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Abstract: Information geometry has offered a way to formally study the efficacy of scientific models
by quantifying the impact of model parameters on the predicted effects. However, there has been
little formal investigation of causation in this framework, despite causal models being a fundamental
part of science and explanation. Here, we introduce causal geometry, which formalizes not only how
outcomes are impacted by parameters, but also how the parameters of a model can be intervened
upon. Therefore, we introduce a geometric version of “effective information”—a known measure of
the informativeness of a causal relationship. We show that it is given by the matching between the
space of effects and the space of interventions, in the form of their geometric congruence. Therefore,
given a fixed intervention capability, an effective causal model is one that is well matched to those
interventions. This is a consequence of “causal emergence,” wherein macroscopic causal relationships
may carry more information than “fundamental” microscopic ones. We thus argue that a coarse-
grained model may, paradoxically, be more informative than the microscopic one, especially when it
better matches the scale of accessible interventions—as we illustrate on toy examples.

Keywords: model selection; causality; sloppy models; information geometry; effective information

1. Introduction

Many complex real-world phenomena admit surprisingly simple descriptions, from the
smallest of microphysics to aspects of economics [1–3]. While this is not seen as entirely
coincidental, the precise reasons for this fortunate circumstance are not entirely under-
stood [4,5]. Two complementary solutions may be sought: On the one hand, we may
hypothesize that this is an objective property of nature, thereby looking for some mecha-
nism common among complex systems that allows them to be well-described with only
a few parameters [3,6]. On the other, we may guess that it is a subjective property of
our perception and then try to formalize the process by which we find useful patterns in
arbitrarily complex systems [5,7,8]. In the recent years, substantial progress has been made
in developing both of these perspectives, grounded in information theory [9].

One compelling argument for the first hypothesis has been made from information
geometry. The approach starts by associating with any given model a particular “model
manifold,” whose geometric properties can tell us whether and which simplifications can
be helpful [6,10]. It turns out that for many real-world models, this manifold is highly
anisotropic, having a hierarchical hyper-ribbon structure [11]. This property, termed
“sloppiness,” indicates that only a few of the many microscopic model parameters are actu-
ally important for the model predictions—thus allowing for model simplification [12,13].
While it is not yet clear how general this property is, sloppiness was empirically illus-
trated in a number of biochemical and physical models and argued for on some general
grounds [6,14,15]. This way, sloppiness provides an explanation for how emergent simplic-
ity may be an objective property of complex systems themselves.

The second perspective instead takes as its starting point the well-known aphorism
that “all models are wrong, but some are useful” [7]. One way to see this is as a rejection of
the reductionist notion that a “fundamental” microscopic description is the “correct” one,
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while all emergent system properties are derivatives from it [2,16]. Instead, if no model is
seen as inherently best, then we can only compare models by their efficacy in predicting
and controlling a given system. This amounts to finding an effective causal description
of the system—such that distinct interventions causally translate to unique effects. In this
perspective, simple descriptions may arise in part from our efforts to match the system
description to how we interact with it [8,9].

Despite the fundamental role causality plays in science and its applications, its formal
study has been scarce and elusive, until recently [17]. Especially in complex systems,
even conceptually defining what it means for something to be the cause of an observed
phenomenon may be surprisingly tricky [18], let alone empirically verifying this [19,20].
In particular, the way models are studied in sloppiness makes no distinction between
parameters as causes of the measured data, or merely as its phenomenological descriptors
(e.g., slope of a linear fit) or statistical correlates.

Consider for example some bacterial population, whose size y(t) = eθ t at some time
t depends on its growth rate θ. We cannot say that θ is the cause of a large population;
it remains merely a descriptor of the exponential fit, until we introduce an additional
ingredient: “intervention capabilities”—some (at least hypothetical) way in which we
can control this parameter and observe its effects. We can formalize this by recasting our
system as a Bayesian dependency network and defining the do-operator [17]: do(θ = θ0),
which isolates the effects of actively setting the parameter θ to value θ0, regardless of any
other confounding factors that might influence it (such as if θ were also affected by t).
The role of the do-operator is to distinguish the effect of a given intervention from that of all
other possible interventions (or a lack thereof), thereby allowing a rigorous counter-factual
definition of causality. This allows reliably disentangling causal dependencies p(y|do(θ))
from mere statistical ones p(y|θ) [21]. See Appendix A for a worked out example explicitly
illustrating how this distinction arises.

Building on this, Judea Pearl developed the “causal calculus” framework, providing
a set of tools to reliably work with intricate causal structures [17]. Further combining
causal calculus with information theory allowed rigorously quantifying the amount of
Effective Information (EI) in the causal structure of a given model [22]. In a phenomenon
termed “causal emergence,” it was then pointed out that in some systems, a dimension-
reduced description (such as a coarse-graining) may paradoxically carry more information
about causation than the full microscopic model. This is because dimension reduction can
sometimes yield a substantial reduction in noise and degeneracy [23,24].

In this work, we extend the causal emergence framework to continuous systems
and show that in that context, it is naturally related to information geometry and sloppy
models. This leads to a novel construction, which we term causal geometry, where finding
the causally most informative model translates to a geometric matching between our
intervention capabilities and the effects on system behaviors, both expressed as distance
metrics on the model’s parameter space. This framework captures precisely how the
inherent properties of the system’s behavior (its sloppiness structure) and their relation to
its use context (matching to intervention capabilities) both play a role in optimal model
selection, thereby reconciling the two above perspectives. This comes up because, on the
one hand, intervention capabilities are never unlimited in their degree or fineness and
perfection of control, and on the other, because the behaviors of open physical systems
are never without noise. This helps to formalize how neither the “simplest” nor the most
“fundamental” reductionist model may be universally seen as preferable.

We take a moment here to further clarify how this work fits within the current literature
context. Besides sloppiness and causal emergence, there have been other approaches
developed for optimal model selection [25,26]. For example, Bayesian inference allows
choosing the optimal modeling level by maximizing the posterior likelihood over a pre-
defined library of models [27]. In contrast, the sloppiness approach lacks a scalar quantity
to be optimized for the best model and only provides a heuristic for reducing unnecessarily
complex models [6]. To mitigate this, in [13], the authors optimized mutual information
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to find the set of coarse-grained parameters on sloppy manifolds that could reasonably
be constrained by some limited experimental observations, thus selecting the optimal
modeling level for the available data. The mathematical procedure thus carried out closely
paralleled that developed earlier in the causal emergence for discrete systems [23,24].
In our work, we use this formal resemblance to understand the connection between these
two distant fields: sloppy models and causal calculus. This allows giving a continuum
formulation of causal emergence, as well as a novel local measure of causal optimality.
On the other side, our work establishes the proper formal role of interventions and causality
in sloppiness, potentially resolving a long-standing formal challenge around the non-
covariance of metric eigenvalues [28] and showing that not only the hyper-ribbon manifold
structure, but also its relation to intervention capabilities account for the emergence of
simple models.

In Section 2, we define the Effective Information (EI) for continuous models, which
captures the amount of information in the model’s causal relationships. We illustrate it on
a simple example (Section 2.1) and show how restricting the set of allowed interventions
may sometimes, surprisingly, make the causal model more informative. Section 3 then in-
troduces causal geometry. Specifically, it relates the continuous EI to information geometry,
introducing a local geometric measure of causal structure, and providing a way to find the
locally most effective model for a given set of intervention capabilities using the techniques
of information geometry. We demonstrate our construction on another simple toy model in
Section 4, showing how causal emergence can arise in our geometric formulation, subject
to the given interventional and observational capabilities.

2. Effective Information in Continuous Systems

For the purposes of this work, we formalize a causal model as a set of input-output
relations, or more precisely, a map from all possible interventions to the full description
of all effects within the context of some system [24]. While the set of all hypothetically
possible interventions on a given physical system is enormous and impractical to consider
(involving arbitrary manipulations of every subatomic particle), the set of experimentally
doable (or even considered) interventions for a given context always represent a much
smaller bounded space X , which we refer to here as “intervention capabilities.” Similarly,
while an intervention will lead to uncountable microscopic physical effects, the space
of specific effects of interest Y is much smaller and often happens to be closely related
to the intervention capabilities. All causal models by definition use some such subset
of possibilities, and it is common in the literature around causation to restrict the set of
hypotheticals, or counterfactuals, within a causal model [29]. In this work, we will illustrate
how finding the optimal causal model for a given system is about a matching between the
system behavior and the intervention capabilities considered.

As the focus of this paper is on continuous systems, we consider X and Y to be
continuous spaces, with points x ∈ X and y ∈ Y . To formally discuss the causal model of
our system, we make use of the do(x) operator, as per Judea Pearl’s causal calculus [17].
This operator is defined for any doable intervention the experimenter is capable of either
performing or modeling, allowing assessing its causal effects. This allows us to formally
describe a causal model as a map:

x→ p(y | do(x)) (1)

where p is the probability density over effect space Y resulting from “doing” the interven-
tion x. Note that this is distinct from p(y | x) in that the do operator allows us to distinguish
the correlation introduced by the causal relation x→ y from one due to a common cause
a→ {x, y}.

The notion of causality is then formalized as a counterfactual: How does the effect of
do(x) differ from the effect of doing anything else? This latter “null effect” may include
interventions such as do(¬x), but it can also include all other possible interventions: it is
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thus formally described by averaging together the effects of all considered intervention
capabilities X , giving the total “effect distribution”:

ED(y) = 〈p(y | do(x))〉x∈X (2)

This way, to know precisely which effects do(x) causes, we can compare ED(y) to p(y | do(x)).
The distinguishability between these distributions may be captured with the Kullback–
Leibler divergence DKL[p(y | do(x)) ‖ ED(y)], giving us the amount of information associ-
ated with the application of an individual do(x) intervention [23,30].

Averaging over all accessible interventions gives the information of the system’s entire
causal structure, termed the total “effective information”:

EI = 〈DKL[p(y | do(x)) ‖ ED(y)]〉x∈X (3)

Discrete versions of this effective information have been explored in Boolean net-
works [23] and graphs [31]. Note that the definition of EI here is identical to the mutual
information between the uniform distribution over interventions ID(x) = const and the
resulting distribution over effects ED(y), so that: EI = I(ID; ED) [22,24].

We proceed to illustrate with a simple example how the EI varies across families of
simple physical systems. As such, we show how it may be used to select the systems
that are in some sense “best controllable,” in that they best associate unique effects with
unique interventions [32]. Additionally, this example will help us illustrate how the EI may
sometimes allow us to identify a coarse-grained system description that is more informative
than the full microscopic one—thus illustrating causal emergence [24].

2.1. Toy Example: Dimmer Switch

Consider a continuous dimmer switch controlling a light bulb, but with an arbitrary
non-linear function y = f (θ), a “dimmer profile,” mapping from the switch setting θ ∈
Θ = [0, 1] to the light bulb brightness y ∈ Y = [0, 1] (Figure1a). To quantify information
about causation in continuous systems, we must carefully account for noise and errors
in our inputs and outputs; else, infinite precision leads to infinite information. This is
an issue for the application of all mutual information measures or their derivatives in
deterministic continuous systems. Realistically, in operating a dimmer switch, any user
will have certain “intervention error” on setting its value, as well as “effect error,” which
can come either from intrinsic system noise or from extrinsic measurement error. To encode
the effect error, we can replace the deterministic mapping θ → y = f (θ) with a probabilistic
one θ → p(y | do(θ)) = Ny( f (θ), ε2)—the normal distribution centered on f (θ) and with
standard deviation ε. While we could incorporate intervention error of setting θ into
this probability distribution as well, it is instructive for later discussion and generality
to keep it separate. The intervention error is thus similarly encoded by introducing a
probabilistic mapping from the “do”-able interventions x ∈ X = [0, 1] to the physical
switch settings with some error δ, as x → q(θ | do(x)) = Nθ(x, δ2). Here, we can think of
the interventions x ∈ X as the “intended” switch settings, as in practice, we cannot set the
switch position with infinite precision. Note that while we do not explicitly model any
possible confounding factors here, we assume that these may be present and important,
but are all taken care of by our use of the do-operator. This ensures that only true causal
relations, and not spurious correlations, are captured by the distributions p and q.
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Figure 1. Illustrating continuous Effective Information (EI) on a simple toy system. (a) shows the system construction:
a dimmer switch with a particular “dimmer profile” f (θ). We can intervene on it by setting the switch θ ∈ (0, 1) up to
error tolerance δ, while effects are similarly measured with error ε; (b) shows that for uniform errors ε = δ = 0.03, out of
the family of dimmer profiles parametrized by a (left), the linear profile gives the “best control,” i.e., has the highest EI
(where dark blue—numerical EI calculation and light blue—approximation in Equation (4)); (c) illustrates how for two
other dimmer profiles (left), increasing error tolerances ε = δ influence the EI (right, calculated numerically). The profile in
red represents a discrete binary switch—which emerges if we restrict the interventions on the blue dimmer profile to only
use “ends of run.” Crucially, such coarse-graining allows for an improved control of the light (higher EI) when errors are
sufficiently large.

With this setup, we can now use Equation (3) to explicitly compute an EI for different
dimmer profiles f (θ) and see which is causally most informative (has the most distinguish-
able effects). To do this analytically for arbitrary f (θ), we must take the approximation that
δ and ε are small compared to one (the range of interventions and effects) and compared to
the scale of curvature of f (θ) (such that ε f ′′(θ) � f ′(θ)2). In this limit, we have (for the
derivation, see setup in Equation (6) below and Appendix B.1):

EI ' −1
2

∫
dθ log

[
2πe

((
ε

f ′(θ)

)2
+ δ2

)]
, (4)

which echoes the form of the expression for entropy of a normal distribution. From this, we
see variationally that, given the fixed end-points f (0) = 0 and f (1) = 1, EI is maximized iff
f ′(θ) = 1: a uniformly linear dimmer switch. We can check this numerically by computing
the exact EI for several different choices of f (θ) (Figure 1b).

A slightly more interesting version of this example is when our detector (eyes) per-
ceives light brightness on a log, rather than linear, scale (Weber–Fechner law, [33]), in which
case the effect of the error will be non-uniform: ε(y) ∝ y. If this error is bound to
be sufficiently small everywhere, Equation (4) still holds, replacing only ε → ε(y) ∝
y = f (θ). Again, we can variationally show that here, EI is maximal iff f (θ)/ f ′(θ) is
constant (up to fluctuations of magnitude O[δ/ε]), giving the optimal dimming profile
f (θ) = (eθ/r − 1)/(e1/r − 1), with some constant r � δ/ε. In reality, the lighting industry
produces switches with many dimming profiles that depend on the application [34], so our
approach can be seen as a principled way to optimize this choice.

Interestingly, restricting the accessible interventions can sometimes increase the
amount of effective information if it increases the distinguishability, and therefore in-
formativeness, of interventions. This is a form of causal emergence, wherein a higher level
(coarsened) macroscopic model emerges as the more informative system description for
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modeling causation [24]. To give a particular example here, we compare the continuous
dimmer profile shown in Figure 1c (left, blue) to its discrete restriction (left, red)—which
corresponds to a simple binary switch. When the intervention and effect errors δ = ε
are small, the continuous switch gives more control opportunities and is thus preferable;
its EI is larger than the 1 bit for the discrete switch. However, as we increase the errors,
we see a crossover in the two EI values. In this regime, the errors are so large that the
intermediate switch positions of the continuous profile become essentially useless and are
“distracting” from the more useful endpoint settings. Formally, such causal emergence
arises due to the averaging over the set of all interventions in Equation (3). Practically, it
captures the intuition that building good causal models, as well as designing useful devices
involve isolating only the most powerful control parameters out of all possible degrees of
freedom [32].

3. Causal Geometry

Taking inspiration from information geometry, we can construct a more intuitive geo-
metric expression for the EI [13]. For studying causal structures of models, this “geometric
EI” we introduce may be viewed as a supplement to the usual EI in Equation (3). While the
geometric EI corresponds to the EI in a particular limit, we suggest that it remains useful
more generally as an alternative metric of causal efficacy: it captures a causal model’s
informativeness like the EI does, but in a way that is local in a system’s parameter space.
In this way, it frames causality not as a global counter-factual (comparing an intervention
to all other interventions) [17], but as a local neighborhood counter-factual (comparing an
intervention to nearby interventions). On the flip side, our construct provides a novel for-
mulation of information geometry that allows it to explicitly account for the causal relations
of a model. Moreover, we argue that this is necessary for formal consistency when working
with the Fisher information matrix eigenvalues (namely, their covariant formulation; see
Section 3.2) [28]. This suggests that model reduction based on these eigenvalues may not
be made fully rigorous without explicitly accounting for causal relations in the model.

3.1. Construction

Section 2 described a causal model as a set of input-output relations between inter-
ventions X and effects Y . Here, we investigate the relationship of such a causal model
with the space of parameters Θ that describe the underlying physical system. While these
parameters need not necessarily have any direct physical meaning themselves, they are
meant to give some abstract internal representation of the system—i.e., they mediate the
mapping between interventions and effects. For example, while the notion of energy is
merely an abstract concept, it provides a useful model to mediate between interventions
such as “turning on the stove” and effects like “boiling water.” The goal of our construction
here is to compare how well different physical models capture the causal structure of
a system.

As we are focusing on continuous systems, we assume that our parameter space Θ
forms a smooth d-dimensional manifold, with parameters θµ indexed by µ, ν ∈ {1, 2, . . . , d}.
Each accessible intervention x ∈ X then maps to some probability distribution over
parameters x → q(θ | do(x)), and each parameter in turn maps to a distribution over
the observed effects θ → p(y | do(θ)). The causal relations we are interested in here are
thus simply x → θ → y, but these are assumed to be embedded in some larger more
complicated causal graph of additional confounding factors. These other possible hidden
causes highlight the importance of using the do-operator to isolate the causal relations in
which we are interested (see Appendix A for a simple example). Our one assumption is
that the parameter space Θ is chosen to be a sufficiently complete description of the system
that no causal link can pass from X to Y directly without being reflected on Θ.
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To understand the role of various parameters θµ, we can ask how much the effects
change as we perturb from some set of parameters in some direction: from θ to θ + dθ.
Using the Kullback–Leibler divergence and expanding it to leading order in dθ, we get:

DKL[p(y|do(θ)) ‖ p(y|do(θ+ dθ))] ' gµν(θ) dθµ dθν (5)

where summation over repeated indices is implied. This defines the Fisher information
metric gµν(θ) = −

〈
∂µ∂ν log p(y|do(θ))

〉
p(y|θ) with ∂µ ≡ ∂

∂θµ
. This introduces a distance

metric on the parameter space Θ, turning it into a Riemannian manifold, which we term the
“effect manifold”ME (this is usually called simply the “model manifold” in the literature,
but here, we want to distinguish it from the “intervention manifold,” introduced below).
More precisely, it is usually defined asME ≡ {p(y | do(θ))}θ∈Θ—the collection of all the
effect distributions, or the image of the parameter space Θ under the model mapping,
with Equation (5) being the natural distance metric on this space [6,10,14].

Just as the mapping to effects defines the effect manifoldME, we can similarly con-
struct an “intervention manifold”MI . For this, we use Bayes’ rule to invert the mapping
from interventions to parameters x → q(θ | do(x)), thus giving θ → q̃(do(x) | θ)—the
probability that a given parameter point θ was “activated” by an intervention x. The in-
tervention manifold is thus defined asMI ≡ {q̃(do(x) | θ)}θ∈Θ, with the corresponding
Fisher information metric hµν giving the distances on this space. With this, we can now
summarize our construction:

interventions x ∈ X , parameters θ ∈ Θ, effects y ∈ Y
x→ q(θ | do(x)), θ→ p(y | do(θ))

effect manifoldME ≡ {p(y | do(θ))}θ∈Θ with metric gµν(θ) = −
∫

dy p(y | θ) ∂µ∂ν ln p(y | do(θ))

intervention manifoldMI ≡ {q̃(do(x) | θ)}θ∈Θ with metric hµν(θ) = −
∫

dx q̃(do(x) | θ) ∂µ∂ν ln q̃(x | θ)

where q̃(do(x) | θ) ≡ q(θ | do(x))∫
dx q(θ | do(x))

and ∂µ ≡
∂

∂θµ
with µ, ν ∈ {1, 2, . . . , d}

(6)

Note that for Bayesian inversion in the last line, we used a uniform prior over the
intervention space ID(x) = const, which amounts to assuming that statistically, interven-
tions are uniformly distributed over the entire considered space X . Note that this is not a
choice of convenience, but rather of conceptual necessity for correctly defining information
in a causal model, as argued in [24]. The natural point-wise correspondence between the
two manifoldsME ↔MI : p(y | do(θ))↔ q̃(do(x) | θ) then allows for a local comparison
between the two geometries. Alternatively, we may simply think of the parameter space Θ
with two separate distance metrics on it, effect metric g(θ) and intervention metric h(θ).
With this setup, we can now define our “geometric” effective information:

EIg = log
[

VI

(2πe)d/2

]
− 〈l(θ)〉I (7)

with l(θ) =
1
2

log det
(

1 + g(θ)−1 h(θ)
)

(8)

Here, VI is the volume of the intervention manifold MI , which can be computed as
VI =

∫
ddθ
√

det h. It quantifies the effective number of distinct interventions we can do,
and so, the first term in Equation (7) gives the maximal possible amount of information
about the causation our model could have, if all interventions perfectly translated to effects.
The second term then discounts this number according to how poorly the interventions
actually overlap with effects: geometrically, the expression in Equation (8) quantifies the
degree of matching between the metrics g and h at the point θ (here, 1 stands for the
identity matrix). This way, the loss term l(θ) can be interpreted as a measure of “local
mismatch” between interventions and effects at θ, quantifying how much information
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about causation is lost by our modeling choice. The average is then taken according to
the intervention metric as: 〈l(θ)〉I ≡ 1

VI

∫
ddθ
√

det h l(θ). Note that the expression in
Equation (7) is identical to the approximation in Equation (4) for the setup in that example.

In Appendix B.2, we show that this expression for EIg in Equation (7) can be derived
as the approximation of the exact EI in Equation (3) when both the mappings are close
to deterministic: p(y | do(θ)) = Ny

(
f (θ), ε2) and q̃(do(x) | θ) = Nx

(
F(θ), δ2), for some

functions f : Θ→ Y and F : Θ→ X , with small errors ε and δ (which may be anisotropic
and nonuniform). Outside of this regime, the EI and EIg can differ. For instance, while
EI is positive by definition, EIg can easily become negative, especially if g is degenerate
anywhere on the manifold. Second, while EI captures the informativeness and there-
fore effectiveness of a causal model globally, EIg, and more specifically the landscape
l(θ), can show us which local sectors of the parameter space are most and least causally
effective. Finally, the global nature of the computation for the exact EI quickly makes
it intractable, even numerically, for many continuous systems due to the proliferation
of high-dimensional probability distributions—making EIg the more practical choice in
those settings.

3.2. Relation To Sloppiness

“Sloppiness” is the property empirically observed in many real-world models, when
the eigenvalues of the Fisher information matrix gµν take on a hierarchy of vastly varying
values [6,11,14]. As such, parameter variations in the directions corresponding to the
smallest eigenvalues will have negligible impact on the effects [14]. This leads to the
hypothesis that we may effectively simplify our model by projecting out such directions,
with little loss for the model’s descriptive power [12,13].

The trouble with this approach is that the components of the matrix gµν, and hence
its eigenvalues, depend on the particular choice of θ-coordinates on the effect manifold
ME [6,28]. Since the parameters Θ represent some conceptual abstraction of the physical
system, they constitute an arbitrary choice. This means that for a given point of ME
labeled by θ, we can always choose some coordinates in which locally, g(θ) = 1 (an
identity matrix), thus apparently breaking the above sloppiness structure. This issue is
avoided in the literature by relying on the coordinate independent global properties of
ME, namely its boundary structure [12].

Here, we show that by explicitly considering intervention capabilities, we can con-
struct a local, but still coordinate independent sloppiness metric. This becomes possible
since interventions give a second independent distance metric on Θ [28]. The matrix prod-
uct g−1h appearing in Equation (8) is then a linear transformation, and thus, its eigenvalues
are coordinate independent. This way, to evaluate how sloppy a given causal model is, we
suggest that it is more appropriate to study the eigenvalues of h−1g instead of those of g as
is usually done [6]. If we then want to identify the directions in the parameter space that
are locally least informative at a point θ, we first need to re-express the metric g in terms of
the coordinates for which h(θ) = 1 locally and then find the appropriate eigenvectors in
these new coordinates.

From this perspective, we see that the usual discussion of sloppiness, which does not
study interventions explicitly [6], may be said to implicitly assume that the intervention
metric h(θ) ∝ 1, meaning that all model parameters directly correspond to physically
doable interventions. Moreover, this requires that with respect to the given coordinate
choice, each parameter can be intervened upon with equal uniform precision—which
fixes the particular choice of coordinates on the parameter space. As such, the coordinate-
specific eigenvalues λg(θ) of the effect metric g(θ) studied in information geometry, become
physically meaningful in this special coordinate frame. In particular, our expression for
the local mismatch in Equation (8) can here be expressed in terms of these eigenvalues as
l(θ) = 1

2 ∑λ log
(
1 + 1/λg(θ)

)
. Thus, locally, the directions with the smallest λg account

for the largest contribution to the mismatch l. This recovers the standard intuition of
sloppiness: we can best improve our model’s descriptive efficacy by projecting out the
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smallest-λg directions [12,35]. By seeing how this result arises in our framework, we
thus point out that it formally relies on the implicit assumption of uniform intervention
capabilities over all model parameters.

It is worth noting that in the construction in Equation (6), it may be possible to integrate
out the parameters θ, giving directly the distribution of effects in terms of interventions
P(y | do(x)) =

∫
ddθ p(y | do(θ)) q(θ | do(x)) (we assume that Θ gives a complete descrip-

tion of our system in the sense that no causal links from X to Y can bypass Θ). This way, the
P(y | do(x)) distribution gives an effect metric ĝ(x) over the X -space, which can directly
quantify the amount of causal structure locally in our model. Nonetheless, the intervention
metric and Equation (8) are still implicitly used here. This is because the space X was
constructed such that the intervention metric over it would be uniform ĥ(x) = 1 every-
where. In turn, Equation (8) thus takes a particularly simple form in terms of ĝ(x). This
illustrates that regardless of the parametrization we choose to describe our system, causal
efficacy always arises as the matching between the effect metric and the intervention metric,
per Equation (8)—which may or may not take on a simple form, and must be checked
explicitly in each case. Furthermore, though this goes beyond the scope of this paper, we
may imagine cases where the actual interventions form a complicated high-dimensional
space X that is harder to work with than the parameter space Θ (just as the effect space
Y is often more complex than Θ). In fact, this may be the typical scenario for real-world
systems, where X and Y represent arbitrarily detailed descriptions of the system’s context,
while Θ gives a manageable system abstraction.

4. Two-Dimensional Example

In order to illustrate our causal geometry framework explicitly and show how higher
level descriptions can emerge within it, we use a simple toy model (based on the example
considered in [12,13]).

Imagine an experimenter has a mixed population of two non-interacting bacterial
species that they are treating with two different antibiotics. The experimenter’s measure-
ments cannot distinguish between the bacteria, and so, they are monitoring only the total
population size over time y(t) = e−θ1 t + e−θ2 t, where {θ1, θ2} ∈ [0, 1] are the death rates
of the two individual species. These death rates are determined by the two antibiotic
concentrations the experimenter treats the system with {x1, x2}, which are the possible
interventions here. In the simplest case, each antibiotic will influence both species via some
linear transformation A, such that θµ = ∑i Aµi xi.

This setup allows us to flesh-out the causal geometry construction and illustrate causal
emergence here. Our main question is: When is this system best modeled microscopically,
as the two independent species, and when does it behave more like a single homogeneous
population, or something else [36]? To identify when higher scale models are more informative
for the experimenter, we will calculate the geometric EIg from Equation (7) for the full
2D model described above and then compare it to two separate 1D coarse-grained model
descriptions, shown by the two red 1D sub-manifolds of the parameter space in Figure 2.

We first specify the quantities for the construction in Equation (6). Our interventions x,
having some uniform error tolerance δ, map to normal distributions over parameters θ as:
x→ q(θ | do(x)) = Nθ(Ax, A ATδ2), giving the Bayesian inverse probability q̃(do(x) | θ) =
Nx(A−1θ, δ2), and hence the intervention metric hµν = ∑i(A−1)iµ(A−1)iν/δ2. The effect
space y is constructed by measuring the population size at several time-points, spaced out at
intervals ∆t, such that the components of y are given by yn = y(n ∆t) = e−n ∆t θ1 + e−n ∆t θ2 ,
with n ∈ {1, 2, . . . , N} and error ε on each measurement (the initial conditions are thus
always y(0) = 2). Thus, we have θ → p(y | do(θ)) = Ny

(
{yn}, ε2) and effect metric

gµν = ∑n ∂µyn ∂νyn/ε2. Figure 2 shows these mappings with N = 2 for visual clarity,
and we use N = 3 for the EIg calculations below, but all the qualitative behaviors remain
the same for larger N. Figure 3 shows the resulting geometric EIg (blue curves), computed
via Equation (7) for varying values of the error tolerances ε and δ.
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Figure 2. An illustration of the causal geometry construction in Equation (6). The parameter space Θ of our model gets two
distinct geometric structures: the effect metric gµν(θ) and the intervention metric hµν(θ). Here, a model is seen as a map
that associates with each set of parameters θ, some distribution of possible measured effects y (right). As parameters θ may
involve arbitrary abstractions and thus need not be directly controllable, we similarly associate them with practically doable
interventions x (left). This way, our system description in terms of θ “mediates” between the interventions and resulting
effects in the causal model.
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Figure 3. Causal emergence from increasing errors for the toy model in Section 4. In all panels, the blue line shows the
EIg for the full 2D model, while red for the 1D sub-manifold A shown in Figure 2 (solid red line). In (a), we vary the effect
error ε at fixed intervention error δ = 10−2; (b) varies intervention error δ at fixed effect error ε = 10−2; and (c) varies both
together δ = ε. In each case, we see a crossover where, with no change in system behavior, the coarse-grained 1D model
becomes causally more informative when our intervention or effect errors become large.

We can similarly find the EIg for any sub-manifold of our parameter space, which would
lead to a coarse-grained causal model, with a correspondingly lower dimensional space of
intervention capabilities. To do this, we identify the pull-back of the two metrics in the full pa-
rameter space, to the embedded sub-manifold, as follows. We define a 1D submanifold of Θ as
a parametric curve (θ1, θ2) = (s1(σ), s2(σ)) with the parameter σ. The pull-back effect metric
on this 1D space with respect to σ will be the scalar ĝ(σ) = ∑µ,ν s′µ(σ)s′ν(σ) gµν(s1(σ), s2(σ)),
and similarly for intervention metric ĥ(σ). For the 1D submanifold depicted by the solid red
line in Figure 2, the resulting EIg is plotted in red in Figure 3.

The crossover seen in Figure 3 thus illustrates causal emergence: for larger error
values, the coarse-grained 1D description turns out to be more informative than the full 2D
model. Since this coarse-graining corresponds to the case where the two bacterial species
are seen as identical θ1 = θ2, we can say that at large errors, our bacterial colony is better
modeled as a single homogeneous population. Crucially, this arises not from any change in
system behavior, but merely from how we interact with it: either from what interventions
we impart or from which effects we measure. Note also that when both the intervention
and effect errors are scaled together δ ∝ ε, we see analytically from Equation (8) that l(θ) is
constant, and so:
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EIg ∼ log VI ∼ −d log δ (9)

which is also explicitly seen in Figure 3c. This indicates that, quite generally, we expect
to see crossovers between geometric EIs of models with different d as we scale errors,
with low-dimensional models being preferred at large noise. Since noise is ubiquitous
in all real-world complex systems, this argument suggests why reductionist microscopic
descriptions are rarely optimal from the perspective of informative interventions.

By carrying out similar calculations, in Figure 4, we explore how the optimal model
choice depends on the time-scales we care about for the population dynamics (effects)
and the antibiotics we are using (interventions), all at fixed errors ε, δ. When the two
antibiotics control the two bacterial species almost independently (A ∼ 1, Figure 4a), we
can identify three distinct regimes in the EIg plot as we tune the measurement time-scale
∆t along the x-axis. If we only care about the population’s initial response to the treatment
at early times, then we get a higher EIg by modeling our colony as a single bacterial
species. For intermediate times, the full 2D model has the higher EIg, showing that in this
regime, modeling both species independently is preferred. Finally, at late times, most of
the population is dead, and the biggest remaining effect identifies how dissimilar their
death rates were; the coarse-grained model given by the dashed red submanifold in Figure
2 (θ2 = 1− θ1) turns out to be more informative. In this regime, rather than viewing the
population as either one or two independent bacterial species, we may think of it as a
tightly coupled ecosystem of two competing species. Interestingly, such apparent coupling
emerges here not from the underlying system dynamics, but from the optimal choice of
coarse-grained description for the given effects of interest.
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Figure 4. The optimal model choice depends on both the effects we choose to measure and the
intervention capabilities we have. Horizontally, we vary the time-scale ∆t on which we measure the
bacterial population dynamics in our toy model (Section 4): the top row shows how this changes
the shape of our effect manifold. (a) shows the results when our intervention capabilities are nearly
in direct correspondence with the parameters θ. Here, the EIg plot shows that varying ∆t takes us
through three regimes: with submanifold A as the optimal model at early times, the full 2D model
optimal at intermediate times, and submanifold B most informative at late times. (b) shows that this
entire picture changes for a different set of intervention capabilities—illustrating that the appropriate
model choice depends as much on the interventions as on the effects.
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For a different set of intervention capabilities, where the antibiotics affect both species
in a more interrelated way, with A =

(
1 0.8

0.7 1

)
, this entire picture changes (Figure 4b).

In particular, we get the scenario where the “fundamental” two-species model is never
useful, and the unintuitive “two competing species” description is actually optimal at most
time-scales. Note also that in all cases, for very long and very short times ∆t, the geometric
EIg drops below zero. While in this regime, the agreement with exact EI breaks down
EIg 6= EI, it is also heuristically true that EIg < 0⇒ small EI, and so, the causal model is
no longer very useful here. Even so, as seen in Figure 4, some coarse-graining of the model
may still be effective even when the full microscopic description becomes useless.

5. Discussion

The world appears to agents and experimenters as having a certain scale and bound-
aries. For instance, solid objects are made of many loosely-connected atoms, yet in our
everyday experience, we invariably view them as single units. While this may be intuitively
understood in terms of the dictates of compression and memory storage [37], this work
proposes a way to formalize precisely how such a coarse-grained modeling choice may be
the correct (causally optimal) one. This is particularly true for a given set of intervention
capabilities. In particular, we frame model selection as a geometric “matching” in the
information space of the causal model to accessible interventions.

Intriguingly, this suggests that the correct choice of scientific modeling may not be
merely a function of the correct understanding of the system, but also of the context that
system is being used in or the capabilities of the experimenters. Thus, for example, if the
forces we used to handle solid objects were far larger than inter-atomic attraction holding
them together, then viewing objects as single units would no longer be a good model. This
echoes one of the main ideas in “embodied cognition” for AI and psychology, which posits
that in order for an agent to build accurate models of reality, it needs the ability to actively
intervene in the world, not merely observe it [38].

This highlights a potentially important distinction between optimizing a model’s
predictive efficacy and its causal efficacy. Many approaches to optimal model selection,
such as sloppiness, focus on getting computationally efficient predictions from a few
fundamental parameters. In contrast, optimizing causal efficacy looks for a model that
best translates all interventions to unique effects, thus giving the user optimal power to
control the system. Such a shift of motivation fundamentally changes our perspective
on good scientific modeling: roughly, shifting the emphasis from prediction to control.
While these two motivations may often go hand-in-hand, the question of which is the more
fundamental may be important in distinguishing scenarios.

The causal geometry we introduce here is a natural extension of the information
geometry framework [6,10], but now explicitly accounting for the causal structure of model
construction. In our proposed formalism, a given model becomes associated with two
distinct Riemannian manifolds, along with a mapping between them, one capturing the
role of interventions and the other of the effects. The relative geometric matching between
these two manifolds locally tells us about how causally informative the present model is
and what coarse-graining may lead to a local improvement.

In this structure, the colloquial notion of model “sectors” (especially used in field
theories to refer to various field content [39]) becomes associated with literal sectors of the
manifolds, with their local geometries specifying the optimal or emergent descriptions
of that sector. Such examples also highlight the importance of having a local way to
quantify model optimality, as globally, the manifold may have a complex and piecewise
structure not amenable to simplification. While both traditional EI [24] and information-
geometric model-reduction [12] depend on the global model behavior over the entire span
of possible interventions, the geometric EIg introduced here is built by averaging inherently
local causal efficacy, defined for each point in parameter space. We can further speculate
that fundamentally, the geometric matching in EIg may provide a novel way to quantify
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causality locally, where the counter-factual comparison is considered relative to the local
neighborhood of interventions, rather than to all globally accessible ones [17].

We hope that causal geometry can contribute to further development in both formal
principled methods for optimal model building in complex systems, as well as an abstract
understanding of what it means to develop informative scientific theories.
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Appendix A. Example Illustrating the Do-Operator

Here, we give a simple pedagogic example that illustrates the use of the do-operator
and its role in distinguishing causal relations from correlation. To highlight its role in
the context of information geometry and sloppiness, we use a setup familiar from that
literature [6]. Consider some bacterial population whose decay over time in unfavorable
conditions we want to monitor: y(t) = e−θ t, where y(t) is the remaining fraction at time t
of the original population at t = 0 and θ is the death rate. In the context of information
geometry, we might consider θ as a model parameter, while y(t) as the predicted data.
However, we cannot say that θ “causes” the decay, as any such statement about causal-
ity requires distinguishing interventions and effects. Without this, our model is merely
an exponential fit to the data y(t), with θ labeling a compressed representation of the
decay curve.

To have a causal, rather than a descriptive model, we need to introduce interventions
that can influence this decay curve (and hence its descriptor θ). For example, this may be the
concentration of some harmful chemical in the bacteria’s environment. For the simplicity of
our example, imagine that we have a direct linear mapping from these concentrations x to
the death rate: do(x)→ θ. Note that this mapping is a causal model, with the do-operator
being well-defined on the space of interventions: it prescribes actively setting the chemical
concentrations, in spite of any other possible environmental causes and fluctuations. In
this setting, we can show how causal dependencies q(θ|do(x)) can differ from statistical
ones q(θ|x); these will be distinct whenever there are any confounding factors present.
For concreteness in our example, we can introduce temperature T as such a confounder:
On the one hand, it might speed up bacteria’s life-cycle, and hence death rate such that
do(x) → θ = x + α T. On the other, it can denature the harmful chemical as x = x0/T,
where x0 is the reference concentration at T = 1.

If our model is specified explicitly, as is being done here, then all the causal relations
are a priori known, and no work is needed to distinguish causation from correlation.
The do-operator becomes important when we look at a more real-world setting where we
can interact with a system, but do not know its underlying dynamics. From the perspective
of sloppiness, this is referred to as data-driven manifold exploration. The do-operator
prescribes how we should collect our data to extract the correct causal relations.
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First consider a “wrong” way we can explore the model manifold, which will yield
only statistical dependencies q(θ|x). For this, we study the fluctuations of bacterial popu-
lation and habitat in their natural environment (specifically looking at θ and x). We can
imagine that these fluctuations are dominated by natural variation of the reference chemical
concentration x0 ∼ N

(
x̂, σ2

x
)
, with an additional influence from temperature fluctuations

T ∼ N
(
0, σ2

T
)

(where we defined the scale of T such that its fluctuations centered on zero).
Since we only observe x, and not x0 or T, we integrate these out to get:

q(θ|x) = 1
Z(x)

∫
dx0 e

− (x0−x̂)2

2σ2
x

∫
dT e

− T2

2σ2
T δ(θ − x− α T) δ(x0 − x T)

=
1

α Z(x)
e
− (x θ−x

α −x̂)2

2σ2
x

− ( θ−x
α )2

2σ2
T =

1√
2π σ2

net

e
− 1

2σ2
net

(
θ−x

(
1+

x̂ σ2
net

α σ2
x

))2

(A1)

where we defined the x-dependent σnet ≡ α

(
1

σ2
T
+ x2

σ2
x

)−1/2
in the last line.

Now, to capture the correct causal relationships, we instead use the do-operator to find
q(θ|do(x)), which prescribes actively setting the chemical concentration x to specific values,
rather than passively waiting for these to be observed. This means that while temperature
can still fluctuate as above T ∼ N

(
0, σ2

T
)
, we do not defer to fluctuations of x0 to produce

specific values of x, but rather set these concentrations ourselves (e.g., in lab conditions).
This removes confounding correlations, while T fluctuations now merely add uniform
noise on θ:

q(θ|do(x)) =
1√

2π σT

∫
dT e

− T2

2σ2
T δ(θ − x− α T)

=
1√

2π σT α
e
− (θ−x)2

2 σ2
T α2 (A2)

While the distributions resulting form the two above setups (Equations (A1) and (A2))
are clearly distinct, we want to take one further step to show that the information metrics
they induce are also different. First, we note that the distributions p(y|θ), and so the
“effect metric” g(θ) (see Equation (6)), simply reflect how the space of decay curves y(t)
is parametrized by the scalar θ. Thus, in this example, g(θ) is not about causality, and so
is fixed regardless of how we measure our data. We therefore expect this distinction to
be captured entirely by the intervention metrics. To find these, according to the setup in
Equation (6), we first need the Bayesian inverse q̃(do(x)|θ), for which we must calculate
the normalization

∫
dx q(θ|do(x)). For the distribution in Equation (A2), this is one,

and q̃(do(x)|θ) = q(θ|do(x)), thus giving the uniform intervention metric hcaus(θ) =
1

σ2
T α2 for the true causal dependences in the system. For Equation (A1), the integral for

normalization cannot be done exactly, so we take the approximation that fluctuations σT of
the confounding temperature variable T are small. With this, we find that

∫
dx q(θ|x) =

1− α x̂
(

σT
σx

)2
−
(

3
2 α x̂ θ2 + 1

4 θ4 + α2 σ2
x

)(
σT
σx

)4
+O

[
σ6

T
]
, and thus, the “intervention” metric

for the statistical dependencies is hstat(θ) =
〈

1
σ2

net

〉
x
− 3
(
α x̂ + θ2)( σT

σx

)4
+ O

[
σ6

T
]
, where

the average 〈·〉x is taken according to the distribution q̃(x|θ). Notably, unlike hcaus above,
here, hstat(θ) varies with θ, giving a qualitatively different geometry than the true causal
geometry for this example.

As such, we have shown in an explicit setup how the causal relations q(θ|do(x))
can differ from statistical ones q(θ|x), leading to distinct geometric structures on the
model manifold, which may then produce different schemes for model simplification.
In general, while we may not know all the confounding factors nor the effects they can
have, we can simply rely on using the do-operator to extract the true causal relations for us.
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For this reason, none of the examples presented in this work make any explicit reference to
confounding factors, as these may be assumed to be plentiful and unknown. For further
discussion on the role of confounding factors and the tools of causal calculus that help to
work with complex causal graphs, see [17].

Appendix B. Deriving Geometric EI

Here, we will derive the expression for EIg in Equation (7), and equivalently in Equa-
tion (4). We start from the definition of EI in Equation (3) and use the near-deterministic
model approximation discussed in the main text, and below. In Appendix B.1, we go
through the detailed derivation for the 1D case and then in Appendix B.2 overview the
steps needed to generalize it to higher dimensions.

Appendix B.1. One-Dimensional Case

As mentioned in the main text, the expression for EIg presented here only approxi-
mates the exact EI when the mappings from interventions x ∈ X to parameters θ ∈ Θ and
to effects y ∈ Y are both nearly-deterministic. Explicitly, this means that we can express
the probability distributions as Gaussians with small variances. Note that the variance can
be different at different points and in the multi-dimensional case may be anisotropic—as
long as it remains sufficiently small everywhere (to be clarified later). This way, we can
specify the concrete expression for the construct in Equation (6):

interventions x ∈ X , parameters θ ∈ Θ, effects y ∈ Y

x → q(θ | do(x)), such that q̃(do(x) | θ) ≡ q(θ | do(x))∫
dx q(θ | do(x))

= Nx

(
F(θ), δ2

)
θ → p(y | do(θ)) = Ny

(
f (θ), ε2

)
g(θ) =

(
f ′(θ)/ε

)2 effect metric

h(θ) =
(

F′(θ)/δ
)2 intervention metric

(A3)

Note that in 1D, the metrics g and h become scalars, and Nx
(

F(θ), δ2) denotes
a Gaussian distribution in x, centered on F(θ) and with standard deviation δ. Fur-
thermore, we define F(θ) and intervention errors δ as above, giving that q(θ | do(x)) =

Nθ

(
F−1(x),

(
F−1′(x) δ

)2
)

—merely for convenience of notation later (as δ may depend on

x). As such, we also assume F(θ) and f (θ) to be invertible.
We begin with the definition of EI from Equation (3), for which we must first calculate

the distribution P(y | do(x)) ≡
∫

dθ p(y | do(θ)) q(θ | do(x)):

P(y | do(x)) =
∫

dθ

p(y | do(θ))︷ ︸︸ ︷
1√
2π ε

e−
(y− f (θ))2

2ε2 ×

q(θ | do(x))︷ ︸︸ ︷
F′(F−1(x))√

2π δ
e−

(x−F(θ))2

2δ2 (A4)

We can evaluate this Gaussian integral in the limit of small ε and δ. Let us understand
precisely how small these must be.

To work with the above integral, δ must be small enough that both q̃(do(x) | θ)
and q(θ | do(x)) are Gaussian. For this, the second-order term in the Taylor expansion
F(θ) = F(θx) + (θ − θx)F′(θx) +

1
2 (θ − θx)2F′′(θx) + . . . around θx ≡ F−1(x) must be

negligible in all regions with substantial probability, giving the asymptotic assumption:
1
2 (θ− θx)2F′′(θx)� (θ− θx)F′(θx). We can check that in this case, plugging this expansion

back into q̃(x | θ) from Equation (A3), we get now a Gaussian in θ: exp
[
− (θ−θx)2F′(θx)2

2 δ2

]
as desired. This then shows us that we expect θ to typically be within O[δ/F′(θx)] of
θx, i.e., (θ − θx) ∼ O[δ/F′(θx)]. This allows us to write the above asymptotic condition
as F′′(θ) δ � F′(θ)2 for all θ. The exact same argument goes for the effect distribution
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p(y | do(θ)) and similarly gives the condition f ′′(θ) ε � f ′(θ)2. As long as these two
conditions hold for all θ, we can allow δ = δ(x) and ε = ε(y) to vary arbitrarily.

In this limit, the integration of the expression in Equation (A4) is straightforward to
carry out, giving another Gaussian:

P(y | do(x)) =
1

f ′(θy)
√

2π σ2(θx, θy)
e
− (θx−θy)2

2 σ2(θx ,θy)

with σ2(θx, θy) ≡
(

ε

f ′(θy)

)2
+

(
δ

F′(θx)

)2
=

1
g(θy)

+
1

h(θx)

(A5)

where θy ≡ f−1(y) and θx ≡ F−1(x), and we used the expressions for the two metrics in
Equation (A3). Averaging this over the interventions and using the fact that σ ∼ O[ε, δ] is
small, we can then find the effect distribution:

ED(y) = 〈P(y | do(x))〉ID(x) =
∫ dx

L
P(y | do(x)) =

F′(θy)

L f ′(θy)
(A6)

where L is the size of the 1D intervention space X , so that the uniform intervention
distribution ID(x) = 1/L.

With these expressions, we can now calculate the EI = 〈DKL[P(y | do(x)) ‖ ED(y)]〉ID(x).
Since σ is small, the Gaussian for P(y | do(x)) will ensure that θx is close to θy, and so to
leading order, we replace σ(θx, θy) ≈ σ(θx, θx) here. Therefore:

EI =
∫ dx

L

∫ dy
f ′(θy)︸ ︷︷ ︸
=dθy

1√
2π σ2(θx)

e
− (θx−θy)2

2 σ2(θx)

(
−
(
θx − θy

)2

2 σ2(θx)
− log

[
f ′(θy)

√
2π σ2(θx)

]
− log

[
F′(θy)

L f ′(θy)

])

=
∫ dx

L

(
−1

2
− log

[
f ′(θx)

√
2π σ2(θx)

]
− log

[
F′(θx)

L f ′(θx)

])
= −1

2

∫ dθ F′(θ)
L

log

[
2πe

(
F′(θ)

L

)2
((

ε

f ′(θ)

)2
+

(
δ

F′(θ)

)2
)]

(A7)

= log
[

L
δ
√

2πe

]
− δ

L

∫
dθ
√

h(θ) log
√

h(θ)(h−1(θ) + g−1(θ)) (A8)

where in the last line, we simply rearranged and substituted the expressions for the metrics
g(θ) and h(θ) from Equation (A3). Here, we first see that Line (A7) reproduces the EI
approximation we showed for the dimmer switch example, in Equation (4), for the setup
there: F(θ) = θ, and L = 1. In general, by recognizing that here, the volume of the
intervention space is VI =

∫
dθ
√

h(θ) =
∫

dθ F′(θ)/δ = L/δ, we finally see that the
expression in Equation (A8) agrees with our main result presented in Equation (7) in the
case of a 1D parameter space discussed here.

Appendix B.2. Multi-Dimensional Case

Generalizing the above derivation to the multi-dimensional case is straightforward
and is mainly a matter of careful bookkeeping. The expressions in Equation (A3) be-
come here:
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interventions xa ∈ X , parameters θµ ∈ Θ, effects yi ∈ Y

x→ q(θ | do(x)), such that q̃(do(x) | θ) ≡ q(θ | do(x))∫
ddx q(θ | do(x))

=

√
det ∆ab

(2π)dI /2 e−
1
2 ∆ab(x−F(θ))a(x−F(θ))b

θ→ p(y | do(θ)) =

√
det Eij

(2π)dE/2 e−
1
2 Eij(y− f (θ))i(y− f (θ))j

gµν(θ) = Eij ∂µ f i(θ) ∂ν f j(θ) effect metric

hµν(θ) = ∆ab ∂µFa(θ) ∂νFb(θ) intervention metric

(A9)

Here, a, b ∈ {1, . . . , dI} index the various dimensions of the intervention space X ,
µ, ν ∈ {1, . . . , d}—for dimensions of the parameter space Θ and i, j ∈ {1, . . . , dE}—the
effects space Y . As we are dealing with general multi-dimensional geometric constructs,
in this section, we are being careful to denote the contravariant vector components with
upper indices, as in θµ, and covariant components with lower indices, as in ∂µ ≡ ∂

∂θµ .
As in Equations (A4) and (A5) above, we can then compute the distribution over

effects conditioned on interventions:

P(y | do(x)) =

√
det Σµν(θx, θy)

det
(
∂µ f i(θy)

)
(2π)d/2 e−

1
2 Σµν (θx−θy)µ(θx−θy)ν

with Σ−1(θx, θy) ≡ g−1(θy) + h−1(θx)

(A10)

where Σ denotes the matrix with components Σµν and Σ−1 its matrix inverse (and similar
for g and h). Here, we assume that both functions F(θ) and f (θ) are invertible, which
means that the intervention and effect spaces X and Y both have the same dimension as the
parameter space Θ: dI = dE = d. This allows us to view the map θµ → f i(θ) as a change
of coordinates, with a square Jacobian matrix ∂µ f i, whose determinant in the first line of

Equation (A10) is thus well-defined and may be usefully expressed as det
(
∂µ f i) = √det gµν

det Eij
.

Note also that to get the above result, we once again assume the distributions q̃(do(x) | θ)
and p(y | do(θ)) to be nearly deterministic, meaning here that the matrices ∆ and E must
be large, though the precise form of the assumption is messy here.

Averaging this result over the intervention space X , we get:

ED(y) = 〈P(y | do(x))〉X =
det
(
∂µFa(θy)

)
det
(
∂µ f i(θy)

) √det ∆ab
VI

(A11)

where we define the intervention-space volume in units of variance of q̃, as: VI ≡∫
ddx
√

det ∆ab =
∫

ddθ
√

det hµν(θ). Performing another such average over X , with some
algebra, similar as for Equation (A7), we can arrive at our result in Equation (7):

EI = 〈DKL[P(y | do(x))‖ED(y)]〉X = log
[

VI

(2πe)d/2

]
− 1

VI

∫
ddθ
√

det h log
√

det(1 + g−1 h) (A12)
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