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Comparison of DNA methylation profiles
associated with spontaneous preterm birth
in placenta and cord blood
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Abstract

Background: The etiology and mechanism of spontaneous preterm birth (sPTB) are still unclear. Accumulating
evidence has documented that various environmental exposure scenarios may cause maternal and fetal epigenetic
changes, which initiates the focus on whether epigenetics can contribute to the occurrence of sPTB. Therefore, we
conducted the current study to examine and compare the DNA methylation changes associated with sPTB in
placenta and cord blood.

Methods: This hospital-based case-control study was carried out at three Women and Children’s hospitals in South
China, where 32 spontaneous preterm births and 16 term births were recruited. Genome-wide DNA methylation
profiles of the placenta and cord blood from these subjects were measured using the Illumina HumanMethylation
EPIC BeadChip, and sPTB-associated differential methylated CpG sites were identified using limma regression model,
after controlling for major maternal and infant confounders. Further Gene Ontology analysis was performed with
PANTHER in order to assess different functional enrichment of the sPTB-associated genes in placenta and cord
blood.

Results: After controlling for potential confounding factors, one differentially methylated position (DMP) in placenta
and 31 DMPs in cord blood were found significantly associated with sPTB (Bonferroni corrected p < 0.05). The sPTB-
associated CpG sites in placenta were mapped to genes that showed higher enrichment on biological processes
including biological regulation, multicellular organismal process, and especially response to stimulus, while those in
cord blood were mapped to genes that had higher enrichment on biological processes concerning cellular process,
localization, and particularly metabolic process.

Conclusion: Findings of this study indicated that DNA methylation alteration in both placenta and cord blood are
associated with sPTB, yet the DNA methylation modification patterns may appear differently in placenta and cord
blood.
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Background
Preterm birth (PTB) is defined as birth with earlier than
37 weeks’ gestational age [1], it occurs in 11% of live births
[2], and 65–70% PTB happens spontaneously. PTB is con-
sidered as not only the leading cause of neonatal death [3],
but also the prominent risk factor for subsequent onset of
morbidities including infections in newborns [4], severe
neural system damages and various cognition impairments
in childhood [5], as well as hypertension, diabetes and cor-
onary heart disease in adulthood [6, 7].
The causes of PTB have been speculated with a series

of adverse maternal and environmental factors, namely
maternal active/passive smoking [8–10], mental stress
[11, 12], intrauterine infection [13], malnutrition [14, 15],
and environmental pollutants [11, 16, 17]. These accumu-
lating evidence have implied that PTB should be consid-
ered as a syndrome resulting from a complex combination
of various causes and pathological processes [18, 19].
Recently, expanding studies have focused on associations

between PTB and abnormal DNA methylation variation in
maternal tissues, placenta or cord blood. For instance,
DNA methylation changes of PTGES, PTGIS, PTGDR2,
PGR, and PTGER2 in maternal myometrium and cervical
swabs samples were found to be associated with PTB
[20, 21]. The promoter region of CYTIP and LINC00114
were found hypomethylated in preterm maternal peripheral
blood [22], but no significant DNA methylation changes in
maternal blood were identified in Parets’s study [23]. More-
over, DNA methylation changes of UCN [24], OXTR
[24, 25], RUNX3 [26] and VEGF [27] were observed in
PTB placenta. Regarding cord blood, Schroeder et al.
[28] found that DNA methylation variations of 39 genes
(including AVP, OXT, and CRHBP) were associated with
gestational age (GA). Fernando’s study [29] identified
1151 GA-related differentially methylated positions (DMPs)
in numerous genes in cord blood (including IGF2BP1,
OTOF, ATP2B2, NCOR2, PYCR2, and RARA). Parets et al.
[30] discovered 29 PTB-associated and 9637 GA-associated
DMPs in cord blood, and some of them (e.g., DNMT1,
DNMT3A, DNMT3B, and TET1) were related to methyla-
tion regulation.
Unfortunately, most of the previous studies only focused

on specific genes in one tissue (maternal tissue, placenta
or cord blood). Up to now, five studies were conducted
from a genome-wide perspective that used Illumina
450 K BeadChip or more advanced measurements [22,
23, 29–32], only Parets et al. and Hong et al. investigated
DNA methylation status in both maternal and cord blood
samples. Thus, there still lacks studies that could elaborate
varied DNA methylation alternation among different
tissues. Additionally, these previous studies were all con-
ducted among Caucasian or African American populations
but no Asian or Chinese populations, and some of them
did not exclude all the CpG sites that might be associated

with genetic variation among different races. Due to the
potential influence on DNA methylation of ethnicity
[33, 34], the existing studies may not provide results that
can be ideally extrapolated to the Chinese population.
Hence, we conducted a case-control study to investigate

the association of genome-wide DNA methylation profile
with spontaneous preterm birth (sPTB) in both placenta
and cord blood concurrently in a Chinese population and
to identify different DNA methylation alterations in these
two respective tissues.

Methods
Study design and participants
This is a hospital-based case-control study, and the par-
ticipants of this study were recruited from September
2009 to March 2011 at three Women and Children’s
Hospitals located in Shenzhen, Foshan, and Guangzhou
of Guangdong Province, China. A total of 48 singleton
natural-labored mother-infant pairs were enrolled in the
current study, consisting of 32 preterm birth newborns
with either low or normal birth weight and 16 term birth
(gestational age of 37–42 weeks) newborns with normal
birthweight. In this study, sPTB was defined as vaginally
delivered spontaneous preterm births with a gestational
age of 32–36 weeks, with or without premature rupture of
membranes (PPROM). Subjects of the case group were
randomly selected from all sPTB subjects with complete
information, and the controls were individually matched
with the 16 subjects with normal birthweight in the sPTB
case group for maternal age (± 5 years), history of preterm
birth and parity. Participants with the following charac-
teristics were excluded: 1) mothers were with any of the
following diseases: hypertension, diabetes, gestational
diabetes mellitus (GDM), hypertensive disorders during
pregnancy (HDP), hyper- or hypo- thyroidism, anemia
and tuberculosis; and 2) infants had malformations at
delivery or hereditary diseases (e.g. thalassemia, G6PD
deficiency).

Data collection
Maternal socio-demographic characteristics, medical and
reproductive history were collected via clinic interviews
after delivery, and pregnancy information (e.g., pregnancy
complications, offspring biometric measures at birth) were
extracted from medical records by trained study staff, the
questionnaire used in the interviews had been employed
in our previous works [35–37]. Details of delivery were
measured and recorded by midwives, including birth
weight (measured to the nearest 5 g), birth length, head
circumference, as well as placental diameters and thick-
ness. The last menstrual period (LMP) was self-reported
by mothers at their first prenatal care visit (at 8–10th
week of gestation) and was confirmed by early ultra-
sound assessment at the gestational age of less than 20
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full weeks. Whereas self-reported LMP was unavailable,
ultrasound estimated LMP based on the crown-rump
length in early pregnancy was used instead [38]. We
then calculated gestational age as the interval between
LMP and delivery.

Biological sample collection
A volume of 5 ml of umbilical venous blood was drawn
by midwives with EDTA tubes as soon as a newborn was
delivered. Immediately after the placenta was delivered,
1cm3 placenta tissue was collected without the mem-
brane from the middle points on the radius of maternal
side placenta (in order to avoid calcification points and
blood clots). The placenta sample was cleaned with cold
saline to remove blood in the placenta vessel. All of the
cord blood and placenta samples were stored at − 80 °C.

DNA methylation measurement and quality control
Cord blood DNA was extracted with TIANamp Genomic
DNA Kit (TIANGEN Biotech, Beijing, China). Purified
DNA was quantified and qualified using NanoDrop 2000
(Thermo Scientific™, San Jose, USA) and DNA gel electro-
phoresis (Major science, Saratoga, USA). Placenta tissue
DNA was extracted with DNeasy Blood & Tissue Kit
(QIAGEN, Valencia, USA). DNA extracted from cord
blood and placenta tissue were bisulfite-converted using
EZ DNA Methylation Kit (Zymo Research, Irvine, USA),
and then amplified, fragmented and hybridized on the
Infinium Methylation EPIC BeadChip (Illumina, San
Diego, USA) following the manufacturer’s protocols.
This latest version of methylation beadchip is able to
interrogate over 850,000 methylation sites quantitatively
across the genome at a single-nucleotide resolution, and it
covers over 90% of the contents on the traditional 450 K
BeadChip and additional 413,743 sites [39]. The samples
were randomly allocated across 12 EPIC array chips which
were scanned with Illumina iScan, and the original data
were read with the minfi package [40] in the R software
[41]. The funtooNorm package [42], which was capable of
processing data from multiple tissues, was applied to
calculate β-values [β =M/ (U +M), where M stood for
methylated bead and U stood for unmethylated bead) and
perform data normalization, as well as to correct back-
ground and dye-bias.
In this study, we excluded the following types of probes:

1) 5926 sites due to missing data; 2) 19,681 probes target-
ing sites on sex chromosome, 2932 non-CpG targeting
probes and another 43,255 probes with cross-hybridization
[39]; 3) 59 built-in explicit SNP probes, 9156 probes with
genetic variants overlapping targeted CpG sites, 323
probes with genetic variants overlapping single base exten-
sion sites for Infinium Type I probes, and 87,642 probes
with genetic variants overlapping the rest of the EPIC
probe [39]; 4) 69,551 probes with extreme mean methylation

level (mean β-value < 0.05 or > 0.95); and 5) 99,217 probes
from the placenta samples and 112,239 probes from the
cord blood samples due to low variation (β range < 0.05)
[43]. A final number of 551,326 placenta probes and
538,304 cord blood probes were included in the statistical
analysis. In addition, since all samples were randomly
allocated on 12 chips in the same batch, ComBat procedure
of the sva package [44] was employed to adjust for poten-
tial chip effect. With the fully processed dataset, the
log2 ratio of β-values was calculated and denoted as
M-values [M = log2β - log2 (1-β)), which was used in
statistical analyses along with β-values; meanwhile, β-values
was used for interpretation of the results.

Statistical analysis
Description of participants’ demographic and clinical
characteristics
Mean and standard deviation (SD) were used for con-
tinuous variables with normal distribution, and propor-
tions were used for categorical variables. Student’s t-test
and chi-squared test were used when appropriate to
compare the differences of demographic and clinical
characteristics between sPTB cases and term controls.

Estimation of cell type proportions of placenta and cord
blood
Due to lack of acknowledged reference panel, cell type
proportions of placenta were estimated with Reference-Free
Adjustment for Cell-Type composition (ReFACTor), which
was based on a variant of principal component analysis
[45]. Cord blood cell type proportions were estimated using
the 450 K reference panel by Bakulski et al. [46, 47] with an
adjusted approach [48].

Identification of differential methylated positions (DMPs)
associated with sPTB
Differential methylation analysis on sPTB and term birth
controls was performed using the limma package [49].
Bonferroni correction for multiple testing was further
applied, and a two-sided p-value less than 0.05 was
considered statistically significant. Linear models were
fitted to analyze the association of placenta and cord
blood methylation with sPTB, adjusting for potential
confounders including maternal age, newborn gender,
maternal education level, pre-pregnancy BMI, and when
appropriate, either the first 5 principal components ob-
tained from the ReFACTor function or the estimated
cell-type proportions (CD8 T cells, CD4 T cells, NK cells,
B cells, monocyte, and nucleated red blood cells).

Comparison of sPTB-associated CpG sites between placenta
and cord blood
First, partial correlation was performed to investigate if
DNA methylation level of the sPTB-associated CpG sites
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in placenta and cord blood were correlated, controlling
for sPTB status, maternal age, maternal education level,
maternal pre-pregnancy BMI and newborns’ gender.
Second, gene annotations of sPTB-associated CpG sites
in placenta and cord blood were performed basing on
the Infinium HumanMethylation EPIC manifest (version
1.0) and the UCSC annotation database [50]. For the
CpG sites enrolled in Gene Ontology (GO) analysis, we
set the thresholds to FDR < 0.05 with over 20% β-value
difference between sPTB and control for the cord blood,
and p-value < 1.0E-03 with over 20% β-value difference
between sPTB and control for the placenta. Then,
GO-biological process enrichment was performed with
PANTHER 12.0 [51] to interpret the function of genes
covering the sPTB-associated CpG sites, and to compare
the functional differences of aberrantly methylated genes
in placenta and cord blood.

Results
Subject description
The demographic and clinical characteristics of participants
are presented in Table 1. sPTB newborns had significantly
higher pre-pregnancy BMI in their mothers, and had sig-
nificantly lower weight, length and head circumference at
birth. Furthermore, no significant differences were observed
concerning maternal age, education level, alcohol use, pla-
centa surface and thickness, and newborn gender. None of
the mothers actively smoked cigarettes during pregnancy in
this study, and the proportion of passive smoking showed
no significant difference between sPTB and control.

DNA methylation associated with sPTB in placenta and
cord blood
Figure 1 shows the volcano plot of the association between
placenta and cord blood DNA methylation and sPTB. The
CpG sites in cord blood were more tended to be hypo-
methylated in the sPTB group (Fig. 1-b), and those in
placenta did not show significant tendency (Fig. 1-a).
After adjusting for maternal age, newborn gender,

maternal education level, pre-pregnancy BMI and first
five principal components obtained from the ReFACTor
function, the linear model found that 43,638 CpG sites in
placenta were associated with sPTB (p < 0.05). Only one
site (cg21093945) remained significant after Bonferroni
correction for multiple testing (p < 9.07 × 10− 8), which was
hypermethylated in sPTB placenta. (Table 2 and Fig. 2).
After adjusting for maternal age, newborn gender, ma-

ternal education level, pre-pregnancy BMI and estimated
cell-type proportions (CD8 T cells, CD4 T cells, NK
cells, B cells, monocyte and nucleated red blood cells),
the linear model identified that 72,711 CpG sites in cord
blood were associated with sPTB (p < 0.05), and 31 of
them remained significant after correcting for multiple
testing (p < 9.28 × 10− 8). Among these 31 sites, 20 were
hypermethylated and 11 were hypomethylated only in
the cord blood of sPTB cases. More details are presented
in Table 2 and Fig. 2. Furthermore, sensitivity analysis
was performed for both placenta and cord blood models
(Additional file 1: Figure S1).
Basing on the Infinium HumanMethylation EPIC manifest

and the UCSC annotation database [50], gene annotations

Table 1 Demographic and clinical characteristics of study participants

sPTB (N = 32) Term Birth (N = 16) p-value

Mother

Maternal age (years), mean (SD) 27.16 (4.14) 27.19 (3.90) 0.98

Pre-pregnancy BMI, mean (SD) 20.06 (2.22) 18.80 (1.13) 0.04

College or above education, N (%) 17 (53.10) 7 (43.80) 0.54

Family income > ¥3000/month, N (%) 17 (53.10) 9 (56.30) 0.84

Primiparity, N (%) 28 (87.50) 13 (81.30) 0.67

Passive smoking, N (%) 22 (68.80) 8 (50.00) 0.21

Alcohol use, N (%) 1 (3.10) 2 (12.50) 0.25

Placenta

Placental surface area (cm2), mean (SD)a 260.41 (59.17) 286.43 (41.91) 0.12

Placenta thickness (cm), mean (SD) 2.19 (0.47) 2.34 (0.47) 0.29

Newborn

Gestational age (weeks), mean (SD) 35.09 (1.35) 39.63 (1.09) < 0.001

Gender (male), N (%) 59.40% (19/32) 56.30% (9/16) 0.84

Birth weight (gram), mean (SD) 2436.53 (461.48) 2999.38 (268.28) < 0.001

Birth length (cm), mean (SD) 46.50 (2.70) 49.44 (1.63) < 0.001

Head circumference (cm), mean (SD) 31.13 (1.31) 32.38 (1.31) 0.003
a The placental surface area was calculated using the formula for the area of ellipse: major axis × minor axis × π/4
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were performed on sPTB-associated CpG (p < 0.05). A total
of 29,663 CpG sites in placenta and 50,658 CpG sites in
cord blood were annotated to specific genes. Figure 3
presents the distribution of CpG sites over gene regions in
placenta and cord blood. For the CpG sites in placenta,
59.42% (n= 17,626) sites located on gene-body, 4.11% (n=
1220) sites were on 3’ UTR, and 11.6% (n = 3442) sites were
on 5’UTR. Regarding the CpG sites in cord blood, 56.41%
(n = 28,577) sites were located on gene-body, 3.86% (n =
1956) sites on 3’ UTR, and 12.11% (n = 6135) sites on
5’UTR. Figure 4 presents the relative locations of the CpG
sites subset with CpG islands in placenta and cord blood, as
well as all CpG sites of the EPIC BeadChip. Among the
sPTB-associated CpG sites in placenta, 8.65% located on
CpG islands, and 64.29% were on the open sea regions.
Meanwhile, 10.24% of the cord blood CpG sites located on
CpG islands, and 60.85% were on the open sea regions.

Comparing differences of sPTB-associated DNA
methylation variations in placenta and cord blood
After controlling for sPTB status, maternal age, maternal
education level, maternal pre-pregnancy BMI and newborns’
gender, partial correlation analysis revealed that only
the DNA methylation level of cg04347477 and cg25975961
showed significant positive correlations between placenta
and cord blood (Fig. 5).
A total of 841 CpG sites in placenta (p-value < 1.0E-03

with over 20% β-value difference between case and control)

and 946 CpG sites in cord blood sites (FDR < 0.05 with
over 20% β-value difference between case and control)
were included for biological process enrichment. The
sPTB-associated CpG sites in placenta were mapped to
genes that principally enriched on 11 biological processes,
and those in cord blood were mapped to genes that
enriched on 13 biological processes. However, different
tendency of biological process enrichment was found
between placenta and cord blood: genes covering sPTB-
associated CpG sites in placenta showed higher enrich-
ment on biological processes including biological regu-
lation, multicellular organismal process, and especially
response to stimulus, while those in cord blood had
higher enrichment on biological processes concerning
cellular process, localization, and particularly metabolic
process (Fig. 6).

Discussion
The current study first applied the Infinium Methylatio-
nEPIC BeadChip to investigate the association of placenta
and cord blood DNA methylation profiles with sPTB in
the homogenous Chinese population. We found that
43,638 CpG sites in placenta were associated with sPTB,
and only one CpG site remained significant after further
Bonferroni correction for multiple testing. Likewise, 72,711
CpG sites in cord blood were identified to be associated
with sPTB independently, and 31 of them passed Bonferroni
correction for multiple testing. Besides, GO-biological

Fig. 1 Volvano plot of the association between placenta/cord blood DNA methylation and sPTB. a Volcano plot of the differentially methylated
positions associated with sPTB in placenta. b Volcano plot of the differentially methylated positions associated with sPTB in cord blood. The x axis
represents log2 transformed fold changes of DNA methylation level (M-values) between sPTB and term birth. The y axis represents
log2transformed p-values of the associations between each differentially methylated position and sPTB. The dashed horizontal lines represent p-value =
0.05, the solid horizontal lines represent Bonferroni corrected p-value = 0.05
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process enrichment observed in our study suggested
that a higher proportion of genes covering the identified
sPTB-associated CpG sites in placenta were enriched on
biological regulation, multicellular organismal process and
response to stimulus, while higher proportions of the
genes covering the identified sPTB-associated CpG sites
in cord blood were instead enriched on cellular process,
localization and metabolic process.

DNA methylation associated with sPTB in placenta and
cord blood
Recently, Kim et al. [24] employed high-throughput
technique and identified 65 CpG sites with altered DNA
methylation in PTB placenta, and the CpG sites were
annotated with 61 genes such as TOB1, PNPLA3, ZNF671,
DAB2IP, MFNG, UCN, EXOC3L2, SLC44A2, FBXL19-AS1,

DLGAP5, SLC30A3, CHFR, C11orf1, SLC24A4, and PI4KB.
Moreover, several studies have documented the association
between PTB and DNA methylation in specific genes like
RUNX3 [26], VEGF [27], KDR [27] and OXTR [25] in the
placenta. In the present study, we identified 43, 638 CpG
sites associated with PTB in the placenta after adjusting for
certain covariates, and only one CpG site remained signifi-
cant with Bonferroni correction for multiple. In line with
the aforementioned prior studies, we also found that PTB
was associated with DNA methylation of CpG sites on
PNPLA3, UCN, SLC44A2 and SLC30A3 in the placenta
after adjusting for the covariates, but these associations
were not significant after further correcting for multiple
testing.
Regarding the association between PTB and DNA

methylation in cord blood, a more extensive range of

Fig. 2 DNA methylation level distribution of significant DMPs in placenta and cord blood. a DNA methylation level distribution of significant
DMPs in placenta. b DNA methylation level distribution of all significant DMPs in cord blood. The black horizontal lines in the beanplots represent
the mean β-values of DMPs in the case and control groups. The dashed horizontal lines represent the mean β-values of all DMPs in each graph
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Fig. 3 Illustration of the distribution of sPTB-associated CpG sites over gene regions in placenta and cord blood. The TSS200: region 200 base
pairs within the transcription start site (TSS); TSS: region 1500 base pairs within the TSS excluding the TSS 200 region; UTR: untranslated region as
present in the mRNA molecule, specifically, 5′ of the transcription start site (5’ UTR) and 3′ of the termination signal (3’ UTR); Body: coding and
non-coding regions from the TSS until the termination codon

Fig. 4 Relative locations of sPTB-associated CpG sites with CpG islands in placenta and cord blood. ‘Shore’ represent the CpG island shore
regions. ‘Shelf’ represents the CpG island shelf regions. ‘Opensea’ represents the opensea regions of the genome
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genome-wide studies have been reported. For instance,
using the primary high-throughput technique (namely,
the Illumina HM27 BeadChip), Schroeder et al. identified
that DNA methylations in 39 genes covering 41 CpG sites
in cord blood were associated with gestational age, including
AVP, OXTR, CRHBP and ESR1 [28]. Afterwards, using the
well-acknowledged Illumina HM450K BeadChip, studies by
Fernando et al., Cruickshank et al., Parets et al. respectively
found that PTB was associated with the aberrant DNA
methylation in a series of genes involved in the following
biological functions including fetal development [29, 31, 52],
neurogenesis [31], myometrial relaxation and contraction
[29], and DNA methylation regulation [30], but the study of
Hong et al. found no significant PTB-associated DNA
methylation alteration in cord blood [32]. Furthermore,
there were also several studies that assessed the associations
between PTB and DNA methylation of specific genes in
cord blood, for instance, Burris’s studies discovered the asso-
ciations of gestational age with LINE-1 [53] and AHRR [54],
while Kantake et al. [55] reported altered methylation of GR

in preterm infants. With the EPIC BeadChip, the current
study was able to discover 21 novel DMPs in cord blood
that were not covered by the 450 K BeadChip, 14 of
them were annotated to specific genes. Another 10 sPTB-
associated CpG sites in the cord blood were covered by
the 450 K BeadChip, six of them (cg18598117 and
cg02001279 on ARID3A, cg11932158 and cg18623216
on PLCH1, cg04347477 on NCOR2, and cg08943494 on
PRR5L) replicated results from the previous study [31].
Moreover, in accordance with several studies aforemen-
tioned, we also discovered that sPTB was significantly
associated with altered DNA methylation of several
other genes in cord blood, including ITGB2, RAPGEF3,
and IGF2BP1. Besides, we replicated the findings from
previous studies [23, 28, 29] which indicated that PTB
was associated with DNA methylation changes of AVP,
OXTR, CRHBP, OTOF, MYH7B, GSK3B, and DNMT1
in cord blood, while these associations were insignificant
after further correcting for multiple testing. On the
contrary, we did not observe aberrant DNA methylation

Fig. 5 Partial correlation matrix of sPTB-associated CpG sites in Cord Blood and Placenta. Partial correlation matrix between DNA methylation
(DNAm) level of combined 32 CpG sites in cord blood and DNAm of those CpG sites in placenta, controlling for status of sPTB, maternal age,
maternal education level, maternal pre-pregnancy BMI and newborns’ gender. The x axis represents the CpG sites in placenta. The y axis
represents the CpG sites in cord blood. The dashed line highlights the correlation between DNAm of CpG sites in one tissue with the same
particular CpG site in the other tissue. * p-value < 0.05, ** p-value < 0.001
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changes in MMPs, LINE-1, or GR, which were found to
be associated with PTB or gestational age in previous
studies. Additionally, we identified two significant CpG
sites (cg23039807 and cg23208717) with small β-value
differences between PTB and control. Although these
two CpG sites remained significant in the sensitivity
analysis (Additional file 1: Figure S1), and the regres-
sion models were generally robust (Additional file 2:
Figure S2), potential model inflation and the risk of
false positive could not be completely ruled out. Thus,
further validation of these CpG sites are needed to
confirm their associations with sPTB and biological
significances.
Concerning the inconsistent findings between our study

and these previous studies, plausible reasons might be
explained as follows. First, all prior studies using the
450 K BeadChip were conducted among Caucasian or
African American populations, leaving the Asian popula-
tion undiscussed, and probes that could be influenced by
genetic variants were processed with different approaches.
For instance, Fernando et al. did not mask probes target-
ing CpG sites that covered SNPs, Parets et al. chose to
separate these CpG sites for further meQTLs analysis, and
the other studies masked only probes targeting CpG sites
that covered SNPs but not probes with SNP affecting the
extension base. Thus, genetic variants should be taken
into account when interpreting results from different
ethnicity. The current study was carried out in a Chinese

population and we excluded probes targeting CpG sites
that may be influenced by SNPs with East Asian minor
allele frequency (MAF) over 1% [39]. Four cord blood
CpG sites identified in this study were not reported in
prior studies, they all overlapped with one or more SNPs
with differed MAF among ethnicities [56], and cg26690511
overlapped with rs78091351 which had over 1% MAF in
African. Although the MAFs of these SNPs were low (less
than 1%) in East Asian population (Additional file 3: Table
S1), we could not rule out the possibility that these genetic
variants might lead to inconsistent findings with previous
studies. Second, the discrepancy across studies might be
caused by different population investigated, as they might
encounter distinct risk factors that can alter DNA methyla-
tion differently [57]. Third, the different DNA methylation
measurement techniques used in many previous studies
(i.e., the bisulfite sequencing analysis, Sequenom EpiTY-
PER or Illumina HM27 BeadChip) were quite different
from the Illumina EPIC BeadChip used in our study re-
garding their coverage and detection sensitivity [58–60].
Fourth, different statistical analysis methods were applied
in different studies. For example, Kim’s study prioritized
differentially methylated CpG sites by difference score
(corresponding to p-value of < 0.0001), while we adjusted
for covariates and performed Bonferroni procedure to cor-
rect for multiple testing, which is a more strict approach
with lower false discovery rate than the former, and thus
was reasonable to yield less significant DMPs. Fifth,

Fig. 6 Biological process enrichment of genes covering sPTB-associated CpG sites in placenta and cord blood
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unlike other studies (e.g., Burris’s studies [53, 54]) which
had a much larger sample size and thus more power to
detect the difference of DNA methylation level between
PTB and term birth, ours’ employed a relatively small
sample size. Sixth, many previous studies focused on ges-
tational age as the outcome variable while we only exam-
ined sPTB. Although these two outcomes shared some
similar implications, they were inherently different and
might lead to statistically and clinically inconsistent
results.
Taken together, despite certain inconsistencies, findings

of the current study provide vital implication that DNA
methylation in placenta and cord blood may be associated
with sPTB.

Comparison of sPTB-associated DNA methylation
variations in placenta and cord blood
Distinct level of DNA methylation was observed in sPTB-
associated CpG sites between placenta and cord blood in
this study, and more interestingly, the genes covering sPTB-
associated CpG sites in placenta and cord blood showed
different tendencies towards the enriched biological pro-
cesses. More of the genes in placenta were involved in bio-
logical regulation and response to stimulus, while higher
proportions of those in cord blood were related to meta-
bolic process. These differences may be attributed to tissue
specificity of DNA methylation [61], and may also imply
that placenta and fetus may respond differently during the
occurrence of risk factor-induced PTB.
Accumulating evidence has shown that maternal en-

vironmental risk factors during pregnancy may impair
the placenta directly [62, 63] or cause DNA methylation
alterations which further results in the permanent struc-
tural and functional changes of the placenta [64–66]. For
example, the genes encoding vascular endothelial growth
factor (VEGF) and its receptor (Kinase insert domain
receptor, KDR) were found to have altered DNA methyla-
tion status in the PTB placenta [27]. DNA methylation
alternation may change the expression of these two
angiogenic factors, which would affect the development
and structure of placental vascular and thereby leading
to PTB [67–69]. Similarly, our study also found altered
methylation of VEGF and KDR in placenta (although
not significant after multiple testing correction). There-
fore, maternal exposure to environmental factors may
alter placental DNA methylation of genes that are mainly
involved in maintaining the structure and function of the
placenta.
On the over hand, if the structure or function of the

placenta is impaired by hazardous environmental factors,
the placenta would be incapable of transporting necessary
nutrients to the fetus or protecting it from detrimental
substances [11, 70]. Consequently, the fetus would have to
suffer from an impaired nutritional environment, decreased

energy metabolism and altered metabolic programming
[71, 72]. These might account for the finding in our study
that genes with DNA methylation alternation in sPTB cord
blood were principally enriched on metabolic process. In
line with our study, many previous studies also identified
DNA methylation changes of genes related to metabolism
in PTB cord blood [29, 30, 52], such as NCOR2, IGF2BP1,
IGF2, and TET1. Additionally, we also observed DNA
methylation alterations of BAIAP2 and OXTR in sPTB cord
blood, which were related to neurodevelopmental disor-
ders. To specify, BAIAP2 encodes brain-specific angio-
genesis inhibitor - binding protein that is involved in
neurodevelopmental/ neurite outgrowth network [73], and
its genotype and expression were associated with autism
spectrum disorders (ASD) [74] and attention-deficit/hyper-
activity disorder (ADHD) [73, 75, 76]. The methylation of
the oxytocin receptor (OXTR) was also associated with
ASD [25, 77].
However, it is still unresolved regarding whether these

DNA methylation variations in placenta and cord blood
are potential molecular mechanisms in the association of
sPTB with subsequent long-term metabolic and neural
developmental disorders, and further birth cohort studies
are warranted to assess their relationships.

Strengths and limitations
The current study is the first genome-wide assessment
on the association of DNA methylation and spontaneous
preterm birth in the Chinese population using the Illumina
EPIC BeadChip, which enabled us to detect several novel
sPTB-associated CpG sites that were not covered by the
previous 450 K BeadChip. Moreover, we simultaneously
examined DNA methylation of placenta and cord blood
samples, so that both placental and fetal factors could be
taken into account in the process of sPTB.
On the other hand, a few limitations of our study

should be addressed. First, owing to the relatively small
sample size, our study might not have enough power to
detect some significant DMPs between sPTB and term
birth. Second, we neither used validation samples nor
conducted additional examinations to validate the high-
throughput data; our data were only compared and vali-
dated to previous studies. Third, the current study could
not assess the expression of the identified sPTB-associated
genes with transcriptome data and confirm the influence
of DNA methylation alteration. Fourth, due to the cell
specificity of DNA methylation, an ideal study design
would be to examine DNA methylation in each cell type
separately. However, our study used whole cord blood, a
mixed-cell sample in which the overall DNA methylation
levels could be influenced by cell composition [78, 79].
As a result, the DMPs that we identified may not be
attributed to differential methylation in specific cell lines,
although cell composition proportion was controlled. Fifth,
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causal relationship between DNA methylation changes and
sPTB could not be determined, as the biological samples
were collected at delivering.

Conclusion
DNA methylation variations in placenta and cord blood
were associated with spontaneous preterm birth, yet the
genes with DNA methylation variations appeared to show
different patterns of biological process enrichment between
the two tissues. These findings can bring novel insights into
how DNA methylation patterns may associate with spon-
taneous preterm birth and its health consequences.

Additional files

Additional file 1: Figure S1. Sensitivity analysis of placenta and cord
blood models. Scatter plots comparing negative log10p-values between
the main analysis models [placenta (A) and cord blood (B) DNA
methylation with respect to sPTB status, adjusted for maternal age,
newborn gender, maternal education level, pre-pregnancy BMI, and
when appropriate, either the first five principal components obtained
from the ReFACTor function or estimated cell-type proportions] on the
horizontal axis of A-B, and sensitivity analysis models [placenta (A) and
cord blood (B) DNA methylation with respect to sPTB status, adjusted for
either the first five principal components obtained from the ReFACTor
function or estimated cell-type proportions when appropriate] on the
vertical axis of A-B. All the significant CpG sites in cord blood remained
significant (Bonferroni corrected p < 0.05) in the sensitivity analysis
models, the one significant site in placenta did not pass Bonferroni
correction but was still the top site among all. The diagonal line across
the two scatterplots represents y = x. (TIF 376 kb)

Additional file 2: Figure S2. Q-Q plots and p-value distribution histo-
grams of placenta and cord blood models. A and B. The quantile-quantile
(Q-Q) plots comparing observed probability distribution against expected
distribution. The shading indicates the 95% confidence intervals. The in-
flation factors, λ were 1.266 in placenta model (A) and 1.477 in cord
blood model (B). C and D. The histograms showing the distributions of p-
values of placenta (C) and cord blood (D) regression models. (TIF 247 kb)

Additional file 3: Table S1. Overlapped SNPs of the sPTB-associated
DMPs covered by the 450 K BeadChip. Overlapped known SNPs of the
sPTB-associated DMPs covered by the 450 K BeadChip, with minor allele
frequencies among East Asian, European (Caucasian), and African populations.
(XLSX 11 kb)
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