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Natural killer (NK) cells are effective in combating infections and tumors and as such are 
tempting for adoptive transfer therapy. However, they are not homogeneous but can be 
divided into three main subsets, including cytotoxic, tolerant, and regulatory NK cells, with 
disparate phenotypes and functions in diverse tissues. The development and functions 
of such NK cells are controlled by various cytokines, such as fms-like tyrosine kinase 
3 ligand (FL), kit ligand (KL), interleukin (IL)-3, IL-10, IL-12, IL-18, transforming growth 
factor-β, and common-γ chain family cytokines, which operate at different stages by 
regulating distinct signaling pathways. Nevertheless, the specific roles of each cytokine 
that regulates NK cell development or that shapes different NK cell functions remain 
unclear. In this review, we attempt to describe the characteristics of each cytokine and 
the existing protocols to expand NK cells using different combinations of cytokines and 
feeder cells. A comprehensive understanding of the role of cytokines in NK cell develop-
ment and function will aid the generation of better efficacy for adoptive NK cell treatment.
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iNTRODUCTiON

Natural killer (NK) cells were first identified as “natural killer cells” in the mid-1970s and were 
characterized by their vital roles in controlling cancer and viral infection (1–3). They are widely 
distributed in diverse tissues, such as the peripheral blood (PB), spleen, lungs, liver, and uterus 
(4). In human PB, NK  cells are primarily divided into two subtypes: CD3−CD56dimCD16+ and 
CD3−CD56brightCD16− cells. CD56dim NK cells have potent cytotoxicity and high CD16 expression, 
allowing them to induce antibody-dependent cell-mediated cytotoxicity (ADCC) toward target cells, 
whereas CD56bright NK cells are best known for producing diverse types of cytokines (5–7). Different 
from PB NK cells, NK cells in diverse tissues have distinct phenotypes. Through experimental para-
biosis (8), researchers have found that, with the exception of circulating NK cells, the identification 
of several markers, such as CD69, CD103, and CD49a, can affirm the phenotype of tissue-resident 
NK cells in the liver, skin, and uterus (4, 9–14). Functions of NK cells vary depending on the cellular 
microenvironment, mainly due to the cytokine signals of various tissues. For instance, NK cells can 
regulate the outcome of pregnancy (15, 16) through the regulation of transforming growth factor 
(TGF)-β and interleukin (IL)-15 in the uterus (17–19) or tolerate plentiful food-derived antigens 
or bacterial products through the regulation of abundant TGF-β and IL-10 in the liver (20–23) 
(Figure 1).
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FigURe 1 | Cytokine requirements for natural killer (NK) cell development and function. NK cell development from HSCs is regulated by multiple cytokines in the 
fetal liver, bone marrow, and thymus. The sequential expression of receptors for different cytokines implies the functional maturation of NK cells. The proliferation and 
differentiation of HSCs requires FL, KL, IL-3, and IL-7, which interact with their respective receptors. The acquisition of CD122 expression is indicative of the 
commitment of NK cells. IL-15 is indispensable for NK cell differentiation from CLPs to mature NK cells. Mature NK cells are shaped by cytokine signals from the 
diverse tissue environments in which they reside. In the peripheral blood or spleen, the abundance of stimulatory cytokines, such as IL-2, IL-12, IL-15, IL-18, and 
IL-21, may maintain NK cells in a cytotoxic state to combat infections. Tolerant NK cells that reside in the liver, and regulatory NK cells that reside in the uterus, are 
primarily regulated by TGF-β and IL-10 or by TGF-β and IL-15, respectively. Abbreviations: FL, fms-like tyrosine kinase 3 ligand; KL, kit ligand; IL, interleukin; HSC, 
hematological stem cell; CLP, common lymphoid progenitor; TGF-β, transforming growth factor-β.
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RegULATiON OF NK CeLL 
DeveLOPMeNT BY CYTOKiNeS

Natural killer cells can develop in many sites, including the fetal 
liver, bone marrow (BM), and thymus (24–27). The developmen-
tal hierarchy of NK cells has been depicted as a linear process 
that involves multiple stages, developing from hematopoietic 
stem cells (HSCs) through common lymphoid progenitors 
(CLPs) and NK lineage-restricted progenitors (NKPs) to mature 
NK  cells (28). In contrast to the mouse, the human NK  cell 
development hierarchy is less well characterized (29). Recently, 
human NKPs, which can exclusively differentiate into NK cells, 
have been clearly defined as Lin−CD34+CD38+CD123−CD45
RA+CD7+CD10+CD127− in umbilical cord blood (UCB), BM, 
and tonsils (30). The development of NK  cells is regulated by 
cell-intrinsic signals through an array of transcription factors 
(TFs) and extrinsic signals from multiple cytokines (31–35). The 
TFs, including E4BP4, T-bet, Eomes, and GATA3 can regulate 
NK  cell differentiation and maturation (26, 36–39). However, 
the requirement for TFs in murine NK cells may differ in differ-
ent tissues. For instance, tissue-resident liver NK cells critically 
require the regulation of T-bet, whereas circulating NK cells are 
less affected by its depletion (12, 39, 40). Thymic NK cells depend 
on the regulation of GATA3, whereas circulating NK cells and 
tissue-resident liver NK cells do not (26). Nevertheless, further 
study of transcriptional regulation in the development of human 
NK  cells is still required for a greater understanding of these 
processes. The extrinsic cytokine signals that are crucial for 
regulating NK  cell development have been well characterized. 
Cytokines, such as fms-like tyrosine kinase 3 ligand (FL), kit 
ligand (KL), and IL-3, influence the survival, and proliferation 

of HSC, and are important for normal NK  cell development 
(41, 42). In addition, NK cells are nearly absent in IL-15−/− or 
IL-15Rα−/− mice, which implies an indispensable role for IL-15 
during NK  cell differentiation (43, 44). Furthermore, previous 
reports have shown that IL-2−/−, IL-2Rα−/−, IL-7−/−, IL-7Rα−/−, 
and IL-21R−/− mice have normal numbers of mature NK  cells 
in PB, suggesting that IL-2, IL-7, and IL-21 are redundant for 
peripheral NK  cell development (45–48). However, IL-2 and 
IL-21 participate in promoting NK cell activation with enhanced 
cytotoxicity (49–51). Additionally, IL-12, IL-18, IL-10, and 
TGF-β also have roles in NK cell development or function (33).  
In this review, we illustrate when and how each cytokine regu-
lates NK cell development and function (Table 1). Based on a 
thorough understanding of relative cytokines, NK cells can be 
further generated in large quantities using diverse cytokine 
cocktails for in vitro expansion and induction in culture systems 
for adoptive transfer therapy.

Natural killer cells belong to the innate immune system due 
to their roles in directly combating hematopoietic and non-
hematopoietic cells to maintain homeostasis throughout the 
body (91). Previous reports have divided the developmental 
pattern of NK cells into four stages based on expression of the 
cell surface markers CD34, CD117 and CD94:CD34+CD117− 
CD94−, CD34+CD117+CD94−, CD34−CD117+CD94−, and CD3
4−CD117+/−CD94+ (92). NK  cell development and function 
are characterized by the gradual acquisition of specific recep-
tors. As shown above, the extrinsic signals from cytokines are 
vital important to regulate NK  cell development and function 
(31–33). According to the expression pattern of cytokine recep-
tors, we have divided NK  cell development into five grading 
stages, including HSCs: CD34+CD117+FLT3+CD123+/−, CLPs: 
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TABLe 1 | The receptors, signaling pathways, and knockout phenotypes of cytokines.

Cytokine Receptors Signaling pathways Knockout phenotypes Reference

SCF (KL) KIT PI3K-AKT
JAK-STAT1/3/5
Ras-MEK-ERK

Deficiency of HSCs, mast cells, and NKPs (52–56)

FLT3L (FL) FLT3 PI3K-AKT
JAK-STAT5
Ras-MEK-ERK

Deficiency of CLPs, DCs, and NK cells (57–60)

IL-3 IL-3Rα/βc PI3K-AKT
JAK2-STAT1/3/5/6
Ras-MEK-ERK

Deficiency of mast cells, basophil cells, and embryonic HSCs (61–63)

IL-7 IL-7Rα/γc JAK1/3-STAT5
PI3K-AKT

Normal NK cell number
Deficiency of B cells and T cells

(46, 64, 65)

IL-15 IL-15Rα/β/γc JAK1/3-STAT5
PI3K-AKT-mTOR
Ras-MEK-MAPK

Deficiency of NK, NKT, IEL, and memory CD8+ T cells (43, 44, 66)

IL-2 IL-2Rα/β/γc JAK1/3-STAT5
PI3K-AKT
Ras-MEK-MAPK

Normal NK cell number
Deficiency of Treg cells
Accumulation of activated T/B cells

(45, 67–70)

IL-12 IL-12Rβ1/2 TYK/JAK2-STAT4 Failure of Th1 cell polarization
Reduced autoimmune diseases

(71–74)

IL-18 IL-18R1/Rap MyD88-IRAK4-NF-κb Impairment of Th1 cell polarization and NK cell cytotoxicity (75–78)

IL-21 IL-21R/γc JAK1/3-STAT3
PI3K-AKT
Ras-MEK-MAPK

Normal NK cell number
Decreased Th17 cells with reduced progression of EAE
Impaired secretion of IgG

(48, 79–82)

IL-10 IL-10R1/2 TYK2/JAK1-STAT3/1/5 Activated CD4 T cells accumulation
Dysfunction of Treg cells

(83–86)

TGF-β TGF-βRI/II Smad Auto-reactivity of immune cells
Die at early age

(87–90)

SCF, stem cell factor; KL, kit ligand; FLT3L (FL), fms-like tyrosine kinase 3 ligand; IL, interleukin; TGF-β, transforming growth factor β; βc, common β chain; γc, common γ chain; Rap, 
receptor accessory protein; PI3K, phosphoinositide 3 kinase; AKT, protein kinase B; JAK, janus kinases; STAT, signal transduction and activation of transcription; ERK, extracellular 
regulated protein kinases; MAPK, mitogen-activated protein kinase; TYK, tyrosine kinase; MyD88, myeloid differentiation primary response protein 88; IRAK4, IL-1R-associated 
kinase 4; NF-κb, nuclear factor kappa-light-chain-enhancer of activated B cells; HSC, hematopoietic stem cell; DC, dendritic cell; NK, natural killer; NKT, natural killer T; IEL, 
intraepithelial lymphocytes; Treg, regulatory T cell; Th, T helper; EAE, experimental autoimmune encephalomyelitis.
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CD34+CD117+FLT3+CD123−CD127+, NKPs: CD34+CD117+F
LT3+CD7+CD10+CD122+CD127−CD215+, immature NK  cells 
(iNK  cells): CD56+/−CD25+CD122+CD212+/−CD215+CD218+/− 
CD360+/−, and mature NK  cells (mNK  cells): CD56+ 
CD25+/−CD122+CD212+CD215+CD218+CD360+TGF-βR+ 
IL-10R+ (Figure  1). The differential expression of cytokine 
receptors implies that there are various demands for the relevant 
cytokines during NK cell development.

FL, KL, iL-3, and iL-7 Promote the 
Transition of HSCs to CLPs
Hematological stem cells are the major source of multilineage 
myeloid cells and lymphocytes which are vital for maintaining 
normal numbers and functions of immune cells (93). It is well 
established that the differentiation of NK  cells is a step-wise 
process that is driven by the regulation of TFs and coordinated 
cytokine signals from HSCs (31–35). FL and KL, discovered in 
the early 1990s, have overlapping yet distinct effects to promote 
HSC survival and proliferation (41). Their receptors, flt3 and 
c-kit, belong to the family of tyrosine kinase receptors expressed 
primarily on cells in the very early stages of hematopoiesis  

(54, 57, 94). KL, also known as stem cell factor (SCF), is produced 
in two forms: membrane-bound and soluble, through differential 
splicing and proteolytic cleavage (53, 95). Sl/Sld mutant mice 
expressing only soluble SCF are deficient in HSCs, indicating 
that membrane-bound SCF is critical for HSC maintenance  
(52, 55, 96, 97).

Previous reports have shown that flt3 or c-kit deficiency in 
mice induces a reduction in the number of CLPs (58, 98). In 
addition, the cytokine FL deficiency in mice can also induce a 
sharp reduction of CLPs but has no effect on the HSC pool or 
on common myeloid progenitors (59, 60). Recently, it is revealed 
that FL can act synergistically with Hoxa9 signaling to regulate 
an early checkpoint of lymphopoiesis by affecting CLPs, LMPPs, 
and flt3+ multipotent hematopoietic progenitors in the BM (99). 
Furthermore, FL and SCF can act synergistically to promote 
CD34+ cell proliferation and are important for NK  cell differ-
entiation by inducing the expression of CD122 and increasing 
IL15Rα expression to increase their sensitivity to IL-15 (100). The 
number of NKPs is reduced in mice that are deficient in either 
flt3 or c-kit, implying that either of these cytokines is essential 
for NK-cell differentiation (56). These findings imply that FL 
and SCF have important roles in the development of lymphoid 
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progenitor cells and are critical for the commitment of NK-cell 
lineage.

Interleukin-3 is a member of the beta common (βc) family 
of cytokines, which also includes granulocyte-macrophage 
colony-stimulating factor (GM-CSF) and IL-5 (101). IL-3 is 
a well-known hematologic growth factor that can promote 
HSC survival, proliferation and differentiation (62). Previous 
research has demonstrated that IL-3 alone can rescue low HSC 
activity in Runx1+/− AGMs (Aorta-Gonad-Mesonephros) that 
have a reduced HSC population (63, 102). Receptors for IL-3, 
members of the gp140 family, are composed of an IL-3 receptor-
specific α subunit (IL-3Rα or CD123) and a homo-dimeric βc 
subunit (61, 103). Both CD123 and βc subunits are detected 
on the surface of hematopoietic tissues and HSCs (42). After 
binding with the receptors, it can activate janus kinases (JAK) 
2-signal transduction and activation of transcription (STAT) 
5/1/3/6, phosphoinositide 3 kinase (PI3K)-protein kinase B 
(AKT), and Ras-extracellular regulated protein kinases (ERK) 
pathways (62, 104). In the in  vitro differentiation system of 
human primitive progenitors, IL-3 has been reported to main-
tain lymphoid progenitor development and promote NK  cell 
or B  cell differentiation (105–107). Moreover, IL-3 can also 
preserve the engraftment and lymphoid reconstitution capac-
ity in vivo of the transduced CD34+ cells in severe combined 
immunodeficiency (SCID)-hu mice (108). Therefore, IL-3 
may primarily facilitate the survival and proliferation of HSCs 
and the differentiation of CLPs, and further promote NK cell 
development.

CXCR4 signaling has been shown to regulate quiescence 
and long-term maintenance of HSCs upon interaction with the 
chemokine CXCL12 (109, 110). Recently, a group of researchers 
found that CXCR4 can provide lineage-instructive signals to 
control progenitor cell differentiation (111). They showed that 
signals from CXCR4-CXCL12 interactions regulate multipotent 
progenitor (MPP) differentiation into CLP subsets in the BM 
and further affect lymphoid lineage production. Moreover, a 
deficiency of CXCR4 signaling resulted in a profound reduction 
in the number of T, B, and NK  cells which suggests that the 
addition of CXCL12 may be helpful to promote in vitro NK cell 
differentiation from HSCs.

Interleukin-7 is another important cytokine for the differ-
entiation of lymphoid lineages, mainly for the differentiation of  
T and B cells (46, 64). It induces the differentiation of HSCs into 
lymphoid progenitor cells and facilitates their expansion and 
survival. The IL-7 receptor is a heterodimeric complex composed 
of IL-7Rα (CD127) and the common γ chain subunit (CD132) 
(112). The IL-7-IL-7R interaction primarily activates JAK1/3-
STAT5 and PI3K-AKT pathways to induce prosurvival, cell cycle, 
and metabolism regulation signals (65, 113). Previous reports 
have shown that knockouts of IL-7 and IL-7Rα do not induce 
significant defects in mouse NK  cells from the PB or spleen  
(46, 47). Thus, IL-7 may contribute in a redundant way and may 
not be essential for circulatory NK cell development. However, 
NK cells in the thymus, characterized by IL-7Rα+, require IL-7 for 
their homeostasis (26). Whether other NK cell subsets in different 
tissues require IL-7 for their effector functions or homeostasis is 
unknown.

iL-15 Directs CLPs toward Mature NK Cells
Important cytokines for the development and function of 
immune cells are highlighted in X-SCID, characterized by 
mutations of IL-2RG, which encodes the common γ chain (γc), 
a common receptor for IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21 
(114, 115). X-SCID is characterized by extreme vulnerability to 
viruses and pathogens due to the developmental and functional 
deficiency of T, B, and NK cells, which indicates that γc family 
cytokines play vital roles in normal immune responses.

IL-15−/− and IL-15R−/− mice have dramatically reduced popu-
lations of NK cells (43, 44); however, IL-2−/−Rag1−/−, IL-7−/−, and 
IL-21R−/− mice have normal NK cell numbers (45–48), suggesting 
that IL-15 is essential for NK cell commitment and maturation. 
Furthermore, mature NK  cells fail to be maintained when 
transferred to IL-15−/− mice (116, 117). The prosurvival ability 
of IL-15 is potentially mediated by upregulated expression of 
antiapoptotic B cell lymphoma 2 (BCL-2) family members and 
downregulated expression of proapoptotic proteins (116). IL-15 
has extensive roles in immune cells. For example, it can regulate 
NKT cell development and maintain normal memory phenotypes 
of CD8+ cells (43, 44, 117–120).

Interleukin-15 can be produced by hematopoietic and non-
hematopoietic cells, such as activated DCs, macrophages, mono-
cytes, and stromal cells (121). IL-15R is a heterotrimeric receptor 
including a unique IL-15Rα (CD215) subunit, a shared β chain 
with IL-2 (CD122), and CD132 (122, 123). The expression of 
CD122 is a major phenotypic marker of NKPs, which allows the 
cells to respond to IL-15 (124, 125). IL-15 has a special manner 
of transducing its signals through trans-presentation, whereby 
the IL-15-producing cells support IL-15 by binding IL-15Rα, and 
then present it to activate neighboring cells expressing CD122/
CD132 (126–130). Enlightened by these findings, researchers 
have designed NK cells expressing membrane-bound IL-15 that 
have autonomous growth and increased cytotoxicity toward 
tumor cells, which can help to enhance the antitumor effects of 
NK  cells and avoid the side effects of cytokine administration 
(131). The activation of IL-15R induces the autophosphorylation 
and activation of JAK1/3 and downstream cascades, including 
the JAK-STAT, the mitogen-activated protein kinase (MAPK), 
and PI3K/AKT-mTOR signaling pathways, in order to fulfill its 
different functions (66, 132). The IL-15-STAT5 signaling pathway 
is indispensable for NK  cell development and homeostasis, as 
mice that are deficient in this pathway have dramatically reduced 
mature NK cell numbers. In addition, both Stat5-deficient and 
NK cell-specific Stat5-deficient mice have an absence of NK cells 
in peripheral blood and tissues (133–135). A patient with a 
STAT5b mutation also showed a severe reduction in NK  cell 
numbers (136). The PI3K/AKT-mTOR pathway also plays a role 
in NK cell development. A recently published paper has shown 
that PDK1, a kinase upstream of mTOR, is a critical component 
that connects IL-15 signaling to E4BP4, an indispensable TF for 
NK cell development (137). The early depletion of PDK1 induces 
a severe loss of NK  cells with much weaker mTOR activation, 
E4BP4 induction after IL-15 stimulation and the reduced expres-
sion of CD122 (137). These findings underscore the importance 
of the IL-15-PI3K-PDK1-mTOR-E4BP4-CD122 positive feed-
back loop in the development of NK cells. Other factors can also 
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affect NK cell development by influencing their responsiveness 
to IL-15. The TF ID2 can affect NK cell development by antago-
nizing E-protein function and altering lineage fate (138, 139). 
Recently, researchers have found that ID2 can suppress E-protein 
target gene SOCS3 expression to maintain IL-15 receptor signal-
ing for normal NK cells development, and strong IL-15 receptor 
stimulation can overcome this requirement for ID2 (140). The 
abovementioned findings strengthen the roles of IL-15 in NK cell 
development and explain how IL-15 induces its effects.

POLARiZATiON OF NK CeLL FUNCTiON 
BY CYTOKiNeS

Natural killer cells have diverse functions in different tissues, which 
can be divided into three subsets: cytotoxic, regulatory, and toler-
ant NK cells (141). Different NK cell subsets are primarily affected 
by signals from diverse cellular microenvironments and signals 
from cytokines are important in shaping their unique functions. 
In an inflammatory or virus-infected situation, activated T cells 
and dendritic cells (DCs) secrete abundant IL-2, IL-12, IL-18, and 
IL-21, which drive NK cell activation with enhanced secretion of 
cytotoxic cytokines and the ability to directly kill transformed 
targets (142–144). As mentioned above, NK cells in their physical 
environment play leading roles in maintaining normal pregnancy 
in the uterus and tolerating a significant amount of food-derived 
or gut-derived antigens in the liver, which are mainly determined 
by the regulation of different cytokine cocktails.

iL-2 and iL-15 induce NK Cell “Priming”
Natural killer cells serve as the first line of defense during viral 
infection or the elimination of transformed cells, which is 
characterized by the production of cytokines, such as IFN-γ and 
TNF-α, and granzyme-mediated cytotoxicity (3). Comprehensive 
activation is necessary for NK cells to fulfill their roles as sentinels 
(145). Previous reports have demonstrated that IL-2, IL-15, IL-12, 
IL-18, and IL-21 all play roles in activating NK cells. Therefore, we 
discuss how these cytokines function and how to achieve better 
efficacy in adoptive NK cell therapy.

Interleukin-2 is an immune-stimulatory cytokine that was first 
identified as a “T cell growth factor” (67–69, 146). Subsequently, 
it has been shown that activated T cell-derived IL-2 can enhance 
NK  cell responses toward infection in  vivo and can activate 
NK  cells in  vitro (142, 147). Furthermore, researchers found  
that NK cell responses are impaired in IL-2β−/− mice suggesting 
that IL-2 may have an important role in maintaining NK  cell 
activity (148). However, IL-2-deficient mice have normal NK cell 
development and numbers, which implies that it is needed for 
NK cell effector functions but is not indispensable for their devel-
opment (45). IL-2 achieves its functions predominantly through 
the JAK1/3-STAT5 signaling pathway by binding with the hetero-
trimeric receptor, which is composed of IL-2Rα (CD25), CD122, 
and CD132 (70). Interestingly, IL-2 has different affinities for the 
different receptors. IL-2 binding to a single CD25 (Kd = 10−8 M) 
or CD122 (Kd  =  10−6  M) has a low affinity. There is an inter-
mediate binding affinity with the CD25/CD122 heterodimer 
(Kd = 10−9 M), and the greatest binding affinity is seen with the 

IL-2Rαβγ trimeric complex (Kd = 10−11 M) (149–151). NK cells 
primarily express CD122 and CD132 receptor components that 
can respond to high concentrations of IL-2. To achieve better IL-2 
application efficacy, one group of researchers developed an IL-2 
“superkine,” also called super-2, with increased affinity for CD122 
(152). Super-2 has a vigorous role in promoting activation and 
proliferation irrespective of CD25 expression. In addition, previ-
ous reports have shown that preactivation with IL-12, IL-15, and 
IL-18 induces CD25 expression on NK cells, which suggests that 
pretreatment of NK cells with the above cytokines can enhance 
NK cell responsiveness to IL-2 and may lead to better IL-2 treat-
ment efficacy (153, 154). However, high-dose IL-2 induces a 
selective expansion of regulatory T (Treg) cells, which limits the 
activity of NK cells, resulting in poor clinical responses to IL-2 
therapy (155). The depletion of Treg cells leads to increased IL-2 
availability for NK cells to increase IFN-γ production and cyto-
toxicity (155, 156). To overcome Treg cell inhibition, researchers 
have produced a mutant form of IL-2 that preferentially binds 
to CD122/CD132 and that has reduced binding to CD25 (157).  
In contrast to wild-type IL-2, the mutant form efficiently induces 
NK cell proliferation and activation with a dramatic reduction in 
Treg cells, and achieves better responses to tumors.

Interleukin-15 is discovered by its “IL-2-like” stimulatory 
role and is important for NK  cell development and function 
(158–160). IL-15 and IL-2 share the common β and γ chain 
receptor subunits and only differ due to an α chain, as IL-2Rα 
(CD25) binds to IL-2 and IL-15Rα binds to IL-15 (122, 123,  
161, 162). However, IL-15Rα alone binds to IL-15 with a high 
affinity (Kd = 10−11 M), which is comparable to that of the binding 
of IL-2Rαβγ to IL-2 (162). The high affinity between IL-15 and 
IL-15Rα makes it possible, when compared with IL-2, to activate 
NK cells with relatively lower concentrations.

Prior exposure to IL-15 sensitizes NK  cells to secondary 
stimuli, referred to as “priming,” thereby resulting in exaggerated 
responses (163, 164). Previous studies have shown that IL-12 can 
induce elevated IFN-γ production in IL-15-primed NK  cells. 
Other cytokines, such as IL-2, IL-4, IL-21, and type I IFN, can 
also induce heightened functions (165). As mentioned above, the 
JAK-STAT5 signaling pathway is important for IL-15-mediated 
NK  cell development and viability (133–136). However, the 
PI3K-AKT-mTOR signaling pathway is critical for the IL-15-
induced priming effect (132, 165). Inhibition of the PI3K-mTOR 
signal would abrogate enhanced IL-12- and IL-21-induced phos-
phorylation of STATs and stronger responses in IL-15-primed 
NK cells (165). Nevertheless, the inhibited mTOR pathway does 
not affect the phosphorylation of STATs in naïve NK cells, sug-
gesting that this pathway specifically functions in IL-15-primed 
NK cells (165). The crosstalk between the PI3K-mTOR signaling 
pathway and the STAT pathway is critical for efficient NK  cell 
priming; however, the mechanism by which this occurs remains 
unclear.

A previous report has shown that IL-15 promotes NK  cells 
to be fully equipped to respond to infections through the rapid 
induction of granzymes and perforin (166). However, the induced 
production of granzymes/perforin is reduced in NK-mTOR−/− 
cells, suggesting that mTOR is significant for mediating NK cell 
cytotoxicity (167). Researchers have also shown that IL-15, but 
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not IL-2, can maintain NK cell cytolytic functions after cytokine 
withdrawal to simulate postinfusion performance (168). The 
IL-15-induced functional advantages are dependent on activated 
mTOR-regulated signaling (168). The mTOR-regulated IL-15-
induced maintenance of NK cell functions suggests a beneficial 
implementation of IL-15 in adoptive NK-cell clinical therapy.

iL-12, iL-18, and iL-21 Strengthen NK Cell 
Cytotoxicity
Interleukin-12 was first named NK cell stimulating factor based 
on its ability to induce NK cells to secrete high levels of IFN-γ 
(169). It is composed of two subunits, IL-12p35 and IL-12p40, 
and these two subunits must be coexpressed in the same cell 
to form the disulfide-linked bioactive IL-12p70 (170). The 
cytokine is mainly produced by antigen-presenting cells, such 
as DCs, monocytes and macrophages (171–173). NK  cells and 
activated T cells express the high-affinity heterodimeric receptor 
(IL-12Rβ1/β2) for interaction with IL-12, which can activate 
tyrosine kinase 2 (TYK2) and JAK2, leading to phosphorylation 
of STATs (mainly STAT4) and the eventual promotion of IFN-γ 
production and other biological reactions (71–74, 174).

One previous report suggested that NK  cells can mediate a 
long-lived contact hypersensitivity response to haptens in mice 
devoid of T and B cells; thus, the concept of “memory NK cells” 
was established (175). However, the mechanism by which mem-
ory NK cells develop is unknown. The group of Lewis L. Lanier 
observed that IL-12-STAT4-dependent-IFN-γ-independent 
signaling is indispensable for the generation of mouse cytomegal-
ovirus-specific memory NK cells (176). As memory NK cells are 
long-lived and have relatively higher responses compared with 
naïve NK cells (175, 177–179), developing memory NK cells for 
clinical therapy is an attractive approach. Wayne M. Yokoyama’s 
group first showed that preactivation of mice NK cells with IL-12 
and IL-18, along with low-dose IL-15 to maintain survival, could 
produce cytokine-induced memory-like NK  cells (180). The 
memory-like cells could respond more robustly to reactivation 
without inducing enhanced cytotoxicity toward tumor cells 
(180). However, Adelheid Cerwenka laboratory observed that 
IL-12/15/18 preactivated NK  cells, when combined with irra-
diation, could achieve greater efficacy, as determined by reduced 
growth of established mouse tumors (153). They also showed 
that the antitumor effect is mediated by IL-2 produced by CD4+ 
T cells. As the abovementioned memory-like NK cells were all 
established in mice, Romee et al. showed that human NK cells can 
also display memory characteristics after short-term preactiva-
tion with IL-12/15/18 (181). Subsequently, they also found that 
the memory-like NK cells induce prolonged expression of CD25, 
forming a high affinity IL-2R complex to respond to IL-2 at pico-
molar concentrations (154). However, single cytokine, like IL-12, 
IL-15, or IL-18 preactivation cannot induce a higher expression 
of CD25. Moreover, prior treatment with low-dose IL-2 before 
adoptive transfer can enhance proliferation and effector function 
of memory-like NK cells, which supports an additional immuno-
therapy strategy. Recently, this group performed a phase 1 study 
to treat active rel/ref AML patients with memory-like NK cells 
(182). They found that donor memory-like NK  cells exhibited 

enhanced IFN-γ production and yielded an overall response rate 
of 55%. This result reminds us that preactivation with cytokines 
can indeed strengthen NK cell antitumor functionality and can 
be used as a therapeutic method to treat tumors. Nevertheless, 
understanding the appropriate cell doses still requires further 
study.

The NK cells without expressing any inhibitory MHC-I-specific 
receptors, such as killer cell immunoglobulin-like receptors 
(KIRs) in humans and Ly49 receptors in mice, are hyporespon-
sive. The signals from KIRs and Ly49 receptors are critical for 
NK cells to be functionally competent (183, 184). This process 
is also termed “NK  cell licensing.” A recent report has shown 
that the unlicensed NK cells display enhanced functionality after 
preactivation with IL-12, IL-15, and IL-18 (185). It has also been 
reported that human CD56brightKIR− and CD56dimKIR− NK cells 
can acquire KIR expression upon stimulation with IL-15 in the 
presence of stromal cells (186). Furthermore, the developed KIR+ 
NK cells display enhanced cytotoxicity and cytokine-producing 
potential compared to the KIR− NK cells. Later, another group 
has identified that activation with cytokines such as IL-2, IL-15, 
or IL-12 can induce the de novo expression of KIR and/or NKG2A 
on KIR−NKG2A− NK cells without feeder cells (187, 188). Similar 
to human NK cells, the responsive capacity of unlicensed murine 
NK cells can be restored as licensed cells when stimulated in vitro 
with high doses of IL-12 and IL-18 or IL-2 (183). These findings 
suggest that cytokine stimulation can induce the hypo-responsive 
unlicensed NK  cells to be re-educated and acquire stronger 
responses toward target cells.

Interleukin-12 has also been shown to promote further matu-
ration of in vitro-differentiated NK cells with enhanced cytotoxic-
ity. One group has shown that low-dose IL-12 can decrease the 
fluorescence intensity of CD56 and can induce the expansion of 
more mature CD56dimCD16+ and CD56dimKIR+ NK cells (189). 
Subsequently, another group identified that in  vitro-derived 
NK  cells display enhanced cytotoxicity toward primary AML 
cells and have improved antileukemic responses in MHC class 
I-positive AML mice after IL-12 culturing (190). These findings 
suggest that IL-12 can not only regulate the functions of mature 
NK cells but also promote the differentiation level and function 
of developing NK cells.

Interleukin-18 is a proinflammatory cytokine belonging to 
the IL-1 cytokine family and was originally defined as an IFN-
γ-inducing-factor (191, 192). It is constitutively produced by 
hematopoietic cells, such as DCs, macrophages and neutrophils 
(191, 193–195), and non-hematopoietic cells, such as microglial 
cells and epithelial cells (196). IL-18 is initially produced as 
an inactive precursor, pro-IL-18, which requires cleavage by 
caspase-1 of the N-terminal fragment to become the mature, 
biologically active form (197, 198). Mature IL-18 binds to its 
receptor, composed of IL-18R1 and IL-18R accessory protein in 
a heterodimeric receptor complex, to initiate signal transduction 
by myeloid differentiation primary response protein 88 (MyD88). 
Then, IL-1R-associated kinase 4 (IRAK4) and TNFR-associated 
factor 6 (TRAF6) are recruited, leading to the activation of the 
nuclear factor (NF) kappa-light-chain-enhancer of activated 
B cells (κB) and MAPK pathways to promote IFN-γ transcription 
and stabilization of IFNG mRNA (78, 199).
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Interleukin-18 is important for promoting the production of 
IFN-γ by NK cells against viral, fungal, bacterial, and parasitic 
infections (200–203). NK cells display reduced secretion of IFN-γ 
and compromised cytotoxicity in IL-18-deficient, IL-18R1-
deficient, or IRAK4-deficient mice (75–77). Furthermore, IL-18 
is essential for upregulating CD25 expression in NK  cells, and 
the increased production of IFN-γ is enhanced by IL-2 during 
Plasmodium yoelii infection in mice (204). Similarly, low-dose 
IL-18, through synergistic interactions with IL-2, IL-12, IL-15, 
or IL-21, can induce potent CD25 and IFN-γ upregulation to 
strengthen human NK  cell effector function (205). A previous 
report has shown that T and B  cells can upregulate IL-18R 
expression upon IL-12 treatment, and the combination of IL-18 
and IL-12 synergistically induces their IFN-γ production (206). 
Recently, researchers also found that the combination of these 
two cytokines can reverse NK cell anergy and increase the sur-
vival rate of mice bearing MHC-deficient tumors (207). These 
findings imply that IL-18 can play stronger roles when combined 
with other stimulatory cytokines; therefore, combining cytokines 
together is better for achieving enhanced efficacy.

Interleukin-21 is a pleiotropic cytokine mainly produced 
by T follicular helper cells, Th17  cells, and NKT  cells (208).  
It acts through a receptor complex, including IL-21R and γc  
(209, 210), to activate JAK1 and JAK3, which leads to recruit-
ment and phosphorylation of STAT (predominantly STAT3 but 
also STAT1 and STAT5) to promote the expression of IFN-γ and 
other factors (81). The IL-21 signal can also be transduced by the 
MAPK and PI3K/AKT pathways (81).

Interleukin-21 has diverse effects in immune cells, which 
can affect the differentiation of inflammatory T cells, immuno-
globulin production of B cells, and development and functions 
of NK cells (48, 79, 80, 82, 211). IL-21, combined with FL and 
IL-15, can specifically promote the differentiation and expansion 
of CD16+CD56+ cytotoxic NK cells from BM progenitors in vitro 
(210). It also promotes rapid differentiation and acquisition of 
killer Ig-like receptors of NK cells from cord blood CD34-positive 
cells (212). Additionally, it induces mature mouse NK  cells to 
develop a large granular lymphocyte phenotype with increased 
production of cytokines, such as IFN-γ, and perforin through 
coactivation with IL-2 or IL-15, resulting in enhanced cytotoxic-
ity (213). Similarly, human NK cells cocultured with IL-21 and 
therapeutic antibody-coated breast cancer cells secrete higher 
levels of IFN-γ, TNF-α, IL-8, CCL3, and CCL5, and the superna-
tants are able to drive the migration of naïve and activated T cells 
in vitro (214). The administration of IL-21 and antibody-coated 
tumor cells leads to synergistic cytotoxic effects of NK  cells 
toward tumor cells, which suggests that IL-21 may be an effective 
adjuvant for antibody treatment (214). Interestingly, IL-21 limits 
IL-15-mediated NK  cell expansion and viability; nevertheless, 
it can stimulate IFN-γ production and cytotoxicity in NK cells 
previously activated with poly I:C or IL-15 (48). This finding 
reminds us that it may be important to apply cytokine cocktails 
sequentially.

Insulin-like growth factor 1 (IGF-1) is an important growth 
factor to regulate longevity and immunity (215). And it was also 
shown to promote NK cell development from CD34+ cells and 
increase NK  cell cytotoxicity by promoting the production of 

perforin by STAT3 activation (216). Furthermore, foxO1, which 
negatively regulates NK  cell maturation and function, is a key 
molecule of IGF-1 signaling pathway (217, 218). Therefore, IGF-1 
may also strengthen NK  cell function through IGF-1-induced 
foxO1 inactivation, which is mediated by increased phosphoryla-
tion of foxO1 at Ser256 and Thr24 (219). Such information about 
IGF-1 may present new opportunities to boost NK cell cytotoxic-
ity therapeutically.

TgF-β and iL-10 Shape Tolerant NK Cells
Natural killer cells are not homogenous, and cells with low 
cytotoxicity, residing in the liver or a chronic pathogenic micro-
environment, are termed tolerant NK cells (141). The liver is an 
important immune-tolerant organ, as no severe inflammation 
occurs despite constant stimulation by bacterial products and 
antigens from the gut (20, 220, 221). NK  cells, composed of 
CD56dim and CD56bright subtypes, occupy up to 30–40% of all 
hepatic lymphocytes located in human liver sinusoids (222, 223).  
CD56dim hepatic NK cells share many similarities with PB CD56dim 
NK cells that may frequently circulate throughout the body. By 
contrast, CD56bright cells with CD69 and CD49a expression are 
more specifically retained in the liver (13, 224). Similarly, one 
subset of DX5−CD49a+ mouse NK  cells specifically resides in 
the liver with adaptive-like properties (10). However, the specific 
roles of CD56bright and CD56dim human intrahepatic NK cells still 
require further study. One important function of intrahepatic 
NK cells is to tolerate harmless antigens that can help maintain 
liver homeostasis (225). IL-10 and TGF-β, which are produced 
by DCs, Kupffer cells, hepatic sinusoidal endothelial cells, and 
stellate cells, are important for shaping tolerant NK cells.

Interleukin-10, first recognized for its ability to inhibit the 
activation and cytokine secretion of Th1 cells, is described as a 
cytokine synthesis inhibitory factor (83–85, 226). It is an impor-
tant immune-regulatory cytokine that is produced by T  cells, 
B cells, NK cells, DCs and macrophages (227, 228). The receptors 
for IL-10 mainly contain two subunits, IL-10R1 and IL-10R2, and 
are expressed on many hematopoietic and non-hematopoietic 
cells (229). Once IL-10 and IL-10R bind together, JAK1 and TYK2 
are activated, which leads to the phosphorylation and activation 
of STAT3, STAT1, and STAT5 (86). As mentioned above, IL-10 
is important for allowing liver NK  cells to maintain immune-
tolerant states. Indeed, one study demonstrated that intrahepatic 
IL-10 can maintain NK cells in a functionally hypo-responsive 
state with a phenotype of NKG2A+Ly49− cells (22). NKG2A is 
critical for NK  cells, when cocultured with non-transformed 
hepatocytes, to prime DC cells. Furthermore, the primed-DCs 
can result in the induction of regulatory CD4+CD25+ T cells, a 
subset responsible for inhibiting excessive immune activation 
(230, 231). Even transferred splenic NK cells migrating into the 
liver show changes in phenotype and function, suggesting that 
the liver environment reshapes NK  cells to maintain a steady  
state (22).

Transforming growth factor-β includes three isoforms, 
TGF-β1, 2, and 3, which are highly homologous (232). TGF-β1 
is the primary isoform expressed in the immune system (233). 
If deficient, mice die of systemic inflammation by 3–4 weeks of 
age, suggesting that TGF-β plays important roles in maintaining 
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normal immune responses (87–89). TGF-β binds to its receptors, 
primarily TGF-βRI and TGF-βRII, to activate a downstream 
cascade (234). First, the intracellular receptor Smad (R-Smad) 
proteins Smad2/3 are recruited and phosphorylated, and the 
phosphorylated Smad2/3 then combine with Smad4 or TIF1γ 
to form a trimeric complex. The trimeric complex translocates 
to the nucleus to regulate relative gene expression by binding to 
the responsive regulatory regions (90). TGF-β can also activate 
Smad-independent pathways, such as small GTPases, MAPK, 
and PI3K pathways (235).

Tolerant NK  cells can mediate benign effects to maintain 
physiological homeostasis. However, cells induced in the 
context of chronic infection or the cancer microenvironment 
are harmful for the treatment of related diseases (236, 237). 
For example, TGF-β upregulation induces reduced secretion 
of IFN-γ by repressing the normal expression of T-bet in the 
pathologic niche (238). High levels of TGF-β induce a weak 
NKG2D/DAP10 and CD244/SAP signal, leading to NK  cells 
that are unable to eliminate hepatitis B virus (HBV) infection 
in chronic hepatitis B (CHB) (239, 240). Later, another report 
showed that TGF-β and IL-10 in CHB-infected and hepatic 
carcinoma patients induce the expression of microRNA (miR)-
146a, which causes reduced IFN-γ production and cytotoxicity, 
resulting in a poorer prognosis (241). Furthermore, TGF-β-
induced miR-183 represses DAP12 transcription and transla-
tion (242), or reduces the expression of NKp30 and NKG2D 
(243), to further weaken NK  cell cytotoxic functions in the 
tumor microenvironment. The abnormal tolerant NK  cells 
cannot eliminate infected or transformed cells, which leads to 
immune evasion by these cells.

TgF-β and iL-15 Develop Regulatory  
NK Cells
Decidual NK cells (dNK) are distinguishable from PB NK cells 
because more than 90% of these cells are characterized by a 
CD56brightCD16−CD49a+CD9+ phenotype with a low cytotoxic 
effect and high cytokine secretion ability (15, 244, 245). Previous 
reports have shown that they constitute 50–90% of decidual lym-
phocytes during the first trimester of pregnancy (244, 246, 247). 
The accumulated NK cells can control extravillous trophoblast 
invasion and vascular remodeling by secreting different amounts 
of molecules, such as GM-CSF, colony-stimulating factor 1, 
angiopoietin-2, vascular endothelial cell growth factor, and pla-
cental growth factor (248, 249). Furthermore, dNK cell-derived 
IFN-γ has been shown to be critical for vessel modification and 
decidual cellularity in mice (250). Inflammatory responses in 
decidual, caused by allogenic fetal cell invasion and other factors, 
can result in abortion (246, 251). To ensure a normal pregnancy, 
researchers have determined that regulatory T cells can mediate 
an inhibitory response to the aggressive alloantigen (252), and 
CD86 blockage (253) and PD-1 (254) involvement can both 
play protective roles in pregnancy outcomes. As the dominant 
member of decidual lymphocytes, dNK  cells can provide 
immune-regulatory mechanisms to maintain a regular uterine 
environment. Indeed, IFN-γ derived from CD27+CD56bright 
dNK cells dampens Th17-induced inflammation to maintain a 

normal pregnancy (255). The abnormalities in the proportion 
and IFN-γ secretion of dNK  cells in patients with recurrent 
spontaneous abortions result in long-term Th17-induced 
inflammation and eventual pregnancy failure (255). Another 
study subsequently showed that the crosstalk between dNK cells 
and CD14+ myelomonocytic cells results in the generation of 
regulatory T cells for the inhibition of abnormal inflammation 
in the uterus (256).

The above findings demonstrate the important regulatory 
roles of dNK  cells; however, whether dNK  cells are derived 
from the differentiation of local NKPs or the migration of PB 
NK  cells or both still needs to be studied. Nevertheless, under 
hypoxic conditions, endometrium-derived TGF-β and stromal 
cell-derived IL-15 may function to shape unique dNK  cells  
(16, 19, 257). Indeed, TGF-β promotes the conversion of CD16+ 
PB NK cells to CD16− cells and inhibits the expression of NKp30 
to further inhibit cytotoxic functions, both of which lead to cells 
with similarities to dNK  cells (17). Furthermore, TGF-β can 
induce the expression of CD103 and CD49a to increase the likeli-
hood of the cells residing in the uterus (9, 258). Moreover, one 
study applied TGF-β1, IL-15 and a demethylating agent under 
hypoxic conditions to successfully transform PB NK  cells into 
dNK-like cells (18). These findings imply that the specific hypoxic 
state of the uterus, combined with the help of TGF-β and IL-15, 
shapes particular regulatory NK cells.

CYTOKiNe COCKTAiLS PROMOTe  
IN VITRO eXPANSiON OF NK CeLLS

As mentioned above, multiple cytokines can regulate NK  cell 
development, proliferation and activation. Previous studies have 
observed that NK cells can exert graft-versus-leukemia reactions 
without causing graft-versus-host disease (GVHD) in allogeneic 
hematopoietic transplantation (259). Furthermore, pioneering 
work by the Miller group showed that infusion of haplo-identical 
NK cell infusions activated by IL-2 can induce remission in AML 
patients (260). NK cells, therefore, are promising candidates for 
the treatment of hematological malignancies. However, the gen-
eration of sufficient NK cell quantities with robust effectiveness 
remains challenging. Therefore, strategies to expand or induce 
NK cells from primary NK cells or CD34+ cells with high cytotox-
icity using different combinations of cytokines are actively being 
developed (261, 262) (Figure 2).

expansion of NK Cells from PB or UCB  
NK Cells
The most effective protocols to expand NK cells from primary 
NK cells depend on the presence of feeder cells, such as genetically 
modified K562 cells, Epstein-Barr virus-transformed lympho-
blastoid B cell lines (EBV-BLCL) and irradiated autologous cells 
(263–265) (Figure 2). One group has utilized double-transduced 
K562 cells with membrane-bound IL-15 and costimulating 
ligand 4-1BBL (K562-mbIL15-41BBL) as feeder cells along with 
low concentrations of IL-2, which results in dramatic PB NK cell 
expansion with negligible T  cell expansion (264, 266, 267). 
K562-mbIL15-41BBL cell-stimulated NK  cells can continually 
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proliferate for 8–12 weeks, acquire up to 108 percent of the num-
ber of originally seeded NK cells and maintain high cytotoxic 
capacity (268). The K562-mbIL15-4-1BBL-based expansion 
method has been adapted for use under Good Manufacturing 
Practice conditions that can be used in the clinic (264, 269). 
K562-mbIL-15-4-1BBL cells can also be used to expand UCB 
NK cells with enhanced proliferation and cytotoxicity (270). 
Other gene-modified K562 cells are also used in expansion 
systems. K562-IL-15Rα-4-1BBL feeder cells, in combination 
with soluble IL-15, stimulate NK cell expansion with increased 
expression of natural cytotoxicity receptors, correlating 
with enhanced cytolytic functions (271, 272). Furthermore, 
K562-mbIL-21 cells can be developed to act as feeders and 
are reported to promote more vigorous NK  cell expansion 
compared with K562-mbIL-15 cells (273). EBV-BLCL and 
autologous cells are also used as feeder cells, combined with 
the addition of IL-2, IL-15 and OKT3 (anti-CD3 antibody to 
inhibit T cell expansion) (263, 274). The protocols that expand 
NK  cells without feeder cells are also applied for NK  cell 
treatment. The PB mononuclear cells from healthy donors or 
leukemia patients are cultured in stem cell growth medium 
supplemented with 5% human serum with the addition of 
IL-2 and OKT3 (275–277). Moreover, the expanded NK cells 
show significant cytotoxicity toward primary leukemia cells 
and K562 cells. Overall, primary NK cell expansion is primar-
ily based on the help of feeder cells to provide appropriate 

signals from cytokines and activating ligands and can also be 
expanded merely with cytokines.

Differentiation and expansion of NK Cells 
from BM or UCB CD34+ Cells
Initially, BM CD34+ cells were widely used for the generation of 
NK cells, but UCB CD34+ cells have become more frequently uti-
lized as UCB is easier to obtain and is rich in HSCs (2, 278–282) 
(Figure 2). An efficient protocol to expand NK cells from CD34+ 
cells was established by the group of Spanholtz et al. (283, 284). 
They separated UCB CD34+ cells and then cultured them in a 
clinical-grade culture medium with human serum and a mixture 
of cytokines, such as FL, KL, IL-7, GM-CSF, TPO, IL-15, and IL-2, 
and heparin in the absence of feeder cells. They can acquire up to 
109 CD34+cell-derived NK cells in fully closed static cell culture 
bags and automated bioreactors that can effectively kill leukemia 
cells in vitro or in vivo. These NK cell products have been used in 
a phase I trial to treat elderly AML patients (CCMO nr. NL31699 
and Dutch Trial Register nr. 2818). Other protocols that improve 
NK cell development and function by adding methylprednisolone 
to induce preferential differentiation of HSCs toward NK  cells 
or by adding IL-12 or IL-21 to promote NK cell maturation and 
cytotoxicity to tumor cells are developing (189, 190, 285). The 
improvement of protocols to acquire functional NK  cells with 
high quantity can be efficiently applied in the clinic.
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improving NK Cell Survival and Function  
in Clinical Treatments
Natural killer cells, which are derived and expanded from autolo-
gous or allogeneic blood samples, can be applied in adoptive 
therapy. However, the low concentration or absence of cytokines 
in the body has often limited NK cell persistence postinfusion. 
To improve in vivo expansion, the Dario Campana group linked 
the human IL15 gene to the gene encoding the transmembrane 
domain of CD8α (mbIL15) (131). The mbIL-15-NK  cells can 
survive and proliferate in  vitro or in  vivo without exogenous 
cytokines. They have superior cytotoxicity against solid tumors 
and leukemia cells in vitro and against leukemia cells in xenograft 
models, indicating that the expression of mbIL15 may improve 
the postinfusion cytotoxic capacity of NK  cells. Similarly, we 
have noted that IL-15 can induce prolonged NK cell antitumor 
effects after cytokine withdrawal, which suggests that IL-15 can 
be widely used in adoptive NK cell therapy (168). Moreover, the 
super-agonist IL-15-IL-15Rα-Sushi-Fc fusion protein (ALT-803) 
potently stimulates NK cell cytotoxic activity than native IL-15 
(286) and has been used in the clinical trail to evaluate its safety 
and efficacy (NCT02099539). Additionally, preactivation of 
NK cells with IL-12/15/18 can induce memory-like NK cells with 
enhanced cytotoxicity toward tumors. The cells have been used in 
the clinical treatment with AML patients (NCT01898793). IL-12 
and IL-21 can promote NK cell maturation with improved func-
tions, which are good candidates to be applied in NK cell adoptive 
therapy (189, 190, 212).

Chimeric antigen receptor (CAR)-modified NK cells display 
a new possibility for the application of adoptive NK cell-based 
therapy (287). Preclinical studies to utilize CAR-expressing 
NK cells targeting CD19 or CD20 in B cell leukemia show effec-
tive killing toward tumor cells (267). In addition, CD19-CAR 
NK cells have been applied in treating B-ALL (NCT01974479) or 
ALL and CLL (NCT03056339) in clinical trails. To improve the 
efficacy of CAR-NK cells, the efforts to add genes that can elicit 
IL-15 production or other activating signals are now underway 
(288). However, new strategies still need to be developed to 
overcome the low transfection efficiency of NK cells.

Negative regulators can be treated as immune-checkpoints 
to shape immune responses. KIR and NKG2A are well-studied 
immune-checkpoints of NK cells, which can be blocked to gain 
better NK  cell efficacy (289, 290) (Figure  2). The combination 
of anti-KIR mAbs lirilumab and lenalidomide has been used in 
a Phase I clinical trial (NCT01217203) with multiple myeloma 
patients. However, the outcomes need further study. Furthermore, 
anti-NKG2A antibody has also been applied in multiple 
clinical trials for patients with chronic lymphocytic leukemia 
(NCT02557516), squamous cell carcinoma of the head and neck 

(NCT02643550), gynecologic malignancies (NCT02459301), 
and squamous cell carcinoma of the oral cavity (NCT02331875). 
Other strategies are developing to upregulate activating signals 
that can significantly prolong antitumor activity of NK cells, such 
as retroviral transduction of NKG2D-DAP10-CD3ζ in NK cells 
(291) (Figure 2). The design of bi-specific antibodies that link the 
antigens on tumor cells, such as CD33, CD20, and CD19, together 
with CD16 on NK cells direct NK cells toward tumors and elicit 
efficient tumor cell killing(292). Additionally, the tri-specific 
antibody that integrates IL-15 in the existing bi-specific antibody 
further promotes NK cell activation to facilitate NK cell cytotox-
icity (293). Overall, the developments to improve the efficacy of 
NK cell adoptive therapy are ongoing and may result in broader 
clinical applications in the near future.

CONCLUSiON

The development and functional maturation of NK  cells are 
controlled by diverse cytokines. Different cytokine cocktails 
are needed for distinct NK  cell developmental stages that are 
guided by the expression pattern of relative cytokine receptors. 
NK  cells are heterogeneous and can be divided into cytotoxic, 
tolerant and regulatory NK  cells. They distribute throughout 
the body in different tissues and can be shaped by their specific 
tissue environment via diverse combinations of cytokines. Given 
a robust understanding of each cytokine in NK cell development 
and function, NK cells can be differentiated and expanded in vitro 
to generate sufficient numbers for clinical treatment. NK  cells 
derived from primary NK cells mainly require cytokines to pro-
mote NK cell expansion and function, such as IL-2, IL-12, and 
IL-15. Cells from HSC differentiation need cytokines to promote 
the survival and proliferation of HSCs, such as FL, KL, and IL-3, 
and to specify differentiation to NK cells with high cytotoxicity, 
such as IL-15, IL-2, IL-12, and IL-21. The application of IL-15 or 
IL-12/15/18 can further enhance NK cell cytotoxicity to induce 
greater efficacy for adoptive transfer therapy. Overall, under-
standing the primary roles and modes of action of each cytokine 
is critical to apply them more effectively in the clinic.
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