] and porcine tissues express HSD17B4 as a
predominant dehydrogenase [39]. Progesterone, a metab-
olite of pregnenolone, has been shown to increase porcine

HSD17B4 activity [39] and the progesterone receptor
membrane component 1 (PGRMC1) was over-expressed
in DH. Another 17β-HSD, isoform 11, also called dehy-
drogenase/reductase family member 8 (DHRS8) was
down-regulated in DH boars.

AKR1C4 belongs to the cytosolic aldo-keto reductases that
act as 3α-/3β-/17β-/20α-hydroxysteroid dehydrogenases
(HSDs) in human [40,41] and was highly up-regulated in
DH and NLH pigs. This was also confirmed by rcPCR.
Penning et al. [36] showed that all the isoforms AKR1C1-
AKR1C4 could interconvert active androgens and oestro-
gens with their associated inactive metabolites, which pre-
vents an excess of circulating steroid hormones and makes
the steroids into substrates for conjugation reactions [40].

Nuclear receptor subfamily 5, group A, member 1
(NR5A1), also called steroidogenic factor 1 (SF-1), was
over-expressed in DH boars. This transcription factor is
involved in the regulation of numerous genes, including
StAR [42], CYP11A [43], CYP17 [44] and CYP19 [45].
Also, nuclear receptor co-activator 4 (NCOA4), an andro-
gen receptor (AR) activator often referred to as ARA70,
was up-regulated in the DH group. The nuclear receptor
co-activator 2 (NCOA2), another AR activator, was signif-
icantly over-expressed in NLH. Other genes regulating
transcription and translation that were differentially
expressed in this study include class III POU transcription
factor (POU3F2), microtubule-associated protein light
chain 3 isoform A (MAP1LC3A) and EEF1A1 which were
up-regulated in the DH and NLH groups, eukaryotic trans-
lation elongation factor 1 beta (EEF1B2) which was up-
regulated in DH boars, and nuclear receptor subfamily 3,
group C, member 2 (NR3C2) which was down-regulated
in DH pigs.

Conjugation reactions contribute to the levels and pattern
of steroids present in the plasma circulation of the boar.
The enzymes involved in conjugation reactions were first
thought to strictly inactivate and eliminate the com-
pounds by rendering them more water-soluble. However,

Table 4: Results from the rcPCR bootstrap statistics (x4000), Duroc

Gene Fold Log10 Fold change Bias Std error P value

SMPD1 1.31 0.12 0.0008 0.09 0.097
StAR 5.4 0.73 0.0004 0.10 0.000
SULT2A1 2.3 0.37 0.0007 0.08 0.000
HSD17B4 1.7 0.24 -0.0009 0.09 0.006
AKR1C4 1.7 0.23 0.0013 0.09 0.003
CYP11A1 2.4 0.38 0.0000 0.09 0.000

rcPCR was used to confirm expression variations of selected genes from the microarray study. Fold changes are calculated relative to baseline, 
which is the group of low androstenone (DL) in this case, and adjusted for the housekeeping gene HPRT. Five of six examined genes were verified 
and one was contradicted.

Table 5: Results from the rcPCR bootstrap statistics (x4000), 
Landrace

Gene Fold Log10 Fold change Bias Std error P value

SMPD1 1.4 0.16 -1.60 0.18 0.185
StAR 12.8 1.11 -2.65 0.13 0.000
SULT2A1 2.4 0.38 -4.37 0.11 0.002
HSD17B4 1.7 0.23 -2.13 0.09 0.006
AKR1C4 2.5 0.39 -2.07 0.09 0.000
CYP11A1 3.2 0.50 5.84 0.12 0.000

rcPCR was used to confirm expression variations of selected genes 
from the microarray study. Fold changes are calculated relative to 
baseline, which is the group of low androstenone (NLL) in this case, 
and adjusted for the housekeeping gene HPRT. Five of six examined 
genes were verified and one was contradicted.
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the high levels of conjugated steroids that are present in
the plasma of the boar may suggest that the biological role
of these reactions is more complex [46,47]. A common
family of conjugation enzymes is the sulfotransferases.
SULT2A1, also called hydroxysteroid sulfotransferase
(HST), was up-regulated in both DH and NLH boars in
the microarray experiment and subsequently confirmed
by rcPCR. SULT2A1 is a key sulfotransferase enzyme in
terms of the 16-androstene steroids, and its activity in the
testis is negatively correlated to androstenone concentra-
tions in fat [19,48]. Sulfotransferase family 2 isoform B1
(SULT2B1) is also a HST enzyme, showing selectivity for
the conjugation of 3β-hydroxysteroids [49]. The SULT2B1
was significantly up-regulated in NLH pigs. The over-
expression of the sulfotransferase genes in this study does
not correspond to the negative correlation to levels of
androstenone previously reported for this enzyme family
[48].

Another conjugation reaction is catalysed by the glutath-
ione S-transferases (GSTs). They have been shown to bind
hormones [50] and influence their transport, metabolism
and action [51]. One isoform of these enzymes (GSTal-
pha) is shown to be active in the pig testis Leydig and Ser-
toli cells and positively regulated by both estradiol and
testosterone [52]. Glutathione S-transferase omega
(GSTO1) and glutathione S-transferase (MGST1) were
over-expressed in DH. These enzymes have not previously
been studied in connection with androstenone; however,
no correlation was found between fat skatole levels and
glutathione S-transferase activity [53].

D and NL show many similar molecular functions and
biological processes in this study, although they also dif-
fer with respect to which genes are differentially
expressed. [54]. This miscellany might be due to the gen-
erally higher androstenone levels observed in D compared
to NL [8]. The variability in the potential for androsten-
one production or elimination may to some extent be
explained by breed differences in age at sexual maturity
[55]. Differences between D and NL have also been
shown by differential expression of 3β-hydroxysteroid
dehydrogenase and SULT2B1 proteins, both enzymes crit-
ical for steroid production [54]. The higher number of sig-
nificant genes in D compared to NL may be explained by
the more extreme androstenone values in this breed (See
Additional file 9: Androstenone values), giving higher
contrasts.

In addition to the genes listed, we also identified several
highly differentially expressed cDNA clones with no
homology to known human or mouse sequences. Further
characterisation of these genes may uncover new and
unexpected roles in association with androstenone. The
over-expression of for example AKR1C4, SULT2A1 and

SULT2B1 in high androstenone animals does not explain
a role for these genes as inactivation enzymes and the role
of these genes needs to be further studied in relation to
androstenone levels. Additional studies of all the genes
are necessary to see if their proteins show the same differ-
ential expression. Furthermore, identification of single
nucleotide polymorphisms (SNPs) in the genes or in asso-
ciation with the genes can be used for breeding purposes.
The exact function of genes from interesting gene ontol-
ogy pathways, like ferric iron binding, iron ion binding,
electron transport activities and oxidoreductase activities,
also needs to be clarified.

Conclusion
Our study detected differentially expressed genes that are
previously found to affect androstenone levels in boars, as
well as genes from pathways not formerly described in
this aspect. We confirm the involvement of CYP17 and
CYB5 and detect a number of other genes involved in the
steroid hormone pathway that seem to be essential for
androstenone levels. Besides SULT2A1 we identified other
conjugation enzyme genes that might be important,
including SULT2B1, AKR1C4, GSTO1, MGST1 and
HSD17B4. The genetic profiles identified should be fur-
ther examined to clarify their potential as molecular mark-
ers for reduced boar taint.

Methods
Animals
D and NL boars from NORSVIN's three boar testing sta-
tions were included in this study. The D and NL boars
were on average 143 and 156 days at 100 kg live weight,
respectively, and were slaughtered on average 14 days
later. Tissue samples from testicle were frozen in liquid N2
and stored at -80°C until used for RNA isolation as
described below. Fat samples were collected from the neck
and stored at -20°C until used for androstenone measure-
ments. Androstenone levels in fat were analysed by a
modified time-resolved fluoroimmunoassay [56] using
antiserum produced at the Norwegian School of Veteri-
nary Science (NVH) [57]. A total of 1533 NL boars and
1027 D boars were analysed and statistical power calcula-
tions showed that selecting animals from each tail of the
androstenone distribution was an effective way of obtain-
ing high probability of finding differentially expressed
genes with limited number of arrays. The power calcula-
tions suggested 30 arrays to be sufficient. Hence, for each
breed, the 30 most extreme boars from each tail of the dis-
tribution were selected from all of the phenotyped ani-
mals (See Additional file 9: Androstenone values). In
order to reduce family effects a maximum of two and
three half sibs were chosen from NL and D, respectively.
The same animals were used for verification of selected
genes by rcPCR. Only D pigs were included in the real
time PCR analysis.
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Expression profiling using microarrays
The microarrays (UltraGAPS coated slides, Corning Incor-
porated, MA, USA) were produced at the Faculty of Agri-
cultural Sciences, Aarhus University and contained 27,774
cDNA clones printed in duplicates [58]. Out of these,
26,877 were PCR products amplified from cDNA clones
and 867 were control DNA fragments. Of the 26.877
cDNAs, 21.417 map to 15.831 human gene transcript IDs
corresponding to roughly 1.35 cDNAs per gene transcript.
The remaining 5.460 cDNAs were thus estimated to cover
around 4.036 gene transcripts yielding 19.867 gene tran-
scripts in total. The annotation was done using NCBI Ref-
erence Sequence (RefSeq) database Release 11. The cDNA
clones originated from the Sino-Danish sequencing
project, covering 0.66× of the pig genome [59]. A more
detailed description of the microarray can be found at the
NCBI Gene Expression Omnibus (GEO [60]) database
using the platform accession number GPL3608.

Total RNA for microarray studies and real-time PCR were
extracted from testicle tissue using the RNeasy midi kit
according to the manufacturer's instruction (Qiagen, CA,
USA). Quantities were measured using a NanoDrop ND-
1000 Spectrophotometer (NanoDrop Technologies, DE,
USA) and qualities were examined by the 28S:18S rRNA
ratio using the RNA 6000 Nano LabChip® Kit on 2100
Bioanalyzer (Agilent Technologies, CA, USA). Aminoallyl-
cDNA was synthesised from 20 µg of total RNA using the
SuperScript indirect cDNA labelling system (Invitrogen
Corporation, CA, USA) and labelled using ARES Alexa
Fluor 488 or 594 labelling kit (Molecular Probes, OR,
USA). Half of the samples were labelled with one dye and
the other half with the other dye facilitating a direct bal-
anced block hybridisation design, where the dye swap is
balanced between the samples. As the animals are selected
from a very large number of boars and the contrast
between the two groups is extremely large, animals within
each of the experimental group were treated as equal. We
have prioritised a larger number of animals instead of
hybridising all animals twice (with a dye swap), as we
expect the biological variation to be greater than the tech-
nical variation. It may be noted that our experimental
design eliminates the dye bias in the contrast 'high' versus
'low' androstenone, since SUM('high expressions')/30
minus SUM('low expressions')/30 is (30*H + 15*R +
15*G)/30 - (30*H + 15*R + 15*G)/30 = H - L, where H
(L) denotes effect of high (low) androstenone, R (G)
denotes the effect of red (green) dye and 30 is the number
of arrays. Spike-in RNA from the Lucidea Universal Score-
Card (Amersham Biosciences) was added to the cDNA
reactions. "Green" spike-in RNA was added to the samples
labelled with Alexa-594 and "red" spike-in RNA was
added to the samples labelled with Alexa-488. Purifica-
tion of the amino-modified and fluorescently labelled
cDNA was done using the NucleoSpin 96 Extract II PCR

Clean-up kit (Macherey-Nagel, Düren, Germany), and a
hybridization blocker (Invitrogen Corporation, CA, USA)
containing polydA (Invitrogen Corporation, CA, USA)
and Yeast tRNA (Invitrogen Corporation, CA, USA) was
added. Each microarray was hybridised with one high and
one low androstenone sample from the same breed, giv-
ing a total of 30 arrays for each breed. The high and low
samples were paired randomly within each breed. Hybrid-
isation was conducted in a Discovery XT hybridisation sta-
tion (Ventana Discovery Systems, AZ, USA), followed by
a manual wash and drying by centrifugation. More
detailed descriptions of the microarray experiments are
available at the GEO database through the series accession
number GSE 7409.

The microarrays were scanned using a ScanArray Express
scanner (Perkin Elmer Inc., MA, USA). Signal intensities
were quantified using the ScanArray Express software and
further analysis carried out in R version 2.2.1 [61] soft-
ware package Linear Models for Microarray Analysis
(Limma version 2.7.2) [62-64]. Mean foreground intensi-
ties were background corrected using the Edwards method
[65] implemented in Limma using the median back-
ground intensities, and log-ratios were printtip loess nor-
malised within arrays. The duplicate correlation function
in Limma was used to consider the duplicate printing of
each feature. As a quality check, MA-plots (M = log2594/
log2488, A = (log2594 + log2488)/2), image plots and box
plots were constructed using the Limma tools for visuali-
sation of the data before and after normalisation. For
assessing differential expression, Limma uses linear mod-
els in combination with an empirical Bayes method to
moderate the standard errors of the estimated log-fold
changes. The nominal p-values were corrected for multi-
ple testing by false discovery rates (FDR) using Benjamini
and Hochberg approach [66] and adjusted p-values < 0.01
were considered significant.

Since the Limma statistic provides a parametric test, it
might be affected by outlier records. Therefore, we also
conducted a more robust, but less powerful non-paramet-
ric test, namely Fisher's Sign Test (FST) [67].

The features of the arrays were mapped to a LocusLink
identifier and an annotation package was built using the
Bioconductor package AnnBuilder (version 1.9.14). Tests
for significantly overrepresentation of GO terms (p < 0.01
and more than 10 significant genes) were conducted using
the GOHyperG function of the Bioconductor package
GOstats (version 1.6.0) [68,69].

Quantitative rcPCR analysis and quantitative real-time 
RT-PCR analyses
A real competitive (rc) PCR gene expression analysis was
used to verify some of the results from the microarray
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study. The method is build upon the MassARRAY meth-
odology using the Quantitative Gene Expression (QGE)
iPLEX system (Sequenom, CA, USA). Total RNA was iso-
lated from testes by using the automatic DNA/RNA extrac-
tor (BioRobot M48 workstation; Qiagen; CA, USA) and
first strand cDNA synthesis was conducted on 0.5 µg total
RNA using SuperScript™-II Rnase H- Reverse Transcriptase
(Invitrogen, Carlsbad, CA, USA). Purified total RNA was
treated with TURBO DNA-free™ (Ambion, Huntingdon,
UK) for removal of contaminating DNA. Assay designs for
the genes included in this study (See Additional file 10:
Gene transcripts included in the rcPCR analyses) were
multiplexed into a single reaction using MassARRAY QGE
Assay Design software (Sequenom, CA, USA). The com-
petitors, a synthetic DNA molecule that matched the
sequence of the targeted cDNA region at all positions
except for one single base served as an internal standard
for each transcript. A 10-fold dilution of competitor was
initially used over a wide range of concentrations to deter-
mine an approximate equivalence point, followed by a 7-
fold dilution of competitor from 4.04 × 10-11 to 1.43 × 10-

19 to achieve more accurate results. The cDNA and com-
petitor were co-amplified in the same PCR reaction with
the conditions 95°C for 15 minutes, 45 cycles each of
95°C for 20 second, 56°C for 30 seconds and 72°C for 1
minute, and finally 72°C for 3 minutes. After a clean-up
step to remove unincorporated nucleotides, the PCR
products served as templates for the primer extension
reaction. The iPLEX reaction cocktail mix and PCR condi-
tions were done as described in the Sequenom application
guide [70]. Parallel PCR-reactions were performed for all
samples and each of the products was printed with 2 rep-
licates on a SpectroCHIP. The primer extension reaction
generates distinct mass signals for competitor and cDNA-
derived products, and mass spectrometric analysis gener-
ated signals from which the peak areas were calculated.

Because of collaborative reasons between two labs,
another verification method used for the D boars was
quantitative real-time PCR. Gene specific primers for four
selected genes were generated from the Primer 3 software
(See Additional file 11: Real-time PCR primers). Porcine
ACTB and 18S rRNA amplifier set probes were used as
endogenous control for normalisation. The gene ACTB
was detected by Taqman probe whereas other genes were
detected by SYBR Green probes. The same Duroc RNA
samples as the ones used for the microarray experiments
were applied. The RNA was synthesised into first-strand
cDNA using SuperScript II Reverse Transcriptase (Invitro-
gen Corporation, CA, USA). The real-time PCR reaction
was composed of 5 µL of Taqman master mix, 2 µL cDNA,
0.3 µL of forward and reverse primers (10 µM) and 0.05
µL of probe (10 µM). The real-time cycler conditions were
50°C for 2 minutes, 95°C for 10 minutes and 40 cycles
each of 95°C for 15 seconds and annealing/extension at

60°C for 1 minute. Each reaction was conducted in tripli-
cate on each individual sample with ACTB and 18S rRNA
amplified as internal control genes. The real-time PCR
amplification was performed using ABI PRISM 7900 HT
sequence detection system. A cycle threshold value (CT)
was recorded for each sample and a standard curve made
from 4×, 2×, 1×, 0.5×, 0.125× and 0.0625× was used to
calculate the relative mRNA levels.

In the rcPCR study, the gene expression levels of H and L
androstenone boars were analysed using the software
TITAN version 1.0–13 [71] that runs in the R statistical
environment. The raw data from the Genotype Analyzer
Software (Sequenom) was imported into TITAN and ana-
lysed using the default values of linear least squares poly-
nomial regression with 4000 bootstrap replicates. The
cDNA concentrations were corrected with respect to the
housekeeping gene (HPRT), and p-values and confidence
intervals for the fold changes were calculated. Details
about the TITAN software are available at web [72].

Quantification of the real-time PCR amplification was
performed using ABI PRISM 7900 HT sequence detection
system. The standard curve method was used to calculate
the relative mRNA levels.
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Additional file 1
Boxplot of the arrays. Boxplots displaying the average log2-ratio distribu-
tion of raw background corrected log ratios and printtiploess normalised 
log ratios for the Duroc (a and c, respectively) and Norwegian Landrace 
(b and d, respectively) arrays. After within array normalisation, the log 
ratios were evenly distributed around 0, indicating no need for between 
array normalisation.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-8-405-S1.png]

Additional file 2
Microarray results analysed using Limma, Duroc. Gene profiling was 
done using 30 arrays and the cut-off for differentially expressed genes was 
a p-value of 0.01 after FDR correction. A positive t-statistics indicates up-
regulation in animals with high androstenone values and vice versa. M-
values are fold changes. The clone names are sequences with a hit to 
human, mouse or pig genes. Some genes are represented by several differ-
ent clones on the array and may therefore show up more than once in the 
table, while some have no hits to the abovementioned species.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-8-405-S2.txt]

Additional file 3
Microarray results analysed using Limma, Norwegian Landrace. Gene 
profiling was done using 30 arrays and the cut-off for differentially 
expressed genes was a p-value of 0.01 after FDR correction. A positive t-
statistics indicates up-regulation in animals with high androstenone val-
ues and vice versa. M-values are fold changes. The clone names are 
sequences with a hit to human, mouse or pig genes. Some genes are rep-
resented by several different clones on the array and may therefore show 
up more than once in the table, while some have no hits to the abovemen-
tioned species.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-8-405-S3.txt]

Additional file 4
Genes common for Duroc and Norwegian Landrace at p < 0.01. There 
were 72 genes in common for Duroc and Landrace at significance level p 
< 0.01.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-8-405-S4.xls]

Additional file 5
Microarray results analysed using Fisher's sign test, Duroc. Gene pro-
filing was done using 30 arrays and the cut-off for differentially expressed 
genes was a FDR of 0.01. A -1 indicates up-regulation, while a 1 indicates 
down-regulation in boars with high androstenone levels. The clone names 
are sequences with a hit to human, mouse or pig genes. Some genes are 
represented by several different clones on the array and may therefore 
show up more than once in the table, while some have no hits to the above-
mentioned species.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-8-405-S5.txt]

Additional file 6
Microarray results analysed using Fisher's sign test, Norwegian Lan-
drace. Gene profiling was done using 30 arrays and the cut-off for differ-
entially expressed genes was a FDR of 0.05. A -1 indicates up-regulation, 
while a 1 indicates down-regulation in boars with high androstenone lev-
els. The clone names are sequences with a hit to human, mouse or pig 
genes. Some genes are represented by several different clones on the array 
and may therefore show up more than once in the table, while some have 
no hits to the abovementioned species.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-8-405-S6.txt]

Additional file 7
Gene ontology (GO) results for the cellular component ontology, 
Duroc. The genes differentially expressed at p < 0.01 in Duroc were ana-
lysed for over-represented GO terms in the cellular component ontology (p 
< 0.01).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-8-405-S7.txt]
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