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Abstract

Cell fate reprogramming, such as the generation of insulin-producing b cells from other pancreas cells, can be achieved by
external modulation of key transcription factors. However, the known gene regulatory interactions that form a complex
network with multiple feedback loops make it increasingly difficult to design the cell reprogramming scheme because the
linear regulatory pathways as schemes of causal influences upon cell lineages are inadequate for predicting the effect of
transcriptional perturbation. However, sufficient information on regulatory networks is usually not available for detailed
formal models. Here we demonstrate that by using the qualitatively described regulatory interactions as the basis for a
coarse-grained dynamical ODE (ordinary differential equation) based model, it is possible to recapitulate the observed
attractors of the exocrine and b, d, a endocrine cells and to predict which gene perturbation can result in desired lineage
reprogramming. Our model indicates that the constraints imposed by the incompletely elucidated regulatory network
architecture suffice to build a predictive model for making informed decisions in choosing the set of transcription factors
that need to be modulated for fate reprogramming.
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Introduction

A gene regulatory network (GRN) in which fate-determining

transcription factors (TFs) regulate each other drives the

development of tissues by orchestrating the activation or

suppression of the appropriate genes across the genome to

establish the steady-state gene expression patterns that specify a

given cell type [1]. Ever since the recognition of gene regulation it

has been proposed that cell differentiation into a variety of cell

types is due to the emergence of multiple stable attractor states in

GRNs which guarantee the stability of the cell type specific

expression patterns [2,3,4]. The recent integrated analysis of gene

expression profiles have provided evidences that cell types

represent attractor states of the dynamics of GRNs [3,5,6]. If

the cell-type specific genomic expression configurations are

attractors, then they are ‘‘pre-programmed’’ by the particular

wiring diagram (architecture) of the GRNs. Accordingly, because

of this self-organizing property of entire gene expression patterns

that are commensurate for a particular cell fate, the activation of

one or a few key ‘‘fate determining TFs’’ suffices to switch cell

lineages (transdifferentiation) [3,7].

Although early transdifferentiation experiments or reprogram-

ming between related cell lineages revealed this expected cell line

plasticity and self-organization [7,8,9] they have received little

attention because of the deeply rooted dogma of immutability

between cell lineages. Such reprogrammability has seen a revival

in the past years owning to the increasing understanding of some

governing principles of fate determination by the transcriptional

network and the recent interest in the successful reprogramming of

cell phenotypes for regenerative medicine, including the conver-

sion of a variety of adult somatic cells into the embryonic stem cell

like state [10].

Lineage reprogramming reinforces the notion that the deter-

minant of lineage identity is embodied in the dynamics of

regulatory networks rather than simply in the pattern of static

‘‘epigenetic’’ chromatin marks, represented by covalent histone

and DNA modifications [3,11]. The picture is emerging that these

covalent epigenetic marks act as local gene activity switches

whereas the transcription factors are the prime regulator of specific

gene expression patterns because they form networks which are

naturally necessary to coordinate the expression between the gene

loci across the genome [12]. The covalent epigenetic marks may

play only secondary role, perhaps by providing additional

discrimination of expression status between individual genes

because the enzymatic apparatus which modifies the DNA and

histones lack gene locus specificity and are reversible anyway [13].

Thus, it is not surprising that reprogramming can be achieved by

controlling TF expression without bothering with covalent

modifications of DNA or chromatin.

Recent successes in reprogramming cells for regenerative

medicine purposes via ectopic TFs have been achieved largely

by educated guess about which TFs needs to be over-expressed
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combined with systematic, brute-force trial and error ectopic

expression of combinatorial sets of relevant TFs (see below). A

typical, first-order rationale is that the TF normally expressed in

the desired target lineage (lineage-specific TFs) may also serve as

lever for reprogramming a cell to that lineage and in fact, this has

been demonstrated for numerous cases. However, given the

nonlinear dynamics of GRNs, the assumption of such linear

relationship between cell state and TF expression, which also

interprets correlation as causation, is simplistic. For instance, many

key regulators need only be active transiently to achieve

permanent reprogramming [7].

As information on the GRN wiring diagrams is rapidly

accumulating (albeit far from complete), the time is ripe to ask

whether the optimal reprogramming strategy can be predicted

based on our knowledge of the incomplete but increasingly

complex GRN architecture that are being reported. The

complexity of the regulatory network with feedback loops and

cross-talks suggests that a formal mathematical modeling that

integrates the actions of interacting TFs into the network dynamics

will outperform existing empirical approaches based on qualita-

tive, linear and ad hoc hypotheses.

Here we set out to demonstrate how the development of cell

lineages in the pancreas can be described using a simple

mathematical model based on rate equations that capture the

mutual influences of TF expression reported in the literature.

We use a qualitative but formal modeling paradigm to model

the development of the major cell lineages of the pancreas: the

exocrine cells and the endocrine cells, including b, d and a islet

cells from the common Pdx1-positive precursor cells. Using a

system of elementary nonlinear rate equations to describe the

mutual regulatory influence of ten TFs involved in the pancreas

development, we present a minimal model that qualitatively

captures known interactions and is able (i) to recapitulate the

robust generation of the various cell lineages of the pancreas as

defined by gene expression patterns; (ii) to predict the temporal

changes of key TFs in the development of particular cell

lineages; (iii) to predict the outcomes of gene knock-outs; (iv) to

predict the outcome and to help to design new recipes of

reprogramming experiments. Our modeling approach thus

represents a first step beyond the qualitative interpretation of

linear pathways when the paucity of information precludes more

detailed modeling.

Results

A pragmatic modeling paradigm for incomplete data
The incomplete and often circumstantial and ambiguous

information on regulatory interactions preclude modeling in the

traditional sense, as employed in engineering, in which one aims at

a maximally detailed model description with measured or fitted

quantitative parameters. Our goal is not to truthfully incorporate

all known interactions into a complete model and then predict

testable behaviours in response to perturbations of a (presumably)

well-determined system. In contrast, we ask whether given the

available information which is complex enough to preclude the

simple hand-waving type of argumentation, yet too incomplete for

a comprehensive model, any formal but minimal modeling

approach can offer insights on the collective function of fate

determining TFs.

In other words, we seek to answer the following pragmatic

question: does the qualitative information on functional and

regulatory relationships between key TFs reported in the literature

generate sufficient constraints on the dynamics of a system so that

one can formalize how cell fate commitment, natural or

‘reprogrammed’, emerges from the dynamics of a GRN? More

specifically, does network topology alone without knowledge of the

quantitative nature of interactions (real values of rate coefficients)

suffice to formally predict the dynamical behaviour of the

network? Studies of simple parameter-free systems, such as

discrete Boolean networks, suggest that the characteristic global

dynamics of networks, including the presence of stable attractors,

do not depend much on quantitative details of interaction

parameters but rather, on the network architecture [14].

To study how the known set of regulatory interactions

collectively lead to a dynamics in which the attractor states

correspond to observable cell types or lineages, we focused on the

fate options of the multipotent pancreas precursor cells that

express the TF Pdx1 [15,16,17,18,19]. We asked how they

commit, via a three levels hierarchy of binary cell fate decisions

into various lineages (Fig. 1): (i) At the first level, the branching into

the exocrine and endocrine lineages; (ii) at the second level, the fate

decision of the Ngn3 positive endocrine progenitor cell between

either the and b / d or the a (glucagon producing) lineages; and

(iii) at the third branching, where the b / d precursors commit to

produce either b cells or d cells, respectively.

Such a hierarchical sequence of mostly binary cell fate decisions

appears to be a universal mechanism through which higher

metazoan produce the diversity of cell types and has been well

studied in hematopoiesis, neurogenesis and in early embryo

development [14,20,21,22,23].

Since the characteristic cell fate dynamics with binary branch

points and discrete stable states must somehow emanate from the

dynamics of the GRN, the operational question is whether the

same qualitative knowledge used in ad hoc argumentation by

experimentalists can, when formalized as a simple dynamical

system using a set of ODEs, achieve predictive capability beyond

the existing qualitative argumentation. Moreover, we also would

like to explore the superiority of a formal model in predicting the

artificial switching of cell fates by genetic manipulation of fate-

determining TFs. Current reprogramming methods rely on ad hoc

arguments and brute-force trial and error experiments to identify

the relevant genetic lever points in the network whose manipu-

lation can achieve cell fate switching. For instance, systematic

combinatorial screening led to the identification of a set of

regulators, Ngn3, Pdx1 and MafA, which are over-expressed

jointly to convert exocrine cells to b-like cell [24]. Conversely,

based on the qualitative information on the role of Pax4 in the

decision between a and the b / d cells it was found that ectopic

expression of Pax4 targeted to pancreas progenitor or a-cells

converts these cells to b cells [25].

Pancreas cell fate regulation
In the pancreas, the pairs of opposing TFs that control binary

decisions at the three levels of interest here have been identified

and to some extent their regulatory properties characterized (see

[16,26,27,28] for review). The first level of branching, between

exocrine and endocrine pancreas, is governed by the mutually

suppressing pair of the TFs, Ptf1a ,--. Ngn3 [17] (Fig. 2). Thus,

Pt1a and Ngn3 are the fate specific markers of exocrine and

endocrine progenitor cells, respectively. They also are sufficient

and necessary for the development and function of the exocrine

and endocrine pancreas, respectively. The second-level branching

is governed in a similar manner by the Pax4 ,--. Arx circuit

which determines the b / d vs. the a-cell lineage, respectively [16].

The fate-determining TFs for the third branching into the b-cells

vs. the d cells have not fully been characterized. However, TFs

have been shown to bias the decision to and be necessary for

establishing the b-cells, notably MafA [16] whereas little

GRN Model: Pancreas Cell Fate
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information is available for fate determining factor for the d cells.

Thus, for modeling purposes and for maintaining symmetry, we

use a place-holder for the d -cell determining factor, called ‘‘d
factor’’ and then assume a third pair of opposing TFs: MafA ,- -.

d factor, governing the determination of b vs. d cells, respectively

(Fig. 2).

At this point a key question arises: how are these binary switch

circuits which readily explain the binary nature of the respective

Figure 1. Cell lineages of pancreatic cell differentiation and their gene expression patterns. Mouse pancreas development starts from the
Pdx1+ cells, which gradually differentiate into exocrine, a, b and d cells. Genes marked with yellow color are transiently expressed while those with
grey color are permanently expressed in mature cells.
doi:10.1371/journal.pone.0014752.g001
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decision by progenitors, integrate into a single network that

orchestrates the hierarchical development of pancreas progenitor

to the various cell lineages by activating the correct fate decision

in the appropriate cells (Fig. 1)? Little is known about the

integrated behaviour of a system consisting of a linked set of

toggle switches or similar circuits [29,30]. A simple generic model

for how such coupling in principle can generate a hierarchically

branching system has been proposed in which execution of

higher-level decisions shift the lower-level decision points into the

regime of bistability such that the undecided cell is placed in the

unstable state of indeterminacy between the two attractors, hence

driving the next level binary decision [31]. Here we propose a

similar model for a more complex system which, however, is

informed by the specific knowledge of a selected set of regulatory

relationships.

Because our model will not predict the precise ratio of the

different cell types during each differentiation due to lack of

pertinent information, the cellular signal transduction pathways

which control and fine-tune the fate decisions in response to

extracellular cues are not included in the model. Instead, the

model captures largely the intrinsic unfolding of the multiple

lineages coordinated by the transcriptional regulatory interactions

between the fate controlling TFs. However, to ensure the arrow of

time (directionality) of development which can result from

deterministic or stochastic influences [32], we also incorporated

(i) a deterministic extrinsic factor ‘‘maturation’’ that signals the

approaching of terminal differentiation of the tissue (see section:
Methods) and (ii) a stochastic process in each equation that

accounts for the stochasticity of TF expression and cell fate

commitment [28,33].

Basic simulation results: cell type diversification
Prediction of lineages/cell types and their expression

profiles. To simulate the cell development dynamics of the

above GRN model above, we choose the initial conditions of the

expression level of all the pancreatic genes to be zero for all genes

except for gene Hnf6 and Pdx1. We run our single cell gene

network model in a cell population. Each cell in the population has

the same network model and the same initial conditions with high

expression of Hnf6 and Pdx1. Due to the stochastic gene expression

terms in the model; our GRN model produces all steady-states

(attractors) of gene expression patterns of four cell types and their

gene expression time profiles during the development. The

temporal behaviours during pancreas development of some for

the genes of the network have been described and summarized in

the literature [34]. These time courses will, in addition to

producing the distinct cell types, serve for qualitative validation

for our model.

Fig. 3 presents three ‘‘branchings’’ of gene expression

trajectories during the pancreas cell differentiation. The expres-

sion level of Hnf6 starts at a high level and gradually decays as

observed in experiments [34]. It activates the first switch between

Ptf1a and Ngn3. As shown in Fig. 3A, the non-deterministic

property allows the state trajectory to split, in this case, into two

cell lineages that either express high Ptf1a and low Ngn3, which

corresponds to the exocrine linage, or vice versa, which

corresponds to the endocrine progenitors. The choice of either

trajectory at this bifurcation point is stochastic. Once a cell passes

the branching point, the two genes are regulated in opposite

directions according to the bistable circuit. If cells follow the

endocrine linage, they become Ngn3 positive which dominates

 

Figure 2. Gene regulatory network for pancreatic cell differentiation. Master model: Hnf6 activates Pdx1, Ptf1a and Ngn3. Three cross-
inhibition gene pairs are Ptf1a-Ngn3, Pax4-Arx and MafA-d gene. Nodes are denoted by TF names. Arrow-heads denote activation while flat-heads
denote inhibition. Circles are variable names in the mathematical model. An alternative model: Pdx1 directly inhibits both Ptf1a and Ngn3.
doi:10.1371/journal.pone.0014752.g002
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over Ptf1a (‘‘lower branching lines’’ in Fig. 3A, right panel). High

Ngn3 triggers the second switch, embodied by the branching

governed by Pax4 and Arx (Fig. 3B). Later Ngn3 decreases,

reflecting its observed transient expression character, as Hnf6 is

down-regulated with maturation (see below). Endocrine progen-

itors at this stage can differentiate into either a cells or b/d cell

progenitors. Cells fated to the trajectory with high Arx (and low

Pax4) turn on the Arx target gene Brn4 which is a marker gene

for the a phenotype and whose expression persists, as observed,

even if the lineage determining factor Arx decreases (Fig. 3B). By

contrast, in cells fated to the trajectory with dominating Pax4, this

TF then triggers the last switch that controls the branching

between MafA and the d cell gene (Fig. 3C) which subsequently

will activate the respective effector genes, producing the distinct b
and d cells.

The first two bistable switches (Ptf1a-Ngn3 and Pax4-Arx)

belong to the type of supercritical pitchfork bifurcation which

makes the transition from a mono-stable (pre-decision) to the bi-

stable (post-decision) regime. In such decision points, the activities

of the switch genes in the mono-stable regime go to zero if the

upstream input signal vanishes. In contrast, the third switch,

MafA-d gene, is modelled to exhibit a type of bifurcation which

makes the transition from a tri-stable (pre-decision) to a bi-stable

(post-decision) regime. Here, the switch genes maintain their

values even if the upstream signal vanishes.

Since development driven by the change of gene expression

profiles should be represented by a trajectory in a N-dimensional

state space (N = 11) of the GRN, the above separate represen-

tations in the two dimensional phase planes of switch genes do

not do justice to the integrated dynamics of the entire GRN. To

visualize the high-dimensional trajectories and capture the entire

dynamics, we used principle components analysis (PCA) on the

gene expression profiles and plotted trajectories in the phase

space of the three largest principal components (Fig. 4). The PCA

trajectories show the sequence of the binary decisions split the

trajectories from the progenitor state to various terminal cell

types. The characteristic ‘‘common trajectory’’ before the

branching event reflects the destabilization of the respective

progenitor state as previously observed for the hematopoietic

system [22].

We also compared the predicted temporal evolution of

individual genes with the experimental gene expression data

Figure 3. Three branchings of gene expression profiles during pancreatic cell differentiation. This figure describes the dynamics of three
bifurcations happened between three cross-inhibition gene switches: (A) Ptf1a - Ngn3, (B) Pax4 - Arx (C) MafA - d cell gene. The left panels show gene
expression profiles. The right panels show phase diagrams of the cross-inhibition genes.
doi:10.1371/journal.pone.0014752.g003

GRN Model: Pancreas Cell Fate
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during endocrine b cell development (Fig. 5). As Fig. 5B shows, the

temporal profile predicted by the GRN model recapitulates

qualitatively the key features, notably the counter-intuitive non-

monotonical behaviour of key TFs. For instance, the model

predicts the transient expression of the genes Ngn3 and Pax4

which disappear in the mature cells despite being essential fate

determining factors for endocrine cells. Similarly, the transient

decrease followed by the terminal increase in the case of Pdx1 and

terminal increase of Pax6 is reproduced by the dynamics of the

GRN. However, the detailed time course predicted still deviates

from the observed time profiles, notably the sharp temporal

changes of the transient appearance of Ngn3 and Pax4 (Fig. 5B).

Could we construct a model to fit the experiment data better? We

think that the main parts of the model are constrained by the data

and cannot be changed; i.e., three gene switches and the positive

feedbacks onto Pdx1 represent the core requirement. However,

since Pdx1 is anti-correlated with Ngn3 and Ptf1a, it could only

either inhibit the two latter genes or have no direct action upon

them. As Fig. 5C shows, such behaviour can be achieved if a

speculative manually wired variant GRN is allowed in which Pdx1

exerts an inhibitory effect on expression of Ngn3 and its opponent

Ptf1a. While such a direct regulatory function of Pdx1 on Ngn3

and Ptf1a has not been reported, this manipulation exemplifies the

possibility of dynamical models for hypothesis generation, allowing

us to postulate the existence of regulatory links based on dynamical

behaviour of expression. The final gene expression patterns of four

distinct pancreas cell types, exocrine cell, a cell, d cell and b cell,

are presented in Fig. S2. Comparison with the observed gene

expression patterns (Fig. 1) shows good agreement of the attractor

state gene expression profiles of our model with the experimental

results.

Perturbations and reprogramming
Prediction of gene knock-out experiments. We next

evaluated whether the simple formalization as a dynamical

system of the known qualitative gene regulatory relationships

can predict the consequence of gene knock-out experiments [35].

Here we simulate a genetic deletion (knock-out) of a transcription

factor Xi by holding its expression value to be zero (Xi = 0) for all

time. Not surprisingly, our simulations show that cells develop into

only one of the two accessible cell lineages downstream if we knock

out one gene in the binary gene switch. For example, deleting the

Pax4 gene results in the absence of b or d cells and only the a cell

marker Brn4 is highly expressed, as shown in Fig. 6(A). Similarly,

Figure 4. Trajectories of three pancreatic cell differentiations in the phase space. The three coordinates are the three largest components
of principle components analysis (PCA) of all trajectories of pancreatic cell differentiation. We run our model in cell population and record gene
expression trajectories of all cells. Then we employ PCA to analyze these data and choose three largest components for visualization.
doi:10.1371/journal.pone.0014752.g004
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knocking out Arx will suppress a cells while only b and d cells

develop, as shown in Fig. 6(B).

The predictions of consequences of gene knockouts are not

always absolutely correct. For instance, in the knockout of the

master gene Pdx1, there is pancreas agenesis as expected.

However, a small amount of differentiated pancreas cells can be

found in Pdx1 deficient mice as reported in some experiments

[29,36,37]. This result challenged the views which consider cell

types as resulting from a simple combination of TF actions

during development. But in the view that cell types are attractors

in a dynamic system, the high-dimensional attractor may, albeit

in less stable form, still persist after deletion of a single node of a

complex network [38]. To uncover the potential ‘‘hidden’

attractors that may resemble that of differentiated cells, we hold

Pdx1 gene expression to be zero on average but increase gene

expression amplitude for the stochastic fluctuations. Simulation

of the network with such high-noise dynamics then indeed reveal

the presence of stable differentiated pancreas cells in the absence

of Pdx1 activity, as shown in Fig. 7A. However, the terminal

gene expression patterns of the four cell types differ somewhat

from those of the wild-type network in the presence of Pdx1

activity. The difference is shown in Fig. 7B. For instance,

different effector genes specific for the different cell types can co-

exist in the same cell which suggested mal-functions of these

cells. Such promiscuous marker misexpression is a common

observation in cancer where the GRN architecture is altered by

mutations.

Simulation of reprogramming with genes Pdx1+, Ngn3+

and MafA+. Melton’s laboratory recently reported that

overexpression of Pdx1+, Ngn3+ and MafA+ could reprogram

exocrine pancreas cells to the insulin producing b cells [23]. To

model such reprogramming, we describe the virus-mediated

ectopic gene overexpression with temporal additional gain terms

in the corresponding equations in our GRN model. Then the

dynamics of the modified network is simulated as above. Various

scenarios of the reprogramming experiments were computed in

our model and results are compared with the experiment data.

Fig. 8A presents the gene expression time profiles and

trajectories in the relevant phase planes during cell reprogram-

ming using over-expression of genes Pdx1+, Ngn3+ and MafA+. An

exocrine cell starts with high expression of Ptf1a. Reprogramming

is implemented by the extra production terms for Pdx1, Ngn3 and

MafA in a certain time window. We see that the cell switches its

expression pattern from a high-Ptf1a to a high-Ngn3 pattern

which subsequently triggers the cell to go through the Pax4-Arx

branch point to finally reach the steady state of the beta cell. It

should be noted that some a cells are also produced in this process.

The final gene expression patterns of reprogrammed cells are

shown in Fig. 8B, which are identical to the one of normally

developed a and b cells (see Fig S2).

The model also allows us to investigate how cells respond

when applying these perturbations at different time sequences.

Four scenarios are designed for this purpose: (A) Pdx1, Ngn3,

MafA; (B) Ngn3, Pdx1, MafA; (C) MafA, Ngn3, Pdx1; and (D)

MafA, Ptf1a, Ngn3. As shown in Fig. S4, optimal reprogram-

ming is achieved by the perturbation sequences in which MafA

and Ngn3 are perturbed first. This is because Ngn3 is activated

early and lasts for a long time, which is good for cell

reprogramming (See A and C in Fig. S4). One reason behind

the differential effect of these perturbation sequences is that

early MafA perturbation has a positive feedback to activate

Pdx1 early accordingly, which strengthen Pdx1’s activation of

Pax4 and the switch to the endocrine cell lineage. Thus, varying

perturbation sequences may further increase the reprogramming

efficiency for which so far simultaneous perturbations has been

employed.

Figure 5. Temporal gene expression profile during pancreatic cell differentiation. In this figure different colors denote different genes. (A)
Experimental observations of both gene expression levels and timing are qualitative reported in [18]. (B) Simulation results from the master model.
(C) Simulation result of an alternative model with the inhibitory effects of Pdx1 upon Ngn3 and Ptf1a.
doi:10.1371/journal.pone.0014752.g005

GRN Model: Pancreas Cell Fate
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Predictions of new reprogramming protocols: Pax4+ and

Ptf1a2. According to the GRN model (Fig. 1 and 2), Pax4 is on

the branching point, tilting the balance towards b cells. It is

natural to assume that adding it to the set of TFs used by the

Melton group for reprogramming b cells can increase the

reprogramming efficiency. Fig. 9A shows that indeed the

chance of b cell reprogramming is increased when Pax4+ is

induced in addition to Pdx1+, Ngn3+ and MafA+. Compared with

Fig. 8, there are no a cells after cell reprogramming. Because cells

are prevented from becoming a cells and are channelled more

towards b cells. The reprogrammed cells also exhibit the normal

b cell gene expression pattern as shown in Fig. 9B (see also Fig.

S2).

Model simulations also predict that Ngn3’s role in the

reprogramming can be enhanced by the inhibition of Ptf1a

directly. It also works to inhibit Ptf1a gene (e.g. using RNAi

technology) as well as to over-express Ngn3 for the purpose of

reprogramming. Since Ptf1a and Ngn3 are cross-inhibitory, when

Ptf1a expression level is suppressed, Ngn3 expression will increase.

The inhibition of Ptf1a is modeled as an extra degradation term in

the equation for a certain time window. Our further simulation

(Fig. S3) shows that in addition to over-expressing genes, the

inhibition of Ptf1a can in principle also result in efficient b cell

reprogramming.

Discussion

The purpose of this paper is to demonstrate how a gene

regulatory network, built with reported interaction schemes which

mostly represent causal networks, in principle governs cell type

diversification and differentiation. Therefore, our dynamical

model omits many connections in the regulatory gene network

as well as higher level control mechanism, such as cell-cell

interactions, population level quorum sensing and tissue mechan-

ics. Thus, while our model correctly predicts the distinct gene

expression patterns embodied by the various pancreas cell types, it

does not predict the fraction of each cell type in the tissue which

may depend on tissue homeostasis mechanisms. For the same

reason, we did not seek to find the experimental values of rate

coefficients of gene interactions or to fit the model to the data.

Instead, cell differentiation and terminal states are quite robust

(‘‘structurally stable’’ in the sense of dynamical system) and is

mostly determined by the topology of the gene regulatory network.

Using parameter scanning we found that indeed our model is

qualitatively robust in a wide range of individual parameter

variations, which include the production rate a, the degradation

rate k and the signal weakening coefficient g, as shown in Fig. S1.

We also found that other functional forms for the equations,

which only capture the phenomenological causal relationships

Figure 6. The gene expression profiles of knock out simulations. (A) The case of knocking out Pax4: a cell marker Brn4 is expressed while no
MafA and d cell gene are expressed; (B) The case of knocking out Arx: MafA and d cell gene are expressed while Brn4 is not expressed.
doi:10.1371/journal.pone.0014752.g006
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between the variables rather than represent chemical reaction

kinetics, yielded the same qualitative results as long as the input-

output relationship obeys a sufficiently sigmoidal function. Thus, it

is important to note that a high value of n does not indicate any

assumption of molecular cooperativity in the sense of multimer

reaction [39], but is used only to make the transfer functions

sigmoidal which can have a multitude of reasons.

Our results show that with a minimum of knowledge of the

constraints imposed by the gene network topology, pancreas cell

differentiation can be explained as the transitions among different

cell attractors. Specifically, the gene expression patterns of these

stable steady states and the time course of the gene expression

predicted by our model simulation agree with the experimental

data qualitatively. Of note, the stochastic model, which captures

the ubiquitously observed noisy nature of cell fate determination

[33], also allows for rare spontaneous attractor transitions,

explaining the presence of the few unexpected endocrine cells

observed in Pdx1 knockout experiments.

In addition to reproducing observed behaviours in pancreas

cell reprogramming, we also can make predictions on aspects of

reprogramming that have not yet been experimentally tested.

First, exocrine to b cell reprogramming should also concomi-

tantly generate some new a cells. Although the current

reprogramming protocol can switch exocrine cells to b cells, it

does not prevent them from choosing other branches, including

to a cells. Second, extra Pax4 induction could lead to more

efficient reprogramming than the original protocol. As shown in

the last section, adding Pax4 can push more reprogrammed cells

into the b cell lineage. We also found by modeling that over-

expressing genes Pdx1, Ngn3 and MafA combined with the

suppression of Ptf1a would enhance the efficiency of b-cell cell

reprogramming. This is important because it is often technically

easier to suppress (using small molecules or RNAi) rather than

over-activate genes. A mathematical model could provide the

means to systematically identify the set of nodes which need to be

inhibited rather than activated to achieve desired cell type

transition. Also, we evaluated the influence of different pertur-

bation sequences upon cell reprogramming. We found that with

the same perturbation set (encompassing Pdx1, Ngn3 and MafA),

the optimal perturbation sequence would be to perturb MafA or

Pdx1 first. Playing with perturbation sequence adds a new

dimension to optimize the design of the recipe for cell

reprogramming.

In the coming years, we will certainly encounter more and more

reprogramming experiments of different cell types. Our work

shows that even with qualitative and incomplete information of

interactions of the key genes for cell lineages, we can build a

mathematical model to describe the cell differentiation process.

After validating the crude network dynamics with the observed

gene expression behaviour during cell differentiation, we can

employ the model to predict the appropriate gene combination for

the desired cell reprogramming. This approach builds a testable

model to guide the discovery of cell reprogramming recipes instead

of depending on qualitative guesswork and trial and errors, and

thus, will pave the road to more efficient reprogramming protocols

for regenerative medicine.

We think that this framework of modeling cell differentiation as

a multi-step hierarchical branching in which intermediate potent

progenitor cells are metastable states has wide validity in tissues

beyond pancreas because of similarities of gene circuit motifs in

many tissues: cross-inhibitory gene pairs include that control

binary fate switches include Cdx2 and Oct4 in early pluripotent

ES cells, and GATA6 and Nanog in the inner cell mass or

GATA.1 and PU.1 in hematopoietic cells.

Future incorporation of more gene regulatory interactions and

their detailed interaction properties can be explored as new

network data arrive to improve the quality of predictions and

extend them to other cell types. Another improvement is to

incorporate the cell-cell interactions in our GRN model. Non-cell

autonomous phenomena, mostly embodied by cell-cell communi-

cation, is underexplored and perhaps has evolved to control the

relative proportions of cell types. We note that while our model

produced correct cell types, the ratios were incorrect – perhaps

because of the lack of intercellular communication – since even if

the internal parameters were tuned to fit the observed relative

proportions of cell types, it may not be structurally robust. The

robustness of number distribution of each cell type could be an

attractor in a bigger tissue level network that considers cell-cell

interactions [40,41,42,43].

Methods

Network definition - Choosing the nodes
The nodes (genes) of a GRN model that can generate the

attractors representing the cell fates of interest must first contain

the TF genes involved in the mutual repression circuits detailed

above: Ptf1a and Ngn3; Pax4 and Arx; as well as MafA and a

putative ‘d gene’, as discussed before. In agreement with their

role in the binary switch, transgenic knockout mice of some of

these regulators led to impairment of the lineages for which

they act as fate-determining factor (reviewed in [26]): Ptf1a-

knockout mice exhibit complete absence of the exocrine

pancreas, Ngn3-knockout conversely results in complete absence

of endocrine cells. Pax4 knockout led to the absence of b and d
cells with concomitant increase in a cells, whereas Arx

knockout mice exhibit an increase of b/d cells at the expense

of a cells [44].

Second, in addition to these 6 genes involved in the bistable

circuits, we included the following genes whose roles in pancreas

development are well documented, with the respective specific

rationales. Pdx1, the master gene for pancreas development is

included because of its critical role as transcriptional activator of

various pancreas development genes (see below). Knock-out of

Pdx1 results in pancreas agenesis. Another ‘upstream’ TF, Hnf6,

was included as a key representative of a family of TFs expressed

early in pancreas development but is not strictly pancreas specific.

Hnf6 is expressed in the foregut prior to Pdx1 and transactivates

Pdx1 and other genes [33]. Hnf6 knockout mice are deficient in

endocrine pancreas as well as bile duct development.

The gene Pax6 was included because of its well-documented role

in the genesis of a-cells. Pax6 knockout mice lack a cells, but the

functionality of b cells and other endocrine cells is also affected

[45]. The TF Brn4 was included as a ‘downstream’ acting TF to

maintain symmetry between the lineages so as to ensure the same

time scale for differentiation of each the cell types (several days for

each). It does not appear to play a role in binary decisions.

Figure 7. Noisy gene expression profiles after knocking out Pdx1. (A) Because all fully differentiated cells have a positive feedback, their
marker genes can be activated by noise. Exocrine, a, b and d cells appear, but their steady state gene expression patterns are different from the
normal cells. (B) Noisy gene expression patterns of Exocrine, a, b and d cells after knocking out Pdx1. White – Initial values; Gray – Maximum value;
Black – Final value.
doi:10.1371/journal.pone.0014752.g007
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For many of the genes chosen for our GRN model the temporal

profile of their expression levels during endocrine cell development

is also fairly well established (Fig. 5A), offering a means to validate

the dynamical model.

Network definition - Choosing the connections
The network connections are directed regulatory relationships

(represented by arrows between nodes, Fig. 2) and were extracted

from the literature (the summary is shown in Table 1)

[16,26,27,28,46,47]. For a connection ‘‘ARB’’ to be qualified as

a directed edge in the network, one of the following minimal

criteria of evidence has to be met: (1) direct molecular evidence of

binding and functional studies, i.e. A binds to the promoter of B or

in the case of inhibition; A–B protein-protein interaction; (2)

overexpression or knockout of A changes the expression of B

accordingly; (3) binding of A to promoter of B based on ChIP data

or, as a weaker criterion, presence of canonical response element

for A in the promoter of B. Thus, the criteria are of heterogeneous

stringency, covering a range from inferred, physical to functional

interactions.

The above criteria are minimally necessary but not sufficient for

inclusion in the model so that not all known documented

interactions in published papers that satisfy the criteria are

included. This resulted in the network shown in main text Fig. 2.

Since very little is known about how the individual bistable circuits

interact in addition to the connections mentioned above the

following interactions were added as justified below:

Hnf6, which transactivates not only Pdx1 but also the two

members of the first bistable switch (Ptf1a and Ngn3) [19], may

be responsible for initiating the first decision point. Pdx1

transactivates the ‘‘downstream’’ TFs, MafA and Pax4 [26], but

interestingly, does not appear to affect the first decision circuit,

Ptf1a,--. Ngn3. Although Pdx1 seems to be at the top of the

hierarchy in development of the pancreas parenchyma and to be

critical for exocrine and endocrine pancreas, almost no gene

regulatory findings are known that would explicitly and

obviously explain how the cascade of cell fate decision circuits

is initiated by Pdx1. Thus, it appears that it is Hfn6 which

triggers the cascade of subsequent binary decisions. However,

Pdx1 is, based on promoter binding site analysis, subjected to

autoregulation [36] and regulation by MafA, Pax4 and Pax6

[26]. These feedback interactions were included in view of the

well known non-monotonical time course of Pdx1 during

pancreas development (Fig. 5A) and these connections are

incorporated in the model.

Ngn3, which is the master regulator for the endocrine pancreas,

was modeled as activator of the targets Pax4, Arx, Pax6 and MafA

based on promoter binding sites and functional evidence [48] since

these regulatory relationship may account for activation of the

downstream decision circuits.

Since little information is available for fate determining TF for

the d cells, for modeling purposes and for maintaining symmetry,

we use a place-holder for the d-cell determining TF, called ‘‘d
factor’’. As we assume that the cross-inhibition genes stand at the

branching point of each cell differentiation, a pair of opposing

TFs, MafA ,- -.d factor, is proposed to govern the determination

of b vs. d cells respectively.

Simplifications and deviation from data
Although in this subnetwork not all genes known to play a

role in pancreas development are included, in expanding

the above selection some genes with similar functions are

lumped into one variable. For instance, NeuronD and Isl1 were

grouped with Ngn3. Exocrine cell marker Mist1 is lumped

with Ptf1a.

In addition to the above genes we also defined a network node,

the hypothetical variable ‘‘maturation’’ to capture the functional

role of feedback signals emanating from the maturing tissue, such

as possible regulatory signals from increasing cell density and the

presence of differentiated cells. i.e., the fully differentiated cells

would send inhibition signal to triggering gene Hnf6 via

‘‘maturation’’ node. This is necessary since unlike in other cell

differentiation systems studied, such as hematopoietic stem cells,

embryonic stem cells or glial cells, where intrinsic robustness and

context independent cell type diversification in vitro provide a

global driving force, pancreas is no strong evidence for such

developmental autonomy and hence, a maturation factor is

necessary as an extrinsic reference of time progression that drives

and constrains the dynamics. Here Ptf1a, MafA, d-gene, and

Brn4 are marker genes of fully-differentiated cells, which are

expressed stably in these cells. Their expressions represent the

maturation of cells and send signals to ‘‘matura-

tion’’[49,50,51,52]. Hnf6 is the trigger point of the differentiation

and no gene acts on it. So it is the right gene to receive the

feedback after the cell maturation.

The characteristic of our approach is to investigate the

mechanism of cell lineage determination with an incomplete

network. Here the backbones of our GRN are three cross-

inhibition gene switches and the links between them. If any of

them is removed, cell differentiation will collapse in the model. All

other genes and connections are included to make the gene

expression profiles replicate the observations. In this sense, the

‘maturity’ and its connections are not essential for cell differen-

tiation. It is not necessary because it is only used to simulate the

effects of the surrounding cell population.

We also systematically implemented self-activation for fate-

determining TFs. Such positive feedback has been found in many

TFs involved in fate determination including for MafA and Pax6

in the case of pancreas [16,26] and are well described in other

systems [3,29]. They contribute to stabilizing the progenitor state

as well as to separating and stabilising the distinct lineages [23].

However, the lack of autoregulation in the upper switches is due to

the fact that some cross-inhibition genes are only transiently

expressed during pancreas development. Autoregulation in the

gene switch can keep it on even after upstream signals are gone.

According to experiment data, both Ngn3 and Pax4 are only

transiently expressed. Therefore, we cannot have autoregulation

for the first two switches.

Conversely, known negative feedback loops where a TF

directly inhibits its own synthesis/activation, as in the case of

Ngn3 and Pax4, were omitted since their incorporation made no

difference for the dynamics in the parameter space examined.

The detailed list of auto-regulation for each gene can be found in

Table 1.

In order to generate a model, we used the above, well-studied

general principles of a network of cross- and auto-regulation

Figure 8. The gene expression profiles of cell reprogramming with the recipe Pdx1, Ngn3 and MafA. (A) Gene expression profiles of
pancreatic exocrine cells being reprogrammed to b cells. Three genes, Pdx1, Ngn3 and MafA are over-expressed as the extra production terms in the
model. Besides b cells appear, a cells also appear after reprogramming. (B) Ten gene expression patterns in reprogrammed pancreas a and b cells
with the recipe: Pdx1, Ngn3 and MafA. White – Initial values; Gray – Maximum value; Black – Final value.
doi:10.1371/journal.pone.0014752.g008
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in which the rate of expression change of the downstream

target is a sigmoidal function of the upstream regulators.

For the functional form of the latter, Hill functions with

uniform exponents n (n = 4) were used. It should be noted that

using Hill functions does not imply cooperativity of protein

binding in this coarse-grained network model. The real event of

regulated protein expression is far too complex, involving

multiple cellular processes, such as chromatin confirmation

changes, transcription initiation and transcript elongation,

nuclear export and splicing and hundreds of steps in translation

and formation of active proteins so that a direct mapping of

individual molecular events to observable kinetics of protein

concentrations in cell populations is not warranted [53,54,39].

Many conditions, including stochastic focusing, non-Michaelis-

Menten and fractal kinetics, non-ideal chemistry, circuit

structure, etc. can give rise to sigmoidal kinetics [55,56].

Moreover, the typical dynamics of networks with attractors

can be obtained with sigmoidal functions of forms other than

Hill functions. Finally, each TF also is subjected to non-

regulated first order degradation.

To show the dynamic bifurcations arise from the topology of the

gene regulatory network rather than from the arti-fact of some

special parameters, we ran the simulations with varying parameter

values, covering the range of two order of the scale [57] (Fig. S1).

Any set of parameters which produce the four expected cell types

were plotted as solid line in the left panel of Fig. S1. It

demonstrates that large number of parameters could lead to the

proper bifurcations in our model.

The rate equations for the GRN of pancreas cell
development

Below are the ordinary differential equations for the network of

regulatory influences shown in Fig. 2.

Pdx1 : _xx1~as
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To keep the model simple and minimal, we kept the number of

parameters which characterize the interactions to the minimum.

Here variables x1 ,x10 represent the expression level of 10 key

genes in pancreas cell differentiation. In addition to the above

genes, we also defined x11 as a hypothetical variable ‘‘Maturity’’,

which, as explained above, is not a parameter to trigger cell

differentiation but a variable to captures the functional role of

feedback signals emanating from the fully differentiated cells. It is

worth to note that x11 is not a bifurcation parameter. Cell

differentiation can happen without the ‘‘Maturity’’ factor x11,

which only influences how fast Hnf6 degrades after mature cells

appear. Each equation has three terms to capture the effects upon

production from the upstream TFs, the linear degradation and

stochastic gene expression. Transcription and translation (and

posttranslational activation) –processes that are independent of the

actual GRN architecture were lumped together as the rate of

change of the gene expression xi of each TF since they operate at a

time scale (hours) much smaller than the differentiation (week).

The production rate of expression change of the downstream

target is a sigmoidal function of the upstream regulators. Hill

functions with uniform exponents n (n = 4) were used which, as

explained earlier, do not imply cooperativity. To demonstrate how

the network architecture and qualitative interactions can generate

Figure 9. The gene expression profiles of cell reprogramming with the recipe Pdx1, Ngn3, Pax4 and MafA. (A) Gene expression profiles of
pancreatic exocrine cells being reprogrammed to b cells. Four genes, Pdx1, Ngn3, Pax4 and MafA are over-expressed as the extra production terms in
the model. Only b cells appear after the cell reprogramming. No a cells appear since they are repressed with the introduction of the gene Pax4. (B)
Ten gene expression patterns in reprogrammed pancreas b cell with the recipe: Pdx1, Ngn3, MafA and Pax4. White – Initial values; Gray – Maximum
value; Black – Final value.
doi:10.1371/journal.pone.0014752.g009

Table 1. Gene interactions based on references and based on
proposal.

No. Gene Action Gene Direct References

1 Hnf6 activate Ngn3 direct [34]

2 Hnf6 activate Pdx1 indirect [17]

3 Ngn3 inhibit Ptf1a indirect [17]

4 Ngn3 activate Pax6 direct [15]

5 Ngn3 activate Pax4 direct [17]

6 Ngn3 activate Arx direct [26]

7 Pax4 inhibit Arx direct [15]

8 Pax4 activate MafA direct proposal

9 Arx inhibit Pax4 Direct [15]

10 MafA activate Pdx1 direct [15]

11 Pax6 activate Pdx1 direct [15]

12 Pdx1 activate Pax4 direct [17]

13 Pdx1 activate Arx direct proposal

14 Pdx1 activate MafA direct proposal

15 MafA self- activate — direct proposal

16 Arx activate Brn4 direct [26]

17 Brn4 self- activate — direct proposal

doi:10.1371/journal.pone.0014752.t001
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the observed cell fate dynamics, all rate coefficients have the values

near one and do not depend on fine tuning or exact experimental

data fitting. We started with the same parameters for all equations

and then minimally adjusted them to allow for multi-stable

dynamics and to agree with the gene expression temporal profiles

qualitatively. The values of production rate a and degradation rate

k are chosen only such that the bifurcations can happen. Pdx1 and

Hnf6’s production rates are smaller while those of Pax4 and Arx

are larger than the ones of other genes solely to keep the steady

states around similar values. The complete list of parameter values

are listed in Table 2.

Since it usually takes several days to weeks for the mouse

pancreatic cells to fully differentiate, these node-intrinsic molecular

processes that take place within hours may not play a role in global

network dynamics that governs the cell differentiation. Instead,

typical time scale of macroscopic differentiation of multiple days

suggests that some delays between subsequent cell differentiation

steps need to be accounted for. Instead of introducing time delay

explicitly which complicates the model, we simply, where

biologically justified, use weak coupling between the binary

decision circuits, which is implemented by coefficientg. The

multiple input coupling coefficients gm is smaller than the single

input one since gene input strengths need to be normalized to the

same scale.

The deterministic parts of equations describe the mean field

values of the gene expression of the development network and can

not exploit bifurcations to diversify cell fates. The fluctuations of

gene expressions due to intrinsic and extrinsic noise are essential

for the cell fate differentiation at bifurcation points (see main text).

The white noise term ji(t) is added for each equation with

Gaussian distribution assumed. The auto-correlations of noise are

given:

Sj(~xx,t)j
0
(~xx0,t0)T~2D(~xx,t)d(t{t0)

Where d(t) is the Dirac delta function and the diffusion matrix

D is defined by Sji(t)jj(t
0)T~2Dij(~xx,t)d(t{t0). The average is

carried out with the Gaussian distribution for the noise. Here

diffusion matrix D is assumed to be independent of coordinate x.

In the current model, the differentiation process is quite robust

because three subsequent bifurcations are not sensitive to noise

level D. However, noise (magnitude of D) cannot be bigger than

certain value (0.25 in our model). Otherwise cell attractors are no

longer stable and cell types can spontaneously switch to each other

during the normal development process.

The noise is implemented as discretized Brownian motion. The

stochastic ODEs are solved by Euler-Maruyama method which

was programmed by the author in Matlab [58].

Since cell differentiation happens at the cell population level

and our gene network model only represents one single cell, the

simulation is carried out in a small ensemble of cells with the same

initial conditions. When these cells differentiated into different cell

types of exocrine and b, d, a endocrine cell types, their gene

expression patterns and profiles are recorded separately.

Supporting Information

Figure S1 Robustness of parameters values. To show the

dynamic bifurcations arise from the topology of the gene

regulatory network rather than from the artifact of some special

parameters, we ran the simulations with varying parameter values,

covering the range of two order of the scale [52]. Any set of

parameters which produce the four expected cell types were

plotted as solid line in the left panel of Fig. S1. It demonstrates that

large number of parameters could lead to the proper bifurcations

in our model.

Found at: doi:10.1371/journal.pone.0014752.s001 (0.82 MB TIF)

Figure S2 Gene expression patterns in the four distinct pancreas

cell types. Gene expression patterns in the four distinct pancreas

cell types as attractors of GRN. White-initial values; gray-

Maximum values; black-final values.

Found at: doi:10.1371/journal.pone.0014752.s002 (1.64 MB TIF)

Figure S3 The gene expression profiles of cell reprogramming

with recipe of overexpressing Pdx1, Ngn3, Pax4, MafA and

inhibiting Ptf1a. This cell reprogramming scheme is the optimum

to reprogram exocrine cells to beta cells.

Found at: doi:10.1371/journal.pone.0014752.s003 (1.99 MB TIF)

Figure S4 The gene expression profiles of cell reprogramming

with different perturbation sequence of Pdx1, Ngn3, MafA. A)

Pdx1, Ngn3, MafA; B) Ngn3, Pdx1, MafA; C) MafA, Ngn3, Pdx1;

D) MafA, Ptf1a, Ngn3.

Found at: doi:10.1371/journal.pone.0014752.s004 (1.51 MB EPS)
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