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A number of recent studies have begun to show the promise of magnetoencephalography (MEG) as a means
to non-invasively measure functional connectivity within distributed networks in the human brain. However,
a number of problems with the methodology still remain — the biggest of these being how to deal with the
non-independence of voxels in source space, often termed signal leakage. In this paper we demonstrate a
method by which non-zero lag cortico-cortical interactions between the power envelopes of neural oscillato-
ry processes can be reliably identified within a multivariate statistical framework. The method is spatially un-
biased, moderately conservative in false positive rate and removes linear signal leakage between seed and
target voxels. We demonstrate this methodology in simulation and in real MEG data. The multivariate meth-
od offers a powerful means to capture the high dimensionality and rich information content of MEG signals in
a single imaging statistic. Given a significant interaction between two areas, we go on to show how classical
statistical tests can be used to quantify the importance of the data features driving the interaction.

© 2012 Elsevier Inc. Open access under CC BY license.
Introduction

In recent years, neuroscience and neuroimaging have been
revolutionised by the discovery of large distributed brain net-
works, some associated with simple sensory processing (e.g. the
motor network) and others associated with higher level function
(e.g. the default mode network). Functional magnetic resonance
imaging (fMRI) has become a modality of choice for characterisa-
tion of functional connectivity within these networks, both at
rest and during tasks (see e.g. Smith et al., 2009). However, fMRI
is an indirect measure of brain activity based on haemodynamic
responses to underlying electrodynamics. Its indirect nature and
limited temporal resolution mean that fMRI cannot probe the elec-
trical processes that mediate connectivity or the most rapid tem-
poral fluctuations in network activity. Magnetoencephalography
(MEG) detects extra-cranial magnetic fields induced by synchro-
nised neuronal current flow in the brain. In this way it offers ad-
vantages over indirect techniques such as fMRI as it can bypass
haemodynamics and probe phenomena such as neural oscillations
which are thought to be a more direct manifestation of cortical
connectivity (Schnitzler and Gross, 2005; Singer, 1999). The utility
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of MEG (and electroencephalography (EEG)) to measure connec-
tivity has been shown by a large number of studies (Gow et al.,
2008; Gross et al., 2001, 2002; Ioannides et al., 2000; Jerbi et al.,
2007; Nolte et al., 2004, 2008; Ramnania et al., 2004; Schlögl
and Supp, 2006; Schoffelen and Gross, 2009; Tass et al., 1998). Re-
cent work has also begun to show that networks observable in
fMRI can also be detected using MEG (Brookes et al., 2011a,b; de
Pasquale et al., 2010; Liu et al., 2010). These later studies have
measured temporal correlation between power envelopes of neural
oscillatory signals at separate brain space voxels. In this way,
network maps of correlated signals have been generated and
shown to match spatially network maps in fMRI, providing elec-
trophysiological validation of a number of fMRI resting state
networks. MEG however has the potential to move beyond fMRI,
and elucidate the electrodynamic processes that underpin network
formation, without confounds associated with haemodynamic
responses.

Despite the promise of MEG as a means to measure connectivity,
a number of methodological difficulties remain (Schoffelen and
Gross, 2009). Using source space projected measurements, the prin-
cipal limitation is that signals reconstructed at spatially separate
brain locations are not necessarily independent; an artifact of the
ill posed MEG inverse problem (reconstructing brain space current
density measures from scalp based magnetic recordings). This
non-independence means that spurious connectivity can exist be-
tween two projected MEG time series that is due entirely to signal
leakage between projections. A number of techniques to correct for

http://dx.doi.org/10.1016/j.neuroimage.2012.03.048
mailto:matthew.brookes@nottingham.ac.uk
http://dx.doi.org/10.1016/j.neuroimage.2012.03.048
http://www.sciencedirect.com/science/journal/10538119
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2012.03.048&domain=pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


911M.J. Brookes et al. / NeuroImage 63 (2012) 910–920
this leakage have been tried; one of the most successful approaches
being the use of the imaginary parts of the linear interaction to
quantify coherence (Guggisberg et al., 2008; Nolte et al., 2004).
However, coherence assumes that signals from two connected
brain areas have a fixed phase lag between them, which is not nec-
essarily the case, even for short time windows. Recent studies using
envelope correlation methods (Brookes et al., 2011a) have pre-
sented techniques to test for leakage via simulation, however such
methods are highly computationally intensive and, whilst offering
a means to identify spurious connectivity, do not offer a means to
eliminate it. A further difficulty in MEG connectivity measurement
lies in statistical thresholding of connectivity maps. Using a seed
based correlation approach, Pearson correlation between the signal
from a seed voxel, and signals from all other voxels is computed.
Whilst these correlation values can be converted to statistical
quantities (assuming accurate knowledge of temporal degrees of
freedom) correction for multiple comparisons across voxels is non
trivial due to the inherent spatial smoothness and inhomogeneity
in MEG source space images. Finally, the richness of MEG data
means that connectivity maps are generally constructed using
data that have been frequency filtered into multiple frequency
bands of interest (classical alpha, beta and gamma bands for
example). This means that a single experiment yields multiple con-
nectivity maps, making results difficult to interpret and leading to a
further multiple comparison problem.

In this paper, we address some of the limitations currently asso-
ciated with MEG source space functional connectivity analysis by ap-
plication of a multivariate statistical framework. Previous work has
shown the utility of a multivariate approach both for identification
of activity in brain areas elicited by a task (Barnes et al., 2011;
Soto et al., 2009) and in connectivity analysis (Soto et al., 2010). In
Soto et al. the authors put forward a scheme which eliminates leak-
age by suppressing any interactions in which the two (canonical)
vectors describing power–power coupling between two regions are
co-linear. In this work, we employ a similar, but less conservative,
multivariate framework to investigate power–power coupling with-
in or between frequency bands, across spatially separate brain areas.
Here we address the signal leakage problem by regressing out the
linear projection of the seed voxel from the signals at the test
voxel. We subsequently assess power–power coupling both within
and across multiple frequency bands, using a multivariate statistical
framework and a previously described technique (Barnes et al.,
2011) to correct for multiple comparisons across voxels. Simulation
results show that our statistical analyses yield slightly conservative
estimates of false positive rate, invariant of source space, or the
number of features used in the connectivity analysis. We also
apply our approach to real resting state MEG data showing that
our method can identify significant cross hemisphere power–
power coupling in the motor cortices.

Theory

Our method, comprises the following steps: 1) source space pro-
jection of MEG data using beamforming; 2) correction for signal leak-
age effects by regressing out (orthogonalising with respect to) a
linear projection of the seed voxel time course; 3) multivariate statis-
tical analysis of interdependencies between timecourses; 4) correc-
tion for multiple comparisons across voxels; and 5) further
quantification of the nature of the significant interaction. These five
steps are described in detail below.

Beamforming

Using a beamformer (Barnes et al., 2011; Gross et al., 2001;
Robinson and Vrba, 1998; Van Drongelen et al., 1996; Van Veen et
al., 1997), an estimate of electrical source strength Q̂ ψ tð Þ, is made at
time t and at a predetermined location in the brain using a weighted
sum of MEG sensor measurements:

Q̂ ψ tð Þ ¼ WT
ψm tð Þ: ð1Þ

Here, m(t) is a (Nsens×1) vector of magnetic field measurements
made at time t, andWψ is a (Nsens×1) vector of weighting parameters
tuned to a specific source space location and current orientation
(Nsens represents the number of MEG sensors). Location and orienta-
tion are represented by ψ. Superscript T indicates a matrix transpose.
The weighting parameters (Wψ) are derived based on power minimi-
sation. The overall power in Q̂ ψ tð Þ is minimised with a linear con-
straint that power originating from location/orientation ψ remains.
A solution to this problem is (Van Veen et al., 1997):

WT
ψ ¼ LTψ Cþ μΣf g−1Lψ

h i−1
LTψ Cþ μΣf g−1 ð2Þ

where C represents the data covariance matrix calculated over a
time–frequency window of interest and Lψ is the lead field vector
(containing the magnetic fields that would be measured at each of
the MEG sensors in response to a dipole source of unit amplitude
with location and orientation ψ). Σ is a diagonal matrix representing
the white noise at each of the MEG channels and μ is a Backus–Gilbert
regularisation parameter (here we use μ=2) (Brookes et al., 2008).
Time series Q̂ ψ tð Þ are reconstructed for a set of locations placed at
the vertices of a regular (5 mm in this case) grid spanning the entire
brain. The orientation of each source was based on a non-linear
search for the orientation of maximum signal to noise ratio
(Robinson and Vrba, 1998). Following projection of MEG data via
beamformer, our subsequent aim is to measure connectivity via as-
sessment of interactions between projected signals at two separate
locations, which we shall refer to as the ‘seed’ location (ψS) and the
‘test’ location (ψT). The projected MEG data from these two locations
(Q̂ ψS

tð Þ and Q̂ ψT
tð Þ) are segmented into N time blocks of equal length

Δ. Each block is then Fourier transformed to yield fΔ complex valued
Fourier coefficients and thus twomatrices X and Y are formed, both of
dimension N× fΔ, where X represents data from the seed location and
Y represents data from the test location. f represents half the MEG
sampling frequency.

Signal leakage correction

To remove the effect of signal leakage between X and Y these ma-
trices are initially reshaped into 1D vectors, x and y, containing the
concatenated Fourier coefficients from all frequency elements across
all time blocks. In the beamformer formulation employed here, the
same weighting parameters (i.e. the same spatial filters) are
employed for all frequencies and so signal leakage between voxels
is expected to affect all frequency components equally. To remove
the effect of signal leakage, a univariate projection of the vector x
on y is estimated:

βUV ¼ xþy ð3Þ

where x+ denotes the pseudo-inverse of x. [Note that whilst in theory
x+y is always real, numerical issues can introduce a finite imaginary
component; in such cases Eq. (3) is replaced by βUV ¼ Re xþy

� �
where Re denotes the real component of x+y.] The linear projection
(or estimate of y based on vector x) is removed thus:

yR ¼ y−xβUV ð4Þ

where yR is the component of y that is orthogonal to x. In this way any
linear interaction between x and y is removed. Since signal leakage
will always give rise to a zero phase lag linear interaction, this step
enables reduction of signal leakage (at the expense of true zero lag
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interactions, see Discussion). Note that projection is carried out here
in time–frequency space. However, the same operation could be per-
formed on the original time series ( Q̂ ψS

tð Þ and Q̂ ψT
tð Þ). These two

techniques are equivalent: Performing correction on raw time series
is intuitive; however it would necessitate frequency filtering of raw
data to the band of interest prior to correction; projection in time fre-
quency space enables simple exclusion of frequency components of
no interest. A univariate predictor, βUV, of the linear interaction is de-
rived here, meaning that a single number must represent linear inter-
actions across all frequency bands. This is based on the assumption
that signal leakage between the seed and test locations will be equiv-
alent across all frequency components. However, given sufficient de-
grees of freedom, it would be possible to extend this methodology
and perform correction separately on a frequency band specific
basis if deemed necessary.

It is important to note at this stage that if the seed and test loca-
tions coincide (i.e. Y=X) Eq. (4) will result in zero signal and imaging
statistics described below may be ill defined. To avoid this, through-
out this paper, seed locations (ψS) are displaced from the test loca-
tions (ψT) by 0.1 mm when computing the imaging statistics.

Multivariate test

Following signal leakage correction, x and yR are again reshaped
into N× fΔ matrices X and YR respectively. The absolute value of the
Fourier coefficients are computed, and the columns of X and YR are
collapsed across frequency elements to yield two new matrices, XP

and YPR in which each column represents the (mean corrected) oscil-
latory power contained in a single frequency band (see Methods:
experimental data for a list of the bands used), whilst rows represent
separate time blocks (in this case duration Δ=1 s). The dimensions
of both XP and YPR are thus N×NB where NB is the number of frequen-
cy bands.

This preprocessing leaves the confound that the columns of XP and
YPR could be correlated, particularly if frequency bands are adjacent to
one another. It is much simpler to deal with orthogonal columns and
so (for the real data presented below where the source spectra are
unknown a-priori) the columns of XP and YPR are orthogonalised. This
is achieved by first computing the covariance matrices CXX=XP

TXP

and CYY=YPR
T YPR. Eigenvalue decomposition of these matrices then

yields a set of eigenvalues, and eigenvectors. These eigenvalues are
truncated, retaining those that explain 99% of the total variance in the
data and a new, orthogonalised version of XP and YPR is created as
Xo=XPUX and Yo=YPRUY where the columns of UX and UY represent
the eigenvectors of CXX and CYY respectively. In the remainder of this
manuscript the term feature is used to describe a columnofXo (i.e. a fea-
ture is a linear combination of frequency bands). The dimensions of
both Xo and Yo are N×NF and NF (≤NB) is the number of features.
[Note that in the case of simulated data, orthogonalisation is not neces-
sary; in these special cases the number of features is equal to the num-
ber of frequency bands.]

Following orthogonalisation, power fluctuations at the test lo-
cation (Yo) are represented by a general linear model, where
the design matrix (Xo) contains power fluctuations at the seed
location:

Yo ¼ Xoβþ ε: ð5Þ

The maximum likelihood prediction of Yo based on Xo (assuming
Gaussian distributed error, ε) is given by:

T ¼ Xoβ ð6Þ

β ¼ Xþ
o Yo: ð7Þ
The multivariate test procedure (also described in Barnes et al.,
2011) then involves testing the following expression of the null hy-
pothesis:

H−θRj j ¼ 0 ð8Þ

where H represents the covariance explained by the least squares
prediction of Yo:

H ¼ TTT ð9Þ

and R is the unexplained covariance:

R ¼ Yo−Tð ÞT Yo−Tð Þ: ð10Þ

In the simplest case, if Xo and Yo comprised a single column, the
single eigenvalue is given by θ ¼ H

R= , i.e. the variance explained divid-
ed by the variance of the residuals, or the univariate F statistic. In the
more general multivariate case the Wilk's Lambda statistic can be
expressed as a function of the eigenvalues θi (with corresponding ei-
genvectors ai) of the matrix R−1H:

Λ ¼ ∏
s

i¼1

1
1þ θi

: s ¼ min ν;hð Þ ð11Þ

where ν and h are the ranks of (number of columns in) Yo and Xo re-
spectively. With appropriate transformation (Chatfield and Collins,
1980) and for large degrees of freedom, this can be approximated to
a χ2 statistical distribution.

− r−ν−hþ 1
2

� �
ln Λð Þeχ2 νhð Þ ð12Þ

where r=N−ν−h. This statistic can be computed on a voxel by
voxel basis to test for linear mixtures (given by ai) of columns in Yo

that co-vary with linear mixture (given by bi, see later) of columns
in Xo at the seed location. Note the significant advantages here over
previous correlation based methods that: 1) effects of signal leakage
have been removed from the data via the linear subtraction described
by Eq. (4); and 2) effects of interest across all frequency bands have
been collapsed into a single statistic.

Multiple comparison correction

We use the heuristic introduced by Barnes et al. (2011) to correct
for multiple comparisons across voxels within the multivariate statis-
tical framework described above. Briefly, if L represents the lead field
matrix containing a single row for each of the p voxels in source
space, then we construct a new matrix with p rows and two columns
containing the 2 channel indices of the maximum and minimum field
measurement in each row; i.e. these indices correspond to the field
map peaks for any lead field. The estimate of the number of indepen-
dent elements ρ is then given by the number of unique rows (regard-
less of order of maxima and minima). Statistical thresholding of the
χ2 image, derived above, is then corrected by dividing the required
family wise error rate (αFWE) by ρ to give a corrected threshold αcorr

for the volume.

αcorr ¼
αFWE

ρ
ð13Þ

Testing the most significant features

The multivariate statistical test described above is used to identify
if there is a significant interaction between the seed location and any
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other brain region. We now look to quantify the dominant features
(i.e. linear combination of frequency bands) driving this interaction.
However, there may be more than one eigenmode (each charac-
terised by a single eigenvector, ai, and associated eigenvalues θi) de-
scribing a significant interaction, and we wish to find the dominant
features for each one. The first thing we do is to test for the number
of significant eigenmodes, as follows: if d=0 corresponds to the
dominant mode in Eq. (11) above then the probability that there
are subsequent significant components at modes d=1,2, etc. is
given by:

r−ν−hþ 1
2

� �
ln ∏

s

i¼1þd
1þ θið Þeχ2 ν−dð Þ h−dð Þð Þ: ð14Þ

That is, it is possible to reduce a significant interaction into a num-
ber of significant eigenmodes. The eigenvalue θi of each mode deter-
mines its significance and the eigenvector ai determines the linear
combination of features that maps Yo to yi '. Whilst correspondingly,
the projection of Xo onto xi ' is given by bi:

bi ¼ βai ð15Þ

xi
0 ¼ Xobi ð16Þ

yi
0 ¼ Yoai ð17Þ

where i indexes the eigenmode in question.
Now that we know the number of significant eigenmodes, we can

also determine which features are driving the interaction within each
mode. For example, let us assume that only the first eigenmode was
significant (d=0 in Eq. (14)) then the model describing the interac-
tion is

r−ν−hþ 1
2

� �
ln∏

s

i¼1
1þ θið Þeχ2 vhð Þ: ð18Þ

We now look to trim away the columns of Xo leaving only those
essential to the interaction. The orthogonalisation of the features in
Yo and Xo is useful here, as it provides a simple hierarchy of testable
models. We begin with the column that explains most of the variance
(h=1) and then progressively add columns. The difference between
two χ2 distributions is also χ2 (distributed as the difference in the
two degrees of freedom). So in order to compare two models, with
different numbers of columns Δh, the null distribution of the differ-
ence between models (where Yo remains of rank v) is distributed.

χ2 v hþ Δhð Þð Þ−χ2 vhð Þeχ2 vΔhð Þ ð19Þ

Note, to simplify notation, for the remainder of this manuscript we
use X to denote Xo and Y to denote Yo.

Methods: simulations

All simulations were undertaken using MEG system geometry
based on the third order synthetic gradiometer configuration of a
275 channel whole head CTF MEG system. The location of the brain
anatomy with respect to the sensors was taken from a real experi-
mental recording. The lead fields for all simulated dipolar sources
were based on a multi-sphere head model (Huang et al., 1999) and
the dipole equations described by Sarvas (1987). Additive noise
data were generated by experimental recording: ten 300 s MEG re-
cordings were made using the third order synthetic gradiometer con-
figuration of a 275 channel CTF MEG system at a sampling rate of
600 Hz, with no subject in the scanner. These ‘empty room’ record-
ings were concatenated yielding 3000 s of noise data, epochs from
which could be randomly selected and added to simulated MEG
data. It is noteworthy that previous simulation work shows a marked
difference between simulated noise (Gaussian random noise uncorre-
lated across sensors) and real measured noise (which is not Gaussian
in nature and is correlated across sensors due to external environ-
mental magnetic interference) (Brookes et al., 2010). We surmised
that the use of real noise would represent a more realistic test of
the methodology.

Proof of principle

Two dipolar sources were simulated, located in the left and right
primary motor cortices. The source timecourses comprised Gaussian
random noise frequency filtered into the 1–150 Hz band with ampli-
tude 5 nAm. The source orientations were tangential to the radial ori-
entation but randomised with respect to the azimuthal direction. A
‘power–power’ interaction was simulated between the sources via
addition of an ‘interaction’ signal; in the form of a co-modulation of
the two source envelopes. The interaction signal was generated by fil-
tering Gaussian random noise into the 20–40 Hz frequency band and
multiplying the resulting signal by a 0.1 Hz sinusoid (amplitude
5 nAm). Although the two sources share the same envelope modula-
tion, the underlying time-courses (generated from filtered noise)
were uncorrelated. In this way the two source timecourses mimicked
power–power interdependencies of the type previously shown to
exist in real data (Brookes et al., 2011a,b; de Pasquale et al., 2010;
Liu et al., 2010). The interaction signals were added to the basic
broadband source timecourses and multiplied by a dipolar lead field
to generate simulated MEG data. Empty room noise data were then
added to the simulated source data. These data were processed
using the technique outlined in the theory section, with the seed loca-
tion taken to be the simulated source in the right motor region. χ2

images depicting simulated connectivity were reconstructed on a
5 mm cubic grid spanning the entire brain. This process was repeated
with and without signal leakage correction (in the case without signal
leakage correction yR=y).

Testing false positive rates

In order to test the multivariate statistical approach, along with
our approach to eliminating linear interactions, we ran four sets of
simulations each containing multiple noise realisations. In all cases
sources were simulated as above but with no simulated interactions.
Source timecourses comprised Gaussian random noise frequency fil-
tered into the 1–150 Hz band with amplitude 5 nAm. The source ori-
entations were tangential to the radial orientation but randomised
with respect to the azimuthal direction.

1) A single source was simulated in the right primary motor area. The
source timecourse was constructed as above, and empty room
noise data were added. χ2 images were constructed taking the
seed location to be that of the simulated source and using voxels
spaced 1 cm apart on a regular cubic grid spanning the entire
brain. 500 realisations of this simulation were run, with both the
simulated source timecourse, and the empty room noise, changing
for each realisation. Signal leakage correction was applied in all
cases.

2) Two sources were simulated in the left and right primary motor
areas. Both source timecourses were constructed as above but un-
like the case for our proof of principle simulation, no interaction
between sources was simulated meaning that any connectivity
identified in the resulting statistical images would be entirely arti-
factual. Empty room noise data were then added. The multivariate
analysis was applied taking the seed location to be that of the sim-
ulated source in the right motor region and χ2 images were con-
structed on a 1 cm grid. 500 realisations of this simulation were
run, with both simulated source timecourses and empty room
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noise changing for each realisation. Signal leakage correction was
applied in all cases.

3) Identical to simulation 1, but with statistical images constructed
on a regular 2 cm cubic grid spanning brain space and the number
of realisations increased to 4000.

4) The number of features was altered between 1, 2, 3, 5 and 7 by
changing the number of frequency bands studied. In each case,
250 realisations of the simulation were run, with images recon-
structed on a 2 cm grid spanning the whole brain.

In all simulations, a single false positive was defined as a realisa-
tion of the simulation in which one or more voxels was significant
at (pbαcorr). We computed this empirical rate for a range of values
of the desired family wise error rate αFWE. The locations of the local
maxima within these χ2 images were also recorded and further
analysed.

Methods: experimental data

Data collection

In order to test the method experimentally, previously described
MEG data (Brookes et al., 2011a) were used. MEG data were recorded
using the third order gradiometer configuration of a 275 channel CTF
MEG system at a sampling rate of 600 Hz. The scanner is housed in-
side a magnetically shielded room (MSR) and a 150 Hz low pass
anti-aliasing hardware filter was applied. The study was approved
by the University of NottinghamMedical School Research Ethics Com-
mittee and data from a single subject are considered here. The record-
ing comprised two phases; in the first phase, 300 s of resting state
MEG data were acquired during which the subject was asked to re-
main awake with their eyes open and fixate on a marker, which
was displayed on a screen located approximately 40 cm in front of
the subject. In the second phase of the experiment, the subject under-
took a motor task (see Brookes et al., 2011a for details). Note that in
this paper, the motor task was used only to identify a seed location
in the primary motor area. The data acquired during the 300 s resting
state phase of the experiment were processed using our multivariate
method in order to search for left–right motor cortex resting state
connectivity. Left–right motor cortex power–power coupling has
been demonstrated in previous papers (Brookes et al., 2011a,b).

During data acquisition the location of the subject's head within
the scanner was measured by energising coils placed at 3 fiducial
points on the head (nasion, left preauricular and right preauricular).
Following data acquisition, the positions of the coils were measured
relative to the subject's head shape using a 3D digitiser (Polhemus iso-
track). An MPRAGE structural MR image was acquired using a Philips
Achieva 3T MRI system (1 mm3 isotropic resolution, 256×256×160
matrix size). The locations of the fiducial markers and MEG sensors
with respect to the brain anatomy were determined by matching
the digitised head surface to the head surface extracted from the an-
atomical MRI.

Data analysis

Data were mean corrected on a trial by trial basis and frequency
filtered to the 1–150 Hz range. Periods of data containing large arti-
facts were identified and discarded. A seed location was defined as
previously described for these same data (Brookes et al., 2011a)
using the motor task and applying Synthetic Aperture Magnetometry
(SAM) (Robinson and Vrba, 1998). This method has been shown to
give accurate spatial measurements of the motor areas (Gaetz et al.,
2011; Stevenson et al., 2011). A seed location was chosen to be at
the local image maximum within the right primary motor area.

Having identified a seed location, multivariate analysis was ap-
plied to resting state data, as described above, using a broad
frequency range (4–80 Hz). MEG data were projected into source
space using the beamformer technique with covariance based on
the 300 s resting state data only. Data were then segmented into 1 s
time windows, Fourier transformed within each segment and divided
into 9 frequency bands (4–8 Hz; 8–13 Hz; 13–20 Hz; 20–30 Hz;
30–40 Hz; 40–50 Hz; 50–60 Hz; 60–70 Hz; 70–80 Hz) and subse-
quently orthogonalised into 5 modes explaining 99% of the variance.
A χ2 connectivity map was computed with and without correction
for signal leakage, the difference image ([corrected]− [uncorrected])
was also computed. This multivariate analysis was repeated twice,
once with real resting state data, and a second time where the beam-
former spatial filters were derived based on real data, but data were
replaced with a five minute empty room recording prior to subse-
quent application of multivariate analysis. This latter image computa-
tion would highlight any spatial structure in the connectivity image
that resulted solely from beamformer inverse solution. An image of
correlation between beamformer weights at the seed location, and
all other locations in the head was also derived. All final connectivity
images were thresholded at αFWEb0.05 (i.e. corrected across the
image volume for multiple comparisons) using the lead-field based
metric described above.

Having identified a significant interaction between the seed and
another region we sought to quantify the dominant features (fre-
quency band) driving this interaction. This began with a test for the
number of significant eigenmodes (Eq. (14)). For each significant
(αb0.05) mode we performed a hierarchical test on models contain-
ing increasing numbers of orthogonal features in X.

Results: simulations

Fig. 1 shows the results of our proof of principle simulation. Fig. 1A
shows the χ2 images for simulated MEG data with two interacting
sources in the left and right motor regions. In this case we have not
corrected for signal leakage and the seed location is in the right
motor area. As shown, the multivariate approach successfully locates
the interacting source which has been placed in the left motor cortex.
Also apparent is a large area in the right hemisphere, distributed
asymmetrically around the seed location, which is an example of
seed blur. Fig. 1B, shows an equivalent functional connectivity map,
but in this case, correction for signal leakage has been applied. Notice
that the second interacting source in the left hemisphere remains ac-
curately localised, but seed blur is eliminated completely. In both
cases, the images have been thresholded at αFWEb0.01. Fig. 1C
shows a visualisation of X and Y (not orthogonalised), extracted
from simulated source locations in the left and right motor areas.
This shows graphically the sinusoidal interaction simulated between
the two sources in the 20–40 Hz band. Finally, Fig. 1D shows H, the
variance explained as a function of frequency (note again that for
this visualisation, X and Y were not orthogonalised meaning that H
is genuinely representative of the raw frequency bands). Here the
expected interaction in the 20–40 Hz band is highlighted. This figure
exemplifies the power of the approach described; data have been
analysed across a broad frequency range (comprising 7 distinct
bands), with interactions simulated in the 20–40 Hz band only. In ad-
dition to accurate localisation of the interacting source, the method
also effectively eliminates seed blur.

Fig. 2 shows the achieved vs. expected false positive rate counts
for simulated data (simulations 1, 2 and 3 above). Fig. 2A shows the
actual false positive rate plotted against the expected false positive
rate for a single simulated source (simulation 1 ‘+’) and two non-
interacting simulated sources (simulation 2 ‘o’). 500 realisations of
both simulations were run, and for each realisation the source time-
course, source orientation and the noise data were randomised. Con-
nectivity images were reconstructed on a 1 cm grid spanning the
whole brain. For 7 features in both X and Y the null is distributed
χ2(νh=49). Examining the lead field structure gave ρ=1164 and



Fig. 1. Two interacting sources: Seed based analysis using a multivariate approach. The seed is in the right hemisphere (left hand side of the image as shown in yellow). The inter-
acting source is in the left hemisphere at the location marked by the green dot. Panel A shows multivariate analysis without subtraction of linear interactions. [Note, this has been
windowed to show the interaction; a large peak is observed precisely at the seed location which is not visible here due to windowing]. B) The equivalent case with subtraction of
linear interaction. Note that seed blur has been eliminated completely. Note also that in both cases the interacting source is successfully located. C) A visualisation of X and Y,
extracted from the two simulated source locations and showing sinusoidal interactions in the 20–40 Hz band. D) Visualisation of H, the variance explained as a function of frequen-
cy, showing interaction between the simulated sources in the 20–40 Hz band as expected.
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so for αFWEb0.01 we looked for voxels significant at pb0.01/1164. If
any of the image voxels in a single realisation exceeded the threshold
the false positive count was incremented. Note good agreement be-
tween actual and expected false positive counts with statistics be-
coming conservative for larger values p values. Fig. 2B shows an
equivalent result where connectivity images are reconstructed on a
2 cm grid and 4000 realisations of the single source simulation are
performed. Again note agreement with the expected false positive
rate. To test if the choice of a seed location and removal of its lin-
ear projection caused a spatial bias of the statistical images,
Figs. 2C/D show the distribution of spatial locations of the local
maxima in the 500 connectivity maps computed for simulation
1. Fig. 2C shows the case for a two source simulation (i.e. simula-
tion 2) whilst Fig. 2D shows the case for a single source simula-
tion (i.e. simulation 1). To generate these bar charts, the total
number of image maxima appearing in the left/right hemispheres,
anterior/posterior hemispheres and upper/lower hemispheres has
been computed, and normalised by the number of voxels in each
of those regions. Results show that the locations of image local
maxima are approximately evenly distributed; i.e. false positives
are not biased towards seed locations.
Fig. 3 shows the number of false positives as a function of p-value,
for 5 different numbers of features (i.e. numbers of frequency bands
considered). It is noteworthy that the false positive count appears in-
dependent of the number of features used in the multivariate
analysis.

Results: experimental data

Figs. 4A and B show resting state motor network connectivity
maps, computed in a single subject, with the seed location in the
right motor cortex. Here power–power modulations have been com-
puted in the 4–80 Hz frequency range and results overlaid onto the
subject's own anatomical MRI (αFWEb0.05). Fig. 4A shows the con-
nectivity image with correction for signal leakage whereas Fig. 4B
shows the equivalent case without correction for signal leakage. As
expected, in both cases a seed in the right motor area highlights
significant power–power coupling in the opposite hemisphere, spe-
cifically the left primary sensorimotor area. Fig. 4C shows the differ-
ence between the corrected and uncorrected case (i.e. the difference
between Fig. 4A and Fig. 4B prior to thresholding). The effect of leak-
age correction is clear with areas defined as exhibiting significant



Fig. 2. Result of testing for false positive rate in simulated data. Panel A shows the actual false positive rate (generated from the simulation) plotted against the expected false pos-
itive rate. Crosses show the case for simulations with 1 source. Circles show the case for 2 simulated sources with no interaction. Panel B shows the false positive rate for a simu-
lation in which connectivity images are reconstructed on a 2 cm grid and 4000 realisations are performed. C) The spatial locations of maxima in 500 realisations of the two source
simulation. D) The spatial locations of maxima in 500 realisations of the single source simulation.
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connectivity prior to correction (Fig. 4B) eliminated when correction
is applied (Fig. 4A). This is particularly apparent in the dorsolateral
pre-frontal and posterior parietal cortices, and is highlighted by
Fig. 4C.

Fig. 4D shows an image of the absolute Pearson correlation coeffi-
cient between beamformer weights at the seed and all other loca-
tions. This image has been thresholded at a Pearson correlation
coefficient of 0.1. Correlation between beamformer weights necessar-
ily induces a degree of correlation between projected time series (see
Eq. (1)) and this image has been included to show the anisotropic na-
ture of weights correlation with respect to the seed location. Spurious
connectivity resulting from beamformer weights correlation will be
reduced by signal leakage correction; note here that the brain regions
Fig. 3. Further simulation results: The number of false positives achieved (out of 250) for dif
Ideal rates are given by dashed lines of the same colours.
where correction has most effect (Fig. 4C) also tend to exhibit high
weights correlation. High connectivity within these areas has been ef-
fectively suppressed by the leakage correction, and thus does not ap-
pear as significant in Fig. 4A.

Figs. 4E–G show the multivariate technique applied in a case
where empty room noise data have been projected through the
same beamformer spatial filters as those derived from (and applied
to) the real data. Here no-significant correlation should be observed
and this is confirmed by Fig. 4E in which we show a connectivity
image, based on noise data and corrected for linear interaction. Note
that no voxel contained a χ2 statistic greater than the αFWEb0.05
threshold (χ2=144.8). Fig. 4F shows the case without correction;
here the image has been thresholded (αFWEb0.05) and significant
ferent values of αFWE (indexed by colour) over tests with different numbers of features.

image of Fig.�2
image of Fig.�3


Fig. 4. Resting state motor cortex connectivity delineated in the 4 Hz–80 Hz range in a single subject. A–D show the case for real data: A) Multivariate approach with correction for
signal leakage thresholded at αFWEb0.05. B) The equivalent image without correction for signal leakage. C) Difference in χ2 between the corrected (A) and uncorrected (B) images.
D) Beamformer weights correlation image. E–G show the case in which empty room noise data are projected through the same beamformer spatial filters as those derived from real
data. E) Multivariate approach with correction (thresholded at αFWEb0.05; as expected no voxels were significant). F) Multivariate approach without correction (thresholded at
αFWEb0.05). G) Difference in χ2 between corrected (E) and uncorrected (F) images.
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clusters appear close to the seed. For completeness, Fig. 4G shows the
difference between the corrected (Fig. 4E) and uncorrected (Fig. 4F)
images. Notice that the brain areas highlighted in this difference
image (i.e. those areas most affected by correction) agree with
those areas highlighted by the equivalent image derived using real
data (Fig. 4C).

The images in Fig. 4A/B collapse the rich information content of
projected MEG signals into a set of statistical quantities in order to vi-
sualise the spatial patterns of connectivity throughout the brain.
However, having identified significant covariation observed in
Fig. 4A it is important to return to the projected data in order to ex-
ploit the rich electrodynamic information available. Fig. 5 shows an
example of how this might be possible using a classical statistical ap-
proach and X and Y selected from regions of interest based on the
seed (in the right motor cortex) and the location of the local maxi-
mum in left motor cortex (Fig. 4A). We first tested whether there
were any other eigenmodes of covariation demonstrating significant
effects, using Eq. (14). For eigenmodes 1–5 we found significance
levels of 9∗10−11, 0.0047, 0.1622, 0.3846, 0.3128 respectively,
suggesting that at this location there are two pairs of canonical vari-
ates (x1, y1, and x2, y2, Eqs. (16) and (17)) with significant linear cor-
relation. For each significant mode we then hierarchically tested
between models containing different numbers of features. The ortho-
gonalisation matrices UX and UY are shown in Fig. 5A; the features
(columns) are organised in order of decreasing variance explained.
For X, the dominant feature is power in the 8–13 Hz band (with
some covariance in the 20–30 Hz band), the second feature consists
of predominantly low frequency components (4–8 Hz). Fig. 5B
shows the eigenvectors a1 and b1 corresponding to the most signifi-
cant eigenmode. The next question to address is the relative impor-
tance of the different features (corresponding to elements of a1 and
b1) to the correlation. In this case we test for data explained in Y
and vary the number of features in X; we start with the feature
explaining the most variance (leftmost column of UX) and test
whether adding further features improves the model significantly.
Fig. 5C shows the probability that there is no improvement between
a model with h features and the previous model with h−1 features.
The scale of Fig. 5C is negative log so that values above 3 correspond

image of Fig.�4


Fig. 5. Assessing the contribution of the 5 features to connectivity between the left and right motor cortices for the first eigenmode. A) Contribution of each of the 9 frequency bands
to the 5 orthogonal features (UX, upper panel, UY lower panel, colours represent magnitude of the elements of UX and UY). Note that the dominant mode (1) in both cases is a mix-
ture of 8–13 Hz and 20–30 Hz power (mu rhythm). B) Canonical vectors a1 (green) and b1 (blue) from the first eigenmode showing the linear combinations of the features in Y and
X respectively which maximally correlate. C) Bar chart showing the log probability that a model with h+1 features improves on a model with h features. Values above 3 indicate
that the more complex model is approximately twenty times more likely. Note that there is no evidence that including the second feature of X (predominantly 4–8 Hz power) im-
proves the prediction of Y. D) Eigenmode timecourses for the first canonical variates x1′ (blue) and y1′ (green). The correlation (Pearson correlation 0.44) between these two linear
mixtures of X and Y is known as the canonical correlation (Soto et al., 2010).
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to a significant improvement, with the more complex model (h fea-
tures) being at least 20 times more likely than its predecessor (h
−1 features). It is clear from Fig. 5B that the addition of feature 2
(the 4–8 Hz band) makes almost no contribution to the model with
a single feature, however, models incorporating features 3 and 4
(13–20 Hz and 20–30 Hz) improve significantly on those containing
just 2 or 3 features respectively. At 5 features this improvement
stops (we increased the total number of features to 10 to check that
it did not rise again). The frequency bands highlighted here are in
good agreement with those previously identified as playing a major
role in motor cortex connectivity (Brookes et al., 2011a,b; Mantini
et al., 2007); future work might use this technique to test hypotheses
that a specific feature set, and corresponding frequency bands, has
physiological relevance in connectivity between predefined brain lo-
cations. The tests on the second eigenmode identified the same signif-
icant features. In panel D we show the univariate projections, or
canonical variates x′ and y′ that characterise the time-series of the in-
teraction (over trials) of the first significant eigenmode.

Discussion

We have applied a multivariate statistical framework to the study
of functional connectivity in MEG data. More specifically, we have
used the multivariate approach to assess power–power interactions
between the timecourses of neural oscillations in multiple frequency
bands, extracted from spatially separate brain regions. The approach
presented offers a number of advantages over correlation methods
previously used. 1) Interactions both within and across frequency
bands can be assessed, and multiple couplings can be collapsed
down to a single statistical image. 2) Correction for multiple compar-
isons across the image volume can be dealt with using a simple
heuristic. 3) We present a method for addressing the leakage problem
via a simple linear subtraction prior to multivariate analysis. We have
shown the method to be viable in simulation, and that the false pos-
itive rate is well controlled, regardless of the imaging volume or the
number of features examined. Finally, we have applied the technique
to resting state MEG data and used it to identify cross hemisphere
motor cortex interactions.

The biggest problem in MEG functional connectivity measurement
is that of signal leakage between voxels in source space. This occurs
as a result of the ill posed MEG inverse problem and ‘leakage’ in
this context is a collective term for a number of separate effects in-
cluding spatial spread of sources (characterised by the point spread
function or resolution kernel) and spatial misattribution of sources
due to, for example, inaccuracies in forward field computation. Previ-
ous work (Brookes et al., 2011a) has shown that signal leakage is
both spatially wide spread and asymmetric with respect to the seed
location and this is particularly problematic for connectivity mea-
surement since spurious connectivity will necessarily result from
leakage. An elegant approach to correct this was put forward by
Soto et al. (2010) in which cross talk is eliminated by ignoring any re-
gions in which the power–power coupling is symmetric (or the ca-
nonical vectors are co-linear). In this work we describe an
alternative approach in which a univariate prediction of the mea-
sured signal at a test location is made, based on the signal at the
seed location, and then subtracted.

The simulation results presented in Fig. 1 show clearly that this
subtraction technique works effectively to remove blur around the
seed location, whilst still enabling unbiased localisation of a spatially
separate test source exhibiting a power–power coupling interaction
with the seed. The effectiveness of the technique also extends to
real data. In Fig. 4 the difference image (Fig. 4C) shows that whilst

image of Fig.�5
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the major effect of correction is observed close to the seed location,
effects also extend to distal areas of the cortex, and areas shown to
exhibit significant connectivity in Fig. 4B (e.g. the dorsolateral pre-
frontal and posterior parietal cortices) are effectively eliminated by
the linear subtraction and do not appear significant in Fig. 4A. It is im-
portant to realise that the high degree of apparent connectivity be-
tween the seed and these other regions, prior to correction, can be
explained (at least in part) by correlation between beamformer
weights; this is evidenced by similarities between Figs. 4D and C. Cor-
relation between weights introduces linear correlation between
beamformer timecourses and such interactions would be expected
to be removed by our correction. Interestingly, despite correction
there remains a significant degree of high connectivity close to the
seed; this effect was not observed in simulated data. It is possible
that this reflects genuine physiological interaction (see discussion
below) and represents an interesting topic for future work that
could be readily probed using this method in conjunction with
other, established, techniques such as phase lag metrics or imaginary
coherence.

There are limitations to our leakage correction technique that
should be discussed. We should point out that this technique
does not solve the problem of source reconstruction and is highly
dependent on the algorithm used to make the linear projection of
channels into source space. For example, in this case the beamfor-
mer will produce linear weights which give better resolution of
sources of higher power (which may not necessarily be those exhi-
biting the strongest connectivity). Similarly, it is important to real-
ise that whilst this technique corrects for the effects of spatial
leakage on the functional connectivity measured from the seed lo-
cation to other brain regions, it does not correct for leakage from
the test location to other brain areas. This could lead one to incor-
rectly infer the involvement of anisotropic (and possibly non-
contiguous) spatially extended area of functional connectivity
around the test location, which is due entirely to leakage from
the test source. Note that this is essentially the same phenomenon
as the spatial blurring that occurs in mapping changes in activity
when using source reconstruction techniques. This effect could be
tested by extending the technique described to inter-change the
test and seed regions.

The leakage correction approach will not only remove zero lag
correlation mediated by field spread, but also any genuine neuro-
physiological zero (or close to zero) lag correlation between the
seed and target locations. This makes the approach conservative in
terms of its sensitivity to true linear functional connectivity. It is pos-
sible that, in the case of true zero-lag physiological interactions, this
could give a misleading picture of the relative amounts of connectiv-
ity present at different frequencies. Consider the case where there is a
genuine and consistent neurophysiological zero lag interaction at
10 Hz between two sources. Any leakage correction based on a nar-
row band of frequencies (say 5–20 Hz) will make an erroneous over-
estimate of βUV; this will mean that at other frequencies (besides
10 Hz) apparent power couplings (due to uncorrected leakage ef-
fects) may result. For this to be a problem, non phase lagged coher-
ence would have to persist for a significant fraction of the total time
window of the data used. Similarly, the more frequency bands used,
the smaller this bias will be. Existing evidence suggests that long
range coherence is likely to be transient in nature (Friston, 1999;
Rodriguez et al., 1999; Singer, 1999), and invasive studies have
shown that stationary coherence domains for neural oscillations are
of the order of 1 cm or less (Leopold et al., 2003). Indeed, in such
(long-range) cases the basic assumptions underlying the beamformer
spatial filter would also be violated. That said, this is an interesting
topic for further investigation and could shed some light on the
remaining seed blur observed with correction in Fig. 4A. Future
work in this area could make use of the dual-core beamformer
(Diwakar et al., 2011) or other inverse problem solutions not affected
by correlated sources (Wipf et al., 2010; Zumer et al., 2007). Note
also, that although such zero-lag physiological effects might skew
the post-hoc analysis of the spectral profile of the interaction; they
will not result in artefactual false positives in the mass-multivariate
image.

It is well known that the SNR of MEG changes with frequency
and is low for frequencies in the high γ band. This means that FC
values computed using any technique will necessarily change with
frequency and correlation or coherence values, computed between
high gamma band signals, may be masked by poor SNR. This is a
fundamental limitation of MEG that cannot be addressed by data
processing. This limitation means that the multivariate technique
presented here is biased towards frequency bands that exhibit
high power; in the present case of resting state motor cortex con-
nectivity, this means the α and β frequency bands. Although this
problem is inherent to MEG recordings, it is possible that modifica-
tions to our technique might alter the bias. The simplest extension
would be to normalise the columns of XP and YPR to force them to
have zero mean and unit norm. This would amplify the higher fre-
quency components; it would cause marked changes to the ortho-
gonalisation of XP and YPR and also change the results presented
in Fig. 5. However, this normalisation would also amplify high fre-
quency noise which, for low degrees of freedom, would also bias re-
sults. For the present study we choose not to apply such
normalisation, however it may help offset some frequency bias
and future studies employing the multivariate method may consider
this approach.

In the last section of the paper we performed a model comparison
to assess which features provided useful information. We based this
on a simple test of nested models, but this is not the only search strat-
egy. We should note that this test was performed only at a single sig-
nificant voxel, so that it would almost certainly not generalise to the
brain volume. However, this specificity could potentially be useful.
For example, different frequency–frequency mappings may corre-
spond to mappings between different cortical areas; in which case
one would begin with a proscribed univariate mapping on Y (e.g.
sum of beta and alpha power) to make the algorithm less flexible
but more spatially specific. Tests on this many to one mapping
could also be carried out using existing Bayesian tools (Friston et al.,
2008) which would also allow one to test between non-nested
models.

In this demonstration we have used power exclusively, however
the multivariate method can easily be generalised to other forms of
interaction. Most simply, one can express X and Y using both their
real and complex parts (rather than the absolute value); again re-
moving zero-lag prediction of X on Y (over all frequency bands).
This then becomes a method of identifying linear interactions be-
tween cortical areas (of non-zero lag). In the limit, for a single feature,
this reduces to an equivalent form to those methods using only the
imaginary part of the coherence (Guggisberg et al., 2008; Nolte et
al., 2004). Similarly, it would be straightforward to use the phase of
a low-frequency oscillation to predict power changes in other (higher
frequency bands) as observed in Canolty et al. (2006) for example.
There is no reason why these different covariates could not be appro-
priately orthogonalised and all used in the same analysis. A similar
model comparison strategy could be used to test which models of in-
teraction prevail; or indeed, it may well be that examination of the
pertinent canonical variates reveals different time-courses for differ-
ent forms of coupling.

Finally, the extension of the above methodology to group studies
has yet to be thoroughly examined. The most straightforward method
would be to develop univariate hypotheses on the form of coupling
where the multivariate to univariate transform is made using the ca-
nonical vectors. These univariate tests could then be implemented
with standard mass-univariate approaches. An alternative and prom-
ising approach which would preserve the multivariate nature of the
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test up to the group level would be to produce posterior probability
maps based on different Bayesian models (Rosa et al., 2010).
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