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ABSTRACT: The hydrophobicity of oils is a key parameter to design surfactant/oil/water (SOW) macro-, micro-, or nano-
dispersed systems with the desired features. This essential physicochemical characteristic is quantitatively expressed by the equivalent
alkane carbon number (EACN) whose experimental determination is tedious since it requires knowledge of the phase behavior of
the SOW systems at different temperatures and for different surfactant concentrations. In this work, two mathematical models are
proposed for the rapid prediction of the EACN of oils. They have been designed using artificial intelligence (machine-learning)
methods, namely, neural networks (NN) and graph machines (GM). While the GM model is implemented from the SMILES codes
of a 111-molecule training set of known EACN values, the NN model is fed with some σ-moment descriptors computed with the
COSMOtherm software for the 111-molecule set. In a preliminary step, the leave-one-out algorithm is used to select, given the
available data, the appropriate complexity of the two models. A comparison of the EACNs of liquids of a fresh set of 10 complex
cosmetic and perfumery molecules shows that the two approaches provide comparable results in terms of accuracy and reliability.
Finally, the NN and GM models are applied to nine series of homologous compounds, for which the GM model results are in better
agreement with the experimental EACN trends than the NN model predictions. The results obtained by the GMs and by the NN
based on σ-moments can be duplicated with the demonstration tool available for download as detailed in the Supporting
Information.

1. INTRODUCTION
A large diversity of natural and synthetic liquid compounds are
grouped under the generic term “oils” due to their non-
miscibility with water. They are key components of surfactant/
oil/water (SOW) systems such as swollen micelles, micro-
emulsions, or emulsions which are found in numerous end-use
products and various fields such as cosmetics, pharmaceutics,
food, crude oil, and so forth. The quantitative evaluation of the
hydrophobicity of the oil is extremely important because it
allows for choosing the most effective SOW system
composition and, in f ine, optimizing its performances in
applications.

Several concepts have thus been developed to characterize
the hydrophobicity/polarity of oils. The best known are log P,
that is, the logarithm of the n-octanol−water partition
coefficient1 and the “required HLB” (hydrophilic−lipophilic-

balance).2,3 Log P is widely used in environmental and medical
sciences since it expresses the ability of a non-ionizable
substance to partition between aqueous and lipophilic
compartments of organisms, but it gives no indication
regarding its behavior at the O/W interfaces in SOW systems.1

The required HLB value of an oil, introduced by Griffin,2,3 was
designed to that aim. It corresponds to the HLB value of the
mixture of surfactants providing the most stable emulsion with
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the oil under study.2,4 This method is sometimes used to
classify complex mixtures such as essential, vegetable, or animal
oils.5−9 However, the required HLBs thus obtained are
imprecise and poorly reproducible because they depend on
the mixture of surfactants and on the emulsification process.
Furthermore, the required HLB concept is based on the HLB
of surfactants which is itself an approximate empirical
parameter only reliable for polyethoxylated nonionic surfac-
tants.

A more relevant concept to quantify the hydrophobicity of
an oil in SOW systems was introduced in 1977 by Wade et al.
as a dimensionless number: the so-called equivalent alkane
carbon number (EACN).10 It corresponds to the number of
carbon atoms of the n-alkane that exhibits a phase behavior
similar to that of the oil under consideration.11 In practice,
measuring accurately the EACN value of an oil is tedious. The
standard method is based on the elaboration of the so-called
“fish diagrams,” which represent the phase behavior of
equilibrated SOW systems where S is a well-defined
polyethyleneglycol monoalkyl ether (CiEj for CH3(CH2)i−1O-
(CH2CH2O)jH) and the water-to-oil ratio (WOR) is equal to
1.12

A typical fish diagram of a system C10E4/oil/water is given in
Figure 1a as an example. When varying the temperature and
the surfactant concentration, the CiEj/oil/water-T systems
provide different types of microemulsion behaviors, called
Winsor phases (Winsor I, II, III, and IV) depending on the
affinity of the surfactant for water and oil. When it is balanced,
a three-phase system (Winsor III) is formed, giving a diagram
shaped like a fish. The characteristic temperature T* at the
intersection of the Winsor I to IV (i.e., one single phase
microemulsion) regions is then compared to the T* values of a
series of n-alkanes (Figure 1b) to determine the EACN of the
oil which expresses its hydrophobicity.11,13

While reliable and accurate, the experimental determination
of EACNs from fish tail diagrams is, however, a lengthy process
which is limited by experimentally accessible conditions in
terms of temperature (T ≈ 5−80 °C). Thus, in silico estimation
of the EACN values of oils without any experiments would be
considerably time-saving.

To date, a few predictive models of EACN values have been
reported. The EACN value of complex oil mixtures, that is,
crude oil, was predicted by Creton et al. using an evolutionary

algorithm coupled to data mining.14 Bouton et al. built a QSPR
model by applying genetic algorithms to structural molecular
descriptors of polar hydrocarbon oils.15 A multilinear
regression based on the σ-moments calculated by the
conductor-like screening model for real solvents (COSMO-
RS) approach16,17 was applied to polar hydrocarbons and
aprotic polar oils by Lukowicz et al.18,19 These works showed
that depending on the chemical functions of molecules, the
relevant descriptors differ and EACN estimations were less
satisfactory in the case of polar oils. Building a QSPR model
relies on finding the best relation between a group of
descriptors and a target property. Those models require the
construction of a reliable database, consisting of entry/output
pairs where entries are molecular descriptors and outputs are
the target properties. Numerous predictive methods, based on
linear and nonlinear approaches, have been applied to a
diversity of physical and chemical properties.20 The linear
methods, such as MLR, principal component regression, and
partial least-squares regression, are often used. However, non-
linear models can be adapted to translate more complex
relations between descriptors and the predicted property,
making them more efficient predictors in some cases.20−22

Rather than using methods that select descriptors from a large
pull of automatically generated variables,21 we have chosen to
start with descriptors that have a physical meaning, such as σ-
moments (computed with COSMOtherm) and 2D structures
of molecules used as descriptors for graph machines (GM).23

Already, a variety of chemical and physicochemical properties
such as boiling point of halogenated hydrocarbons,24 surface
tension,25 viscosity,26 flash point, cetane number of fuels,27

bioactivity of drugs,24,28 and other thermodynamic proper-
ties29−31 can be predicted accurately with GM and neural
networks (NN) inputted with 2D-structures and σ-moments,
respectively. Both these theoretical tools are non-linear models
that learn a pathway from input values to a resulting output.
For NNs, that are basically standard multi-layer perceptrons
(MLPs), the inputs are either measured or computed from
molecular simulations, while for GMs, the inputs are the 2D
molecular structures entered as their SMILES (simplified
molecular input line entry specification) codes.

In this work, we report on two approaches for predicting the
EACN of functionalized oils using NN and GM. To that goal,
a set of 111 molecules with a reliable experimental EACN was

Figure 1. Determination of the EACN of an oil from the fish plot of the C10E4/oil/water-T system (a). The temperature of the fish-tail point
indicated in red is reported to the calibration straight line obtained with C10E4/n-alkanes/water-T systems (b).
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gathered either from literature or from our own data-
base.11,15,18,19,32−34 A GM regression based solely on the
readily accessible molecular SMILES codes and a NN
regression using as inputs COSMO-RS-computed σ-moments
are designed for the 111 molecules. After a selection step of the
optimal model in each case, predictions are performed on a
test set of 10 cosmetic or perfumery molecules for which
experimental EACNs have been determined. The respective
reliability of the two models is finally evaluated by predicting
the EACN of compounds belonging to nine homologous
series.

2. MATERIALS AND METHODS
2.1. Database Construction. A set of 121 compounds

with reliable EACN values either extracted from literature or
determined experimentally in our laboratory was assembled.
These averaged EACN values are reported in Table S1 of the
Supporting Information. The whole set includes n-alkanes,
esters, ethers, ketones, alkenes, alkynes, cyclic hydrocarbons,
aromatics, branched hydrocarbons, nitriles, chloroalkanes, and
consequently compounds containing carbon, hydrogen, oxy-
gen, nitrogen, and chloride atoms. In addition to the
commercially available series which are mainly linear
compounds, the data set contains molecules of varying
complexity, which are characterized by their structural features,
that is, the presence of a double bond (alkene), ring,
branching, and functional group. For training and testing
purposes, this set was divided into a training set of 111
compounds and a test set of 10 compounds, including five
cosmetic-type oils and five perfume-type oils. Among the five
cosmetic oils, three compounds (hemisqualane, dioctylether,
and isopropyl myristate) were already members of the test sets
of our previous papers.25,26 Isododecane, a petroleum-based
cosmetic, has recently been synthetized under environmentally
friendly conditions, becoming thus an important molecule for
cosmetic formulators and manufacturers. Finally, octylocta-
noate was selected because it is the only ester with a functional
group in the middle of its carbon skeleton. As for the five
fragrance molecules, they were chosen because they have
several structural characteristics: (i) one or two cycles, double
bonds, and branching (limonene and caryophyllene), (ii)
double bonds, branching, and an ester group (linalyl acetate),
and (iii) a cycle, one or two double bonds, branching, and an
ether or ketone function (rose oxide and β-ionone). In
addition, the EACN values of these 10 compounds, which have
been determined in our group to have consistent values, are
fairly well distributed over the range of property values (−4 to
20). The distributions of the structural features present in both
data sets are displayed in Figure 2, indicating clearly the
challenging complexity of the test set molecules.
2.2. EACN Experimental Determination. 2.2.1. Chem-

icals. Oils for which EACN values were measured in this work
are presented in Table 1 and were used as such. Pure
tetraethyleneglycol monodecyl ether (C10E4) was synthesized
according to a method described elsewhere.35,36 Its purity was
assessed by GC−MS analysis (>99%) and by comparing its
cloud point temperature at 2.6 wt % (20.4 vs 20.6 °C) with the
reference value.37 Tetraethyleneglycol monohexyl ether (C6E4)
was synthetized using an analogous method to C10E4, and its
cloud point temperature (66.2 °C at 16.4 wt %) was compared
to the reference value (66.1 °C at 16.4 wt %).38

2.2.2. Phase Diagrams. In order to enrich the EACN values
database, experimental phase diagrams were built, in particular

in the case of branched alkanes that were under-represented in
the literature data. The experimental EACN value was
determined by establishing the phase behavior of 50 ± 0.2
wt % water/oil mixtures at different C10E4 or C6E4
concentrations as a function of temperature. The Winsor
systems were determined by visual observation.39 The most
volatile oil samples (2-methylpentane, 3-methylpentane, and
2,3-dimethylbutane) were weighed in glass tubes, placed in
liquid nitrogen, and then sealed with a flame. Other samples
were prepared in glass tubes closed by screw caps. Samples
were first shaken gently several times and left in a
thermoregulated bath at T ± 0.1 °C until equilibration. The
point (C*; T*) corresponding to the intersection of the
Winsor III and the Winsor IV phases was used to determine
the oil’s EACN: its T* value was reported on the T* versus
ACN reference straight line for linear alkanes using either
C10E4 or C6E4 as the surfactant.11 The fish diagram of
hemisqualane is given as an example in Figure 3a. The fish
diagram lower concentration limit was determined by
extrapolation of Winsor III phase relative volume as described
by Burauer et al.40 Other experimentally determined (C*; T*)
points using C10E4 are represented in Figure 3b. Fish diagrams
of dipropylether and diisopropyl ether determined with C6E4
as a surfactant are available in Figures S1 and S2 of the
Supporting Information.

Figure 2. Distribution of common structural features (in percent) of
molecules in the training and test sets of the EACN database.

Table 1. Oils for Which EACN Values Were Measured in
This Work, Commercial Name, Supplier, and Purity

compound supplier purity

isoamyl laurate, JOLEE 7750 Oleon 100%
hemisqualane, Neossance Amyris >95%
isohexadecane, 2,2,4,4,6,8-heptamethylnonane Sigma-Aldrich 98%
pristane, 2,6,10,14-tetramethylpentadecane TCI >95%
isododecane, 2,2,4,6,6-pentamethylheptane TCI >98%
2-methylpentane Sigma-Aldrich >99%
3-methylpentane Sigma-Aldrich >99%
2,3-dimethylbutane Sigma-Aldrich 98%
isooctane, 2,2,4-trimethylpentane Sigma-Aldrich >99%
dipropyl ether Sigma-Aldrich >99%
diisopropyl ether Sigma-Aldrich >98.5%

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c04592
ACS Omega 2022, 7, 38869−38881

38871

https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c04592/suppl_file/ao2c04592_si_002.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c04592/suppl_file/ao2c04592_si_002.pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c04592?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c04592?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c04592?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c04592?fig=fig2&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c04592?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


2.3. COSMO-RS σ-Moment Calculation. COSMO-RS is
a first-principles theoretical model based on a combination of
quantum chemistry and statistical thermodynamics that serves
to estimate, without any prior experience, a large number of
chemical properties.17,41 Due to the presence of polar covalent
bonds, molecules carry a surface charge density σ on its so-
called “σ-surface”, which corresponds to the slightly inflated
van der Waals surface. The “σ-profile” pX(σ) of a molecule X is
the curve obtained by smoothing the histogram of surface
portions grouped by charge density in the interval [σ − dσ/2, σ
+ dσ/2].16 Examples in the case of β-ionone and isopropyl
myristate are represented in Figure 4. Using the COSMO-conf
software (version 4.3), the lower energy conformations in the
bulk liquid state are calculated for all molecules. These
conformations are then used as inputs in the COSMOtherm
software (version 19.0.4), allowing for the calculation of the σ-
surface, σ-potential, and σ-moments. Klamt17 has shown that
any partition coefficient K can be very well expressed as a
Taylor-like development of σ-moments as defined by eq 1. It is
estimated that a development up to m equal to six σ-moments
is sufficient to satisfactorily express the partition coefficient K
according to eq 1.

= + +
=

RT K c M c M c Mln
i 0

m

i iacc acc
X

don don
X X

(1)

The σ-moments Mi
X are calculated from the σ-profile pX(σ)

of the studied compound X according to eqs 2−4.

=
+

+
M p ( )( ) dacc

X X
HB

HB (2)

=M p ( )( ) ddon
X X

HB
HB

(3)

=
+

M p ( ) di
iX X

(4)

The first σ-moments have a simple physical meaning: the
zero-order σ-moment M0

X is the surface area of the molecule,
expressed in Å2. The first-order one M1

X is the polarization
charge of this surface, expressed in e. For uncharged molecules,
this moment is equal to zero. The second-order σ-moment M2

X,
expressed in e2·Å−2, is the polarity of the molecule.42 The
third-order M3

X represents the asymmetry of the σ-profile
pX(σ). The other σ-moments up to M6

X have no particular

Figure 3. (a) Experimental fish plot of the C10E4/hemisqualane/water-T system at a water/oil ratio equal to 1 (w/w) and (b) partial fish plot and
fish tail points (C*; T*) determined with C10E4 for pristane (2,6,10,14-tetramethylpentadecane), isohexadecane (2,2,4,4,6,6,8-
heptamethylnonane), isododecane (2,2,4,6,6-pentamethylheptane), isooctane (2,2,4-trimethylpentane), isoamyl laurate (3-methylbutyl
dodecanoate), and 2-methylpentane. Fish tail points (C*; T*) for 3-methylpentane and 2,3-dimethylbutane are represented by cross-marks for
clarity.

Figure 4. σ-Profiles and σ-surfaces of β-ionone (in blue) and isopropyl myristate (in purple). The color gradient corresponds to the surface charge
density σ.
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physical meanings. Finally, Macc
X and Mdon

X , expressed in e (unit
equal to the charge of one electron), are the “hydrogen-
bonding” σ-moments representing the ability of the molecule
to interact with hydrogen-bond acceptors and donors,
respectively. Their value is non-zero when the σ-profile
outranges the [−σHB, +σHB] interval, where σHB, the hydro-
gen-bond threshold, is equal to 0.01 e·Å−2, as shown in Figure
4.

Neither β-ionone nor isopropyl myristate exhibit Lewis
acidity corresponding to the hydrogen-bond donor region.
However, both of them have a Lewis basicity with non-zero-
value σ-profile in the hydrogen-bond acceptor region. This is
due to the presence of the ester and carbonyl functions
inducing locally electron-rich surface areas (in red in both
molecules according the color scale in Figure 4). Finally, the
central part of the σ-profile shows higher hydrophobicity in the
case of isopropyl myristate than for β-ionone, which is in
accordance with its longer alkyl moiety.
2.4. GM and NN Model Selection. As briefly stated in the

introduction, GM are regression or classification models that
estimate a property directly from the topological information
provided by their SMILES codes. In these models, molecules
are described as directed acyclic graphs derived from their 2D
structures and the parameterized functions that compute the
estimate of the property of interest reflect the molecular
structures of the compounds.28,43 As usual in regression or
classification models, GM parameters are computed by
learning from examples present in an experimental value
database.28 Basically, NN models are multiple non-linear
regressions that estimate an output value of a property of
interest from some input descriptors values, hereafter three σ-
moments selected from a pull of eight σ-moments, all
computed with COSMO-RS according to a procedure
described in Section 2.3. [A selection of the σ-moments was
performed with Metagen, a homemade software package
written in Python. Feature selection by the random probe
method showed that for our data, M0

X, M2
X, and M3

X are most
relevant for EACN estimation; n was also selected as relevant
when added to the pull of σ-moment descriptors.]44 Both NN
and GM models are built from MLPs that contain a single
hidden layer of neurons. The complexity of the models is
consequently dependent on the number of neurons of that
layer, and along with this, on the number of parameters of the

models. Since, for a given number of neurons in the MLPs, NN
and GM models have a different number of parameters, the
latter variable will be preferred as a complexity equivalent in
the model complexity selection (Section 3.2).

The selection of a model is a key step in machine learning
model design: it consists in finding the model complexity,
given the available data for designing it, that will result in the
best generalization. To that end, with the 111-molecule set
available, trainings are carried out with an increasing number of
MLP hidden neurons. The ability of both models to account
for the training data is monitored with the root mean square
training error (RMSTE) that is computed as follows

=
=

1
111

RMSTE (EACN EACN )
i 1

111
i i 2
exp . est.

(5)

where EACNexp.
i is the EACN value determined experimentally

for molecule i, and EACNest.
i is the EACN value estimated by

the model for molecule i at the end of the training.
The estimation of the generalization error for model

selection is usually performed by two methods: the
computation of the leave-one-out (LOO) score and the
computation of the virtual LOO (VLOO) score. The
computation of the LOO score was chosen for the
determination of the optimal complexity, since the VLOO
score, that is a first order approximation of the LOO score, is
less accurate for small size data sets.26,45 At the end of the
LOO process, the LOO score is computed as

=
=

1
111

LOO score (EACN EACN )
i 1

111
i i 2
exp . pred.

(6)

where EACNexp.
i is the EACN value determined experimentally

for molecule i, and EACNpred.
i is the average EACN prediction

value computed for the left out molecule i with 50 models
having different initialization parameters. The abovementioned
equation is the same as eq 5 defining the RMSTE, except that
now a true prediction is performed for every molecule, since
the molecule i does not belong to the training set. The LOO
computation is repeated five times for each complexity of the
NN and GM based models, so that the average results are
presented.

Figure 5. Encoding hexyl octanoate and ethyl dodecanoate into directed graphs: (a) directed graphs with root nodes in red; the root node position
computed automatically for hexyl octanoate is colored in green and the path between the functional atom node and the root node in pink, (b)
SMILES codes with the expected position of the root nodes indicated in red and (c) 2D formulas with expected positions for the root nodes (red
arrows). The atom types C and O added on the directed graphs correspond to node labels that are inputs of the parameterized function
implemented at each node of the graph to build the GM.
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A few difficulties have been met with the first modeling
experiments that have been addressed as follows. With the σ-
moment-based NN models, a large EACN deviation was
observed specifically for the 15 molecules of the n-alkane
family, regardless of the complexity of the MLPs used. We
found that adding the number of carbon atoms (n) for every
molecule as a fourth descriptor corrected this problem.
Similarly, an important deviation from the experimental value
was exclusively observed for the hexyl octanoate EACN
estimation with the GM-based models. A thorough analysis of
the GM construction for this molecule indicated that it was not
consistent with the construction of the other linear ester GMs
(e.g., the ethyl esters). The input code for ethyl hexanoate was
particularized so that the constructions were uniform for all
esters. This modification is explained in Figure 5 where the
directed graphs for hexyl octanoate and ethyl dodecanoate are
shown (a). These graphs, which are encoded from their
SMILES codes (b), are isomorph to the 2D formula also
represented (c). Without modification of the hexyl octanoate
SMILES code, the central node of the resulting graph, also
called root node, would have been located on the green node.
Thanks to the special bracketed tag in the hexyl octanoate
SMILES code, the graph red root nodes have now a consistent
position in both graphs: the root nodes are equally connected
to nodes with a carbon type label and are at the same distance
of the functional node, which is the one connected to the
nodes with an oxygen-type label. The position of the root node
is important since it corresponds to the GM (not represented)
output neuron that computes the estimated EACN value. As a
result, the estimation of the EACN was much efficient for the
hexyl octanoate compound.

We did not meet such a particular case with our published
models designed for surface tension and viscosity estima-
tions.25,26 This is probably because we used a larger training set
counting many esters of various sizes and positions for the
functional group. For this work, we could only build a data set
of moderate size, and among the dozen of linear esters that
have an alkyl chain of 10 carbon atoms or more, hexyl
octanoate is the unique compound of similar size in the

training set to have a functional group in the middle of its
carbon skeleton. To illustrate this exception, a representation
of the GM can be computed with the demo software as
detailed in the Supporting Information.

3. RESULTS AND DISCUSSION
The EACN of an oil quantitatively expresses its hydrophobicity
and corresponds to the related but obsolete concept of
“required HLB” of oils introduced by Griffin in 1949.2,46 The
more hydrophobic the oil, the higher its EACN. In particular,
for the n-alkane series, the EACN is, by definition, equal to the
carbon number of the alkane and is denoted ACN. Conversely,
the more polar the oil, the lower its EACN and the EACN can
even be negative for short oils bearing a polar function such as
a ketone or a nitrile.
3.1. Theoretical Versus Experimental EACNs. In

colloidal physical chemistry, the EACN value of an oil
expresses its ability to penetrate the interfacial film of SOW
systems and to modify its spontaneous curvature.47−49 In the
case where the surfactant is a polyethoxylated fatty alcohol
CiEj, some molecules of oil penetrate the interfacial film
according to their affinity for CiEj molecules. In particular,
when the oil has a polar function, its affinity for the film is
stronger than apolar oils and its EACN is much lower than n,
its number of carbon atoms. Indeed, Figure 6 illustrates the
identical Winsor phase behavior of octyl octanoate (n = 16)
and n-octane (n = 8), which is the linear alkane having an ACN
equal to the EACN of the ester.

The EACN concept is of interest only if the values assigned
to oils do not depend on the nature of the CiEj surfactant used
for its measurement. This key issue has been checked by
Bouton et al. who showed that the EACN values of 26 terpenes
and non-linear (branched, unsaturated, cyclic) hydrocarbons
were identical within 0.3 unit regardless of the surfactant used,
namely, C6E4, C8E4, or C10E4.15 However, for very polar oils,
two major problems decrease the accuracy of EACN
measurements. The first one stems from the fact that for oils
having an EACN lower than 6, the calibration curve
established with n-alkanes must be extrapolated to the dotted

Figure 6. Effect of oil penetration on the spontaneous curvature of the interfacial film (top) and C10E4/oil/water [WOR = 1 (v/v)] microemulsion
systems equilibrated at 25.0 °C yielding Winsor II, Winsor III, and Winsor I microemulsions (bottom). Systems with n-alkanes contain 3% C10E4,
and the one with octyl octanoate contains 7% C10E4.
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parts of the regression straight line (see Figure 1b).
Accordingly, the lower the EACN, the greater the uncertainty
over its estimated value. The second problem arises from the
monomeric solubility of CiEj surfactants in the oil phase which
increases the apparent polarity of the oil. As a result, the
EACNs measured with short CiEj such as C6E4 tend to be
lower than the EACNs measured with a long CiEj whose
monomeric concentration in the oil phase is significantly lower.
This issue is particularly acute when the oils are very polar and
the CiEj is very short. We encountered this difficulty while
seeking to model the EACN of diisopropyl ether, for which we
had previously assigned an EACN equal to 2.212 on the basis of
the fish diagram determined by Wormuth and Kaler with the
C12E6/diisopropyl ether/water system.50 According to our very
first models (GM and NN), the EACN of this oil appeared as
an outlier. We therefore measured the EACN of this ether
again using the same amphiphile (C6E4) that was used to
measure the EACNs of most other highly polar oils.34 The new
value of the EACN thus determined (0.6, see Supporting
Information) is, as expected, significantly lower than the
previous value and perfectly consistent with the EACNs of
other very polar oils, as they were determined with the same
surfactant (C6E4). This revised EACN value has therefore been
used to fit our GM and NN models.
3.2. GM and NN Complexity Selection. Figure 7 which

displays the LOO scores and RMSTE versus the number of

parameters of the MLPs, that is the complexity, for the GM
and NN models, indicates that in both cases (i) the data are
correctly learned since the RMSTE are decreasing monoto-
nously as the complexity increases and (ii) the LOO scores
decrease, go through a minimum, and start increasing. The NN
LOO score is clearly minimum (0.8 EACN unit) for a number
of parameters equal to 37, that is, six hidden neurons. On the
contrary, very close GM LOO score values equal to 0.8 and 0.9

EACN unit are computed for 45 (5N) and 58 (6N)
parameters, respectively. In such a situation, the usual practice
is to select the model with the lower complexity.30 Therefore,
GMs with five hidden neurons (45 parameters) and NNs with
six hidden neurons (37 parameters) were kept for later testing.

An alternative to the LOO score computation is the leave-
many-out (LMO) score computation, for which several
molecules (e.g., k) are removed from the training set instead
of one. Since the data set is small, it is advisable to train as
many examples as possible to avoid overfitting. Indeed, when
the number of parameters of the trained model exceeds half the
number of examples in the training set, overfitting occurs and
prediction performance starts deteriorating (above 60
parameters in Figure 7). With LOO, more examples are
trained than with LMO (110 rather than 111−k), which
reduces the risk of overfitting for a given number of
parameters. Furthermore, with LOO, the maximum amount
of information is used for training in the case of each removed
example, so that the highest possible accuracy for its predicted
value can be expected. Therefore, LOO was preferred to LMO,
even if it requires a little more computation time.

For comparison purposes, the results of the EACN LOO
estimations, corresponding to the LOO computation (out of
five) that gives the best LOO score (0.8 EACN unit for GM
and NN) for the molecule training set versus experimental
EACN, are displayed in Figure 8 for the two preferred models.

Both models give similar results at a first glance (averaged
cross validation R2 are very close), in particular for the
homologous series belonging to the chemical families indicated
in the legends of Figure 8a,b, though slightly better estimations
could be credited to the GM-based model for these 10 series.
On the contrary, the other compounds, most of them
possessing several structural features, have dots that lay closer
to the bisector line for the NN-based model, indicating better
results for the NN estimator with these compounds.

It is worth noting that with the NN-6N model, the EACN
value of 2,6,10-trimethylundeca-2,6-diene is under-estimated
by the LOO calculations (Figure 8b). A possible explanation
for this significant discrepancy could result from the fact that
the two double bonds of 2,6,10-trimethylundeca-2,6-diene are
in position 2,6 and not at the end of the chain. Indeed, the NN
“learns” the effect of double bonds on the basis of fairly rigid
terpenes and a series of 1-alkenes whose double bonds are at
the end of the chain. On average, each double bond decreases
the EACN by 2.5−4.5 units and each branching decreases the
EACN by 0.3−0.8 units. It is therefore logical that the EACN
predicted by the NNs for this molecule with 14 carbons, 2
double bonds, and 3 branches (see Figure 8) is equal to 5 ±
1.5 units. However, the two double bonds of 2,6,10-
trimethylundeca-2,6-diene are less accessible than those of 1-
alkenes which tend to be located close to the polar zone of the
interfacial film made up of C10E4. As a result, instead of
decreasing the EACN by 9 units as expected, the
experimentally observed decrease with respect to the
corresponding n-alkane (tetradecane) is only 3.7 units.

This is probably due to the fact that double bonds in the
terminal or exocyclic position have a much greater effect than
endocyclic bonds. Indeed, a comparison of the experimental
EACNs of citronellyl acetate (−0.2) and geranyl acetate
(−0.6), two molecules that differ only in a central double
bond, indicates a decrease of only 0.4 EACN units for the
central bond of linalyl acetate instead of the expected units 2.5
(or more). Thus, the additivity method used to evaluate the

Figure 7. RMSTE value of the model (out of 1000) having the
smallest RMSTE for the GM-based model (orange empty diamonds)
and NN-based model (blue circles) for the 111 molecules of the
training set and means of the LOO score values (GM orange
diamonds, NN blue-filled circles) computed for five different
parameter initializations for the 111 molecules of the training set vs
number of parameters. The error bars for the LOO scores are the
standard deviations computed over the five LOO score values.
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decreasing effects of several chemical features in a molecule
relative to the EACN of the alkane with the same number of
carbon atoms is probably inoperative, in particular for 2,6,10-
trimethylundeca-2,6-diene.

As regards the GM-5N model in Figure 8a, no dot seems to
be excessively far from the bisector, meaning that every EACN
value of the training set is correctly estimated. In comparison
with the NN model, the GM estimated EACN value of 2,6,10-
trimethylundeca-2,6-diene is satisfying, which tends to confirm
that the COSMO-RS descriptors used for the NN estimation
fail to describe this compound’s behavior.
3.3. Comparison of the Two Methods on the 10-

Molecule Set. Hydrophobicity can be seen as the difficulty
for the surfactant molecules to penetrate in the oil phase and is
related to intermolecular forces between oil molecules and in
the interfacial film between oil and surfactant molecules. In
linear alkanes, London interactions between chains induce
cohesive interchain interactions and hydrophobicity. Inter-
molecule cohesion is reduced in cyclic, branched, and
unsaturated molecules due to the steric constraint. In polar
functionalized oil molecules, Keesom and Debye interactions
occur, resulting in similarities between oil and surfactant
molecules. Penetrating the oil interfacial film is then made
easier for a surfactant molecule. Both phenomena, namely, a
decrease in cohesive energy in the bulk oil due to steric
constraint and an increase of favorable interactions between
the surfactant and oil molecules contribute to reducing the
hydrophobicity of an oil, illustrated here by its EACN. In
complex molecules bearing several types of topological features
and chemical functions, predicting the EACN is not trivial and
the models presented should allow for considering the
influence of every factor.

To assess the estimation accuracies of the NN-based and the
GM-based models of previously selected complexities,
computation of the EACN for the 10 molecules of the test
set are made using the VLOO methodology previously
described.26 Briefly, for the GM and NN models selected in
Section 3.2, 10 runs of 250 trainings each were performed with
different parameter initializations. The VLOO score of each
model (out of 250) was computed, and the mean of the 25

smallest VLOO scores of each run was computed. The run
(out of ten) with the smallest mean VLOO score was selected.
The 25 models of that sequence having the smallest VLOO
scores estimated the EACN of the 10 test molecules, and the
mean of those 25 estimations was computed. These final
estimations for both models are plotted versus the
experimental values in Figure 9. The proximity of the dots
with the bisector line shows that these estimations are close to
the experimental values. Only the isododecane (2,2,4,6,6-
pentamethylheptane) blue data point is far from the bisector
line. These good results are confirmed by the displayed
determination coefficients that are equal to 0.992 and 0.986 for
the GM-5N-based and NN-6N-based models, respectively.

Figure 8. Scatter plots of LOO EACN estimations computed by GM from SMILES with five hidden neurons (a) and by NNs with six hidden
neurons using M0

X, M2
X, M3

X, and n as descriptors (b) for the 111 compounds of the training set vs experimental values of the EACN. The bisector
and the regression lines are represented in red and black, respectively.

Figure 9. Scatter plots of EACN estimations computed by the graph-
machine-based model with five hidden neurons (GM-5N, orange
diamonds) and the neural-network-based model with six hidden
neurons (NN-6N, blue diamonds) vs experimental EACN values for
the 10 molecules of the test set. The bisector line is represented in
red, and the error bars are the confidence intervals computed over the
25 selected models for the 10 molecules of the test set.
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The estimations errors listed in Table 2 for the 10 molecules
are indeed smaller or equal to 0.8 EACN unit but for the
isododecane that exhibits a fairly large error with the NN
model. The computed test root mean square error values (test
RMSE, bottom row) with an eq 5-like formula, are equal to 0.5
and 0.7 EACN unit, confirming the efficiency of both models.
Moreover, the estimations of the two predictors are in good
agreement since the maximum of the error deviation between
the two computations is equal to 0.8 EACN unit for 8
molecules out of 10. Even for six of them, the estimation error
difference is less or equal to 0.3 EACN unit. Those results were
not given for granted, especially for complex molecules that

have multiple features (e.g., limonene or rose oxide). Finally, it
should be noted that to get such convincing results with the
GM-based model, the SMILES code used to generate the octyl
octanoate GM was also modified as explained for hexyl
octanoate in Section 2.4. Without taking this precaution, the
prediction for octyl octanoate was clearly out of range. The
estimation values for the 10-molecule test set are also reported
in the Supporting Information (Table S1, columns 10 and 11).
Therefore, the two selected models can be used in tandem to
predict the EACN of compounds in homologous series, while
keeping in mind that the EACN for branched molecules will be
probably under-estimated.

Table 2. Difference between Experimental and Estimated EACNs for the Test Set of 10 Molecules

aDifferences between experimental and estimated EACNs using the neural-network-based model. bDifferences between experimental and estimated
EACNs using graph-machine-based models. cRoot-mean-square test error (in EACN unit) for the 10 molecules of the test.

Figure 10. Evolution of experimental and estimated EACN with an increasing number of carbon atoms for homologous series of molecules with
various chemical functions: (a) alk-1-enes, 1-chloroalkanes, alk-1-ynes, and n-alkan-2-ones and (b) n-alkylcyclohexanes, central ethers, ethyl
alkanoates, and n-alkane nitriles. For clarity, the n-alkylbenzene series is not represented (superposition with alk-1-yne or ester series) and half of
the predicted values are displayed. The dotted and dashed lines indicate the experimental and NN fits, respectively. Triangles (▲), diamonds (◇),
and circles (○) are markers for experimental, NN-predicted, and GM-predicted values, respectively.
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3.4. EACN Prediction of Homologous Series. One of
the potential applications of the previously developed models
is to predict the EACN for homologous series of oils with alkyl
chains of increasing size. Indeed, the comparison of
homologous oils having the same number of carbons but
carrying various chemical functions makes it possible to deduce
the effect of a given function on the EACN of oils.
Furthermore, for practical applications, C8 to C15 phenols,51

terpenes,15,52 and terpenoids19 are particularly frequent in
perfumery, while C12 to C18 alkanes, esters, and ethers are
widely used as emollients to prepare cosmetic emulsions.53 It is
therefore crucial to reliably predict the EACN of oils with a
reduced number of carbons (≤20).

In a previous work, we empirically observed that the EACN
of several series of homologous oil increases approximately
linearly with the number of carbons.19 We therefore tested the
ability of the GM and NN models to predict the evolution of
EACNs of homologous oils. The homologous set designed to
explore the effectiveness of the two models is constructed as
follows. The picked homologous series are the nine chemical
families already mentioned in the Figure 8 scatter plot legends,
from cyclohexanes to alkan-2-ones. Indeed, all the molecules
belonging to those families have a n-alkyl chain backbone of
increasing size that contain one of the following: (i) one
terminal functional group (esters, ketones, and nitriles), (ii)
one central carbon substituted with an oxygen atom (ethers),
(iii) one terminal unsaturation (alkenes and alkynes), (iv) a
cycle in the terminal position (cyclohexanes and benzenes), or
(v) one terminal chain substitution with a chloride atom (1-
chloroalkanes). For all the series, the number of carbon atoms
per molecule n is varied from 6 to 18, so that all the series
contains 13 compounds each, and the whole set 117
compounds. Since 46 out of these belong de facto to the
111-molecule training set, they cannot be kept for prediction
testing. Instead, they will be used as benchmarks to assess the
accuracy of the model predictions for each series. The σ-
moments for the supplementary compounds of theses series
are calculated as described in Section 2.3. The data for the 117
compounds of the homologous series are available in Table S2
of the Supporting Information.

The scatter plots of the EACN predictions for the two
retained models and the experimental EACN versus n are
shown in Figure 10 for eight series. The alkylbenzene series
plot could not be represented due to an overlap with
datapoints from the alk-1-yne series or the ethyl alkanoate
series. This plot is shown, as well as those of the other series
with all points shown, in Figures S3 and S4 of the Supporting
Information.

As expected, the experimental linear fits (represented as
dotted lines) are good for all series. The goodness of fit is
further confirmed by the values of the experimental
determination coefficients reported in the third column of
Table 3, all superior to 0.99. In this last table, the computed
linear equations and determination coefficients for the
predicted fits are also given for the nine series. With these
data, the accuracy of the predictions can be analyzed by
comparing for all the series the proximity of the predicted
points to the dotted lines (Figure 10) and the slopes of the
GM and NN fits with the slope of the experimental fits (Table
3, columns 2, 4, and 6).

For the GM model, it can be seen in Figure 10 that the
predictions match the experimental results quite well for seven
of the nine series since most of the circles are located on or
near the experimental dotted lines. Furthermore, with the
exception of n-alkylbenzenes and nitriles, the slopes of the fits
reported in columns 2 and 4 of Table 3 are very close.
Regarding the 1-nitrile series, it turns out that the GM and NN
models converge toward the same predictions, with almost
identical slopes for their fitting equations (penultimate line of
Table 3). Hence, we can postulate that the two model
deviations from the experimental trend could be due to some
experimental error. Since the experimental fit is computed with
only three successive values of n, a small error in a fish
temperature determination could induce, as already men-
tioned, a deviation of up to 0.3 EACN unit. Thus, such an
increase in the EACN for the dodecanenitrile value (0.3)
would be sufficient to make the three linear fits match. Indeed,
this modification would give a modified equation equal to
0.64n−6.9 for the dotted experimental line, almost identical to
the two model equations. This increased experimental value for
dodecanenitrile (0.7 instead of 0.4) would also be consistent
with a proportional spacing for successive EACN values for
nitriles. Finally, the slightly larger slope of the alkylbenzene
GM fit compared to the experimental fit is mainly due to an
underestimation of the EACN by the GM model for
compounds with n lower than 11 (see Figure S4 of the
Supporting Information). This behavior which has also been
observed for the LOO EACN estimations of p-xylene and p-
cymene (n equal to 8 and 10; entries 81 and 83 in Table S1 of
the Supporting Information) can be explained by the GM
constructions which are different in the benzenic series
depending on the length of the alkyl chain. For n less than
or equal to 12, the root node of the GMs is located on the
benzene ring, while for larger n, it is positioned on the alkyl
chain. This can be shown by fitting with different lines the
GM-predicted points for n less than or equal to 12 and n

Table 3. Family Linear Fits for Experimental and Predicted EACN Versus Number of Carbon Atoms n

family exp. fita exp. R2 GM fitb GM R2 NN fitc NN R2 EACNexp(10)d

n-alkylcyclohexanes 1.28n−5.7 (7) 1 1.25n−5.6 (6) 1 1.19n−4.5 1 7.3
alk-1-enes 1.05n−4.6 (4) 1 1.06n−4.7 (9) 1 1.16n−5.6 1 6.4
central ethers 0.92n−4.9 (5) 0.99 0.89n−4.5 (8) 1 0.98n−5.5 1 4.9
1-chloroalkanes 1.07n−7.1 (4) 1 1.03n−6.6 (9) 1 0.84n−4.2 0.99 3.9
ethyl n-alkanoates 0.78n−7.2 (4) 1 0.77n−7.2 (9) 0.99 1.13n−11.8 1 0.8
alk-1-ynes 0.95n−9.4 (4) 1 0.93n−9.1 (9) 1 0.70n−6.6 0.98 0.6
n-alkylbenzenes 0.93n−8.9 (4) 1 1.05n−10.6 (9) 0.99 0.98n−9.7 0.99 0.1
nitriles 0.53n−5.9 (3) 0.99 0.62n−6.9 (10) 0.98 0.64n−6.9 1 −0.9
n-alkan-2-ones 0.70n−9.1 (4) 1 0.66n−8.5 (9) 0.99 1.11n−11.8 0.98 −2.1

aIn brackets, number of points used for the experimental fits. bIn brackets, number of points used for the GM fits. cNumber of points used is the
same as for the GM fits. dEACNexp calculated with n = 10.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c04592
ACS Omega 2022, 7, 38869−38881

38878

https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c04592/suppl_file/ao2c04592_si_002.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c04592/suppl_file/ao2c04592_si_002.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c04592/suppl_file/ao2c04592_si_002.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c04592/suppl_file/ao2c04592_si_002.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c04592/suppl_file/ao2c04592_si_002.pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c04592?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


greater than 13, as this leads to a much better fit for the two
resulting lines (R2 equal to 1). Nevertheless, to obtain a
coherence in the construction of the GMs for the benzene
derivatives, it would be necessary to modify the SMILES codes
of several molecules of the training set, which is beyond the
scope of this work. We need also to point out that, as for the
nitrile series, a small correction in the experimental EACN
(0.3) for butylbenzene would result for the experimental fit in a
slope correction large enough to equal the GM slope fit. This
last remark indicates that for the nitrile and alkylbenzene series,
the predictions computed with the GM model are within the
experimental margin of error.

For the NN predictive model, the results are more mixed.
With four of the nine series, namely, n-alkylcyclohexanes,
ethers, nitriles, and n-alkylbenzenes, and admitting a small
measurement error for the nitrile series, the predictions are
satisfactory. On the contrary, for 1-alk-1-enes, 1-chloroalkanes,
alk-1-ynes, and ethyl n-alkylalkanoates, a significant deviation
from the dotted trend lines, up to 2 EACN unit, is observed for
the predicted points located in the extrapolated regions. A
larger difference in slope between the experimental and NN fits
is indeed reported in Table 3 (columns 2 and 6), so that
dashed lines for those series have been added in Figure 10 to
materialize this divergence between the two fits. Finally, the
largest deviation is computed for compounds of the alkan-2-
one series, for which n is greater than 12; the prediction is
becoming erroneous beyond tridecanone. No explanation has
yet been found for this discrepancy.

Overall, the predictions obtained with the two models are
rather concordant for all homologous series, the particular case
of ketones being put aside. As a result, both models can be
used to predict the EACN value for a new molecule belonging
to one of these series. While the GM model allows us to obtain
a result more quickly, since it is enough to use a SMILES code,
computing a prediction with both models allows us to
anticipate an incorrect GM construction if the predicted
results are very different.

As stated elsewhere,12 the oils that produce a higher
difference in EACN with respect to the linear alkanes with the
same n are those that have a higher affinity with the interfacial
film, and from the last column of Table 3, the decreasing order
is n-alkan-2-ones > 1-nitriles > alkylbenzenes > ethyl n-
alkanoates ≈ alk-1-ynes > 1-chloroalkanes > central ethers >
alk-1-enes > n-alkylcyclohexanes. Finally, we need to point out
that specific SMILES codes for some molecules, for example,
hex-1-yne or hexan-2-one, have been used, as explained for
hexyl octanoate ester, to get a consistency among the GM
constructions in the corresponding series. With these adjust-
ments, the GM predictions for most of the molecules in the
series are rather efficient. The construction adjustment of the
hexan-2-one GM is explained in the Supporting Information.

4. CONCLUSIONS
The experimental determination of an EACN value by the
traditional fish-tail method is a tedious and time-consuming
task.11 In this work, two machine-learning models were built to
estimate the EACN value of oils from their molecular
structure. On the basis of 111 experimental values of EACN,
estimations were performed either by nonlinear regression
(NN) from COSMO-RS σ-moments or by regression on
graphs (GM) derived from the SMILES codes of the
molecules. In each case, the selection of the appropriate
model was assessed by LOO score computation. The

effectiveness of the chosen NN-6N and GM-5N models was
tested on a set of 10 cosmetic and perfumery molecules. It was
found that both models yielded predictions with similar and
satisfactory accuracies (root-mean-square estimation errors
equal to 0.7 and 0.5, respectively). Molecular structures in the
test set were chosen on purpose as polyfunctional molecules,
for which the influence of each structural feature could not be
considered independently. Multilinear regressions were shown
to be efficient to predict the EACN value for monofunctional
molecules,18,19 but this work is the first one regarding EACN
prediction of complex polyfunctional ones. It was pointed out
that for homologous molecule series, the linear evolution of the
EACN with the increase of chain length is an appropriate
model and is well tackled by the GM predictor. However, the
NN model based on COSMO-RS σ-moments as descriptors
met some difficulties in estimating the evolution of EACN
values for the alkan-2-one series.

Overall, the GM model is the most convenient model since
it only needs SMILES codes as input values, whereas the NN
model requires COSMO-RS before EACN estimations. A
demonstration of the GM and NN computations, based on the
Docker free software technology (available on most operating
systems), is available for download (see the Supporting
Information). It is, for example, very easy and very fast (<0.5
s) to predict the EACN value of any liquid of moderate
molecular size (M < 350 Da) that contains C, H, or O atoms
using its SMILES code only.
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