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Abstract: In this study, using round paper tubes (PTs) and rectangular cardboard boxes (CBs) as
external constraints to control the size of the cocooning space, we fabricated a series of modified
silkworm cocoons (PT cocoons and CB cocoons). Their microstructures, morphologies, compositions,
and mechanical properties were characterized and compared with normal silkworm cocoons.
These two kinds of modified silkworm cocoons exhibit dense and homogeneous layer structures.
Tensile test results indicate that above a size limit of cocooning space, their tensile strengths,
Young’s moduli, and strain energy densities increase with the decrease in cocooning space. Especially
in comparison with the normal cocoons, the tensile strength and Young’s modulus of the PT-14 cocoon
increase by 44% and 100%, respectively. Meanwhile, PT cocoons and CB cocoons, except PT-12,
also possess better peeling resistance than normal cocoons. Owing to the dense structure and low
porosity, the modified cocoons form robust fiber networks that result in high strength and toughness.
This study provides a green and efficient method to fabricate mechanically enhanced silkworm
cocoons with special shapes and dense layer structures. The method can be easily subjected to further
modification processes and has potential applications in the production of high-performance green
cocoon composites and biomimetic materials.
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1. Introduction

Silkworm cocoons are biological structural materials constructed by silkworm larvae and
provide protection from the natural environment, parasitism, or predators of silkworm pupae [1–5].
The silkworm cocoon could be used as protective materials, sorbent materials, gas filters,
and biosensors considering its porous hierarchical structure, good impact resistance [6], sorption
capacity [7], temperature- and humidity-dependent electrical properties [8], and photoelectrical
properties [9–12]. Increasing attention has been paid to modifying the microstructure and improving
the properties of silkworm cocoons without damaging their biological structures for further
applications to the field of composites and biomimetic materials [13–19].

Polymers 2018, 10, 1214; doi:10.3390/polym10111214 www.mdpi.com/journal/polymers

http://www.mdpi.com/journal/polymers
http://www.mdpi.com
https://orcid.org/0000-0002-2649-899X
https://orcid.org/0000-0002-0215-2177
http://www.mdpi.com/2073-4360/10/11/1214?type=check_update&version=1
http://dx.doi.org/10.3390/polym10111214
http://www.mdpi.com/journal/polymers


Polymers 2018, 10, 1214 2 of 13

Cocooning behavior is an important factor that affects the properties of silkworm cocoons.
When cocooning begins, a silkworm larva starts to construct a widely spaced supporting network
by stretching and turning its segmented body to search for potential attachment substrates and
constructs a framework. Then, the larva turns its body around by swinging its head in figure-of-eight
motions to overlap the silk fibers, ultimately producing a cocoon to protect the pupa from predators’
attacks. The construction strategy of silkworm larvae depends on the silkworm species and the
natural environment, resulting in diverse cocoon sizes, microstructures, morphologies, and mechanical
properties [20–24]. On one hand, the relationship between the cocooning behaviors of a silkworm larva
and the silkworm cocoon’s characteristics has been systematically revealed and visually examined by
3D computer graphics software [25–30]. On the other hand, the cocooning environment, such as the
size of the cocooning space, can also affect the cocoon’s characteristics, including the shape [23] and
the mechanical properties. Silkworms have evolved by the process of natural selection over millions of
years to construct its corresponding shield housing for survival under a complex confined cocooning
space. However, to date, little research has been conducted on the relationship between the confined
cocooning space and the mechanical properties of silkworm cocoons.

Owing to its special biological structure, the silkworm cocoon can be regarded as a nonwoven fiber
composite and has inspired people to design and fabricate advanced engineering materials [31–33].
However, silkworm cocoons are difficult to be directly used for manufacturing artificial composites due
to their irregular shape, as well as the inhomogeneous cocoon layers [1,5]. Meanwhile, the Bombyx mori
cocoon has been categorized as a “weak” cocoon with high porosity and relatively lower mechanical
properties compared to some wild silkworm cocoons [3]. The study by Guan et al. [18] on the structure
and properties of different kinds of cocoons revealed that the mechanical properties of cocoons are
determined by fiber networks and fiber properties. A prerequisite of the cocoon structure is a robust
fiber network, in which fibers with good mechanical properties play a part [18]. Tremendous efforts
have been made to investigate the mechanical properties of the silk fibers [34,35] and to fabricate
enhanced silk fibers using various methods [36–41]. However, there is a lack of studies on the
preparation of enhanced silkworm cocoons, especially in a practical and green way, without damaging
their special biological structures. Taking advantage of the ability of silkworm larvae to construct their
shield housing under complex external constraints, silkworm cocoons with controllable shapes and
strengthened fiber networks could be obtained.

In this study, we chose round paper tubes (PTs) and rectangular cardboard boxes (CBs) as the
spinning regions for silkworm larvae in the lab when cocooning begins. The sizes of the constructed
spaces were controlled by the spatial alternation of tube diameter for the PTs and the box width
for the CBs to obtain a series of modified silkworm cocoons, named PT cocoons and CB cocoons,
respectively. Normal silkworm cocoons (NCs) were constructed with common paper cocooning frames
for silkworm larvae. The morphologies, microstructures, sericin contents, and mechanical properties
of these modified silkworm cocoons were experimentally characterized and subsequently compared
with those of normal silkworm cocoons. Finally, the relationship between the mechanical properties
and the microstructures of the silkworm cocoons was further investigated. The results revealed that
enhanced mechanical properties of silkworm cocoons constructed in a confined space were obtained,
especially due to the dense cocoon microstructure. This study could help to develop strengthened
cocoon materials using highly efficient strategies for potential applications in the field of composite
engineering and biomimetic science.

2. Materials and Methods

2.1. Fabrication of Normal and Modified Cocoons

Bombyx mori silkworms (Chinese strain Xiafang × Qiubai) were obtained from the State Key
Laboratory of Silkworm Genome Biology (Chongqing, China). They were reared under standard
conditions and fed with fresh mulberry leaves until they started spinning. Then, each silkworm larva
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was put into specific PTs with different diameters (25, 20, 14, and 12 mm) or CBs with different widths
(20, 17.5, 15, and 12.5 mm) until the cocooning completed. Corresponding modified silkworm cocoons
in special shapes were obtained, and the detailed procedure can be seen in Figure 1. The silkworm
cocoons produced in the paper tubes with a diameter of 25 mm was labeled as the PT-25 cocoon.
Similar labels were applied to the other groups. NCs obtained from normal spinning tools were set as
the control group. Twenty cocoons from each group were collected, and their sizes were measured
by vernier caliper. Then, the cocoon shell specimens for subsequent measurements were prepared
by carefully cutting the cocoons into strips along their longitudinal directions and removing the
pupae inside.
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Figure 1. Schematic illustrations for the fabrication processes, and photographs of each type of
modified silkworm cocoon: (a) paper tube (PT) cocoons and (b) cardboard box (CB) cocoons. Scale bar
for silkworm cocoons is 2 cm.

2.2. Scanning Electron Microscopy (SEM) Observation

Samples were mounted on a platform with a conductive tape backing and then sputter-coated
with gold for 2 min. The morphologies of silkworm cocoon layers and cross-sections were examined
by SEM (Phenom Pro, Holland, The Netherlands) at an acceleration voltage of 5 kV.

2.3. Sericin Concentration

Dried cocoon shell specimens were immersed in 0.5% Na2CO3 solution at 100 ◦C for 30 min and
then washed with distilled water, followed by drying for 24 h at 40 ◦C. The concentrations of sericin
were calculated by (w0 − w1)/w0, where w0 and w1 are the mass of the samples before and after the
degumming, respectively [41].
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2.4. Porosity of Cocoon Shell Specimens

The density (ρc) of each cocoon shell specimen was calculated from the weight, area, and thickness
of the rectangular specimens. The density (ρf) of the silk fibers was set at 1300 kg/m3 according
to previous studies [18,42]. The porosity (P) of the cocoon shell specimens was calculated by the
formula P = 1 − ρc/ρ f . Three samples from each group were used, and all results are given as
mean ± standard deviation.

2.5. Tensile Tests of Cocoons

Cocoons were cut into strips with a width of 3 mm along the longitudinal direction to prepare
the tensile test samples. Quasi-static uniaxial tension tests were performed using an MTS E44-1 kN
universal test machine (Shakopee, MN, USA) with a loading rate of 2 mm/min and a gauge length of
10 mm. The thickness of each cocoon shell was measured by vernier caliper. Six samples from each
group were examined, and all results are reported as mean ± standard deviation.

2.6. Peel Tests of Cocoons

Cocoons were cut into strips with 20 mm lengths and 3 mm widths and peeled artificially from the
middle layer to create an interlayer crack of 5 mm. The separated parts of each sample were clamped
and peeled at an angle of 90◦ using the universal test machine with a tensile speed of 2 mm/min and a
gauge length of 5 mm. Force-displacement curves for each sample were recorded. Six samples from
each group were examined, and all results are reported as mean ± standard deviation.

2.7. Theoretical Characterization Models for Porosity

Porosity is an important factor influencing the mechanical performance of silkworm cocoons.
Thus, it is necessary to characterize the relationship between porosity and the mechanical properties
of silkworm cocoons. Young’s modulus and tensile strength of silkworm cocoons have a similar
dependence on the porosity. Based on the studies in [43,44], the Young’s modulus–porosity relationship
for silkworm cocoon composites can be defined as:

E = E0(1 − P/Pc)
n (1)

where E is the effective Young’s modulus of porous material with porosity P, E0 is Young’s modulus
of the silkworm cocoon, Pc is a percolation threshold, i.e., the porosity at which the effective Young’s
modulus becomes zero, and n is the characteristic exponent. Equation (1) can be directly used to fit the
experimentally measured Young’ modulus. In this study, the value of the percolation threshold Pc was
set as 1 in the fitting process. This equation should follow the conditions: E = E0, at P = 0; E = 0, at
P = 1.

The strength–porosity relationship for silkworm cocoons can be characterized by the following
widely known inverse proportional mathematic expression [45]:

σ = Aexp(−kP) (2)

where σ is the strength, A is the strength at zero porosity, P is the porosity, and k is a characteristic
exponent. The strengths of the silkworm cocoons at other porosities can be estimated by Equation (2)
based on the strength data measured at given porosities.

2.8. Statistical Data Analysis

All statistical data are expressed as the mean ± standard deviation. Statistical analyses were
conducted using one-way ANOVA as implemented by SPSS statistical software (New York, NY, USA).
A p-value of <0.05, compared with the control group, was considered to be statistically significant.
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3. Results and Discussion

3.1. Morphology and Microstructure

Photographs (Figure 1) and SEM images (Figures 2 and 3) of PT and CB cocoons clearly show
the comparison between their morphologies and microstructures. These images reveal that different
cocooning shapes or spaces lead to different cocoon morphologies and microstructures. By controlling
the cocooning shape or space, the silkworm cocoons are shaped according to the given spinning tool
(Figure 1). PT cocoons were spun by silkworms in paper tubes with different diameters, while CB
cocoons were obtained from cardboard boxes with different widths. Figure 4a,b show the size
(including length, width, and height) of each cocoon. For PT cocoons, their width decreases and
the length increases as the diameter of the paper tube decreases. Meanwhile, the length of CB cocoons
increases, and the height of the cocoon decreases with the decrease in the box’s width.
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(e,f) cocoon sericin content; (g,h) cocoon porosity. Data are mean± sd. Statistical analyses were
performed using unpaired two-tailed Student’s t test (* p < 0.05).

Both PT and CB cocoons have similar nonwoven composite structures with multiple layers
parallel to the surface direction (see SEM images in Figures 2 and 3). Compared to the NCs, the PT
and CB cocoons are more compact and have denser fiber networks. Figure 4c shows that the shell
thickness of PT cocoons decreases from 0.74 to 0.59 mm with the decrease in paper tube diameter.
The cocoon shell thickness of CB cocoons changes in a similar way. Figure 4d indicates that there is no
significant difference between the weight of normal cocoons and the PT and CB cocoons, except for
PT-12. This means that decreasing the cocooning space to a certain limit does not change the number
of silk fibers produced by silkworm larvae. When the cocooning space is smaller than the size limit,
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silkworm larvae are in a state of subhealth and cannot finish the cocooning process, resulting in a
reduction in the number of silk fibers.

In addition, solidification contraction of silk fibers occurs when they are spun from the spinneret
to the air during the construction of the cocoon frame, resulting in a rough cocoon surface. The sericin
coating in the outer layer of the cocoon does not interconnect the fibers, so it does not form additional
bonding between fibers. In contrast, for cocoons prepared from a confined cocooning space, there is
not enough room for silkworm larvae to build a capacious cocoon frame. The fibers are confined and
bonded together in a relatively narrow space. This method avoids the contraction of the surface layer
and can form a smooth cocoon surface and a highly bonded network. Overall, the modified cocoons
whose shapes are in accordance with the given cocooning space are constructed without any negative
influence on cocoon weight. Both PT and CB cocoons show a denser structure and better homogeneity
compared to the normal ones (shown in Figures 2 and 3). The homogeneity of the layer structure of
most of the modified cocoons is superior to that of the normal cocoons and may contribute to the
enhanced mechanical performance of these modified cocoons.

3.2. Sericin Content

Comparison between the sericin content of PT cocoons and CB cocoons was carried out and
is shown in Figure 4e,f. It can be observed that the average sericin content of NCs is about 26%,
which matches well with the results in previous studies [10]. Most of the modified cocoons, except
PT-12, do not exhibit a significant increase or decrease in the sericin content compared to NCs,
indicating that the decrease in cocooning space, to some extent, has little effect on the sericin content
of silk fibers. However, there is a significant increase in the sericin content of PT-12. Combining the
results of cocoon weight in Figure 4c with the sericin content of PT-12, the significant increase in the
sericin content of PT-12 can be explained. Silkworm larvae in an excessively confined cocooning space
cannot freely move their bodies and finish the cocooning process, which causes the lower weight of
PT-12. The cocoon shell of PT-12 is speculated to be mainly made up of the silk fibers produced by
silkworm larvae during the beginning of the cocooning process, and these initial fibers correspond
to the outer layer of the normal silkworm cocoons. Furthermore, the test results by Kaur et al. [10]
indicate that the outer layer of the normal cocoons has a higher sericin content compared to the other
layers. Therefore, the higher sericin content of PT-12 can be well explained by this information.

3.3. Porosity of Cocoon Shells

To better understand the inner structure of these cocoons, cocoon shell porosity was calculated and
averaged from six cocoon samples for each group, as shown in Figure 4g,h. The NC has a high porosity
because there is a great deal of inter-fiber and interlayer free space [1–3,18]. However, the porosities of
the PT-20, PT-14, and PT-12 cocoons were only 66%, 59%, and 58%, respectively, which are much lower
than that of the NC (73%). The porosity of CB cocoons also decreases sharply with decreasing cocoon
width, changing from 74% to 61%. The lower porosity of PT cocoons and CB cocoons is consistent with
the microstructural observations shown in Figures 2 and 3. The decrease in porosity of the two cocoons
was achieved by the restriction of the cocooning space, which causes a decrease in interlayer distance.
Silkworm cocoons have been proved to be structural property-dependent biocomposites from both
experimental and theoretical results [1]. A tough and strong cocoon can be obtained through the design
of the microstructure and with the effective introduction of stronger inter-fiber bonding [18]. The study
by Guan et al. [18] indicates that the silk fiber network plays an important role in cocoon properties.
Thus, the relatively lower porosity of the modified silkworm cocoons in this study could be beneficial
to the formation of robust fiber networks and lead to enhanced tensile and peeling properties.

3.4. Mechanical Properties of Cocoon Specimens

The tensile stress–strain curves and the tensile strength, elongation, Young’s modulus, and strain
energy density (calculated from the accumulated stress–strain area prior to maximum stress) from
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different cocoon shell specimens are given in Figure 5. The stress–strain curves of PT cocoons and CB
cocoons exhibit a similar trend with the decrease in cocooning space. The tensile strength, Young’s
modulus, and strain energy density of both types of cocoons gradually increase. Particularly, PT-25
has similar mechanical properties to the NC. The PT-14 cocoon shows considerably improved Young’s
modulus, tensile strength, and toughness with values of 1.2 GPa, 30.5 MPa, and 3.8 MJ/m3, which are
much higher than those of the NC: 0.6 GPa, 21.2 MPa, and 2.9 MJ/m3. CB-12.5 is the most compact
and solid in structure, resulting in the highest tensile strength, Young’s modulus, and strain energy
density, which are increased by 66.7%, 48.6%, and 82.8%, respectively, compared to those of the NC.
Nevertheless, when the cocooning space was smaller than the size limit (such as PT-12), silkworm
larvae can no longer build a robust cocoon. This can be explained by the fact that too small a cocooning
space limits the movement of the silkworm body and hinders silkworm cocoon formation, which finally
leads to the degradation of the mechanical properties of the cocoon.
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Statistical analyses were performed using unpaired two-tailed Student’s t test (* p < 0.05).

The enhanced mechanical properties are mainly due to the denser layer structure of the modified
silkworm cocoons. The porosity should especially be integrated into the evaluation of composite
mechanical performance [46–48]. The porosity dependence of Young’s modulus or tensile strength
for silkworm cocoons is shown in Figure 6. Young’s modulus of silkworm cocoons increases from
0.5 GPa to 1.2 GPa with a decrease in porosity from 74% to 58%, while the tensile strength increases
from 21 MPa to 32 MPa. Then, the porosity-dependent Young’s modulus (Figure 6a) and tensile
strength (Figure 6b) of silkworm cocoons were fitted by Equations (1) and (2), respectively. A high



Polymers 2018, 10, 1214 9 of 13

goodness of fit of Young’s modulus (R2 = 0.93) was obtained, which indicates that Young’s modulus
of the cocoons follows an exponential increase with decreasing porosity. However, the goodness of
fit of tensile strength (R2 = 0.26) is quite low. Notably, the tensile strength of PT-12 is far from having
a good fitting result. According to the low weight and higher sericin content of PT-12, we can find
that silkworm larvae in an excessively confined cocooning space cannot freely move their bodies
and finish the cocooning process, and therefore, PT-12 is not a complete cocoon. It may no longer
follow the variation tendency of the tensile strength of other PT cocoons. To verify this, we present
the fitting results without the PT-12 values of Young’s modulus and tensile strength in Figure 6c,d.
A high goodness of fit for Young’s modulus (R2 = 0.93) and tensile strength (R2 = 0.91) is obtained.
This result indicates that the mechanical properties of these silkworm cocoons, except for those of
PT-12, follow an exponential relation. PT-12, which is not a complete cocoon and was constructed in
very limited cocooning space, exhibits an anomalous low tensile strength, meaning that an excessively
confined cocooning space has a negative effect on the tensile strengths of silkworm cocoons. For the
other cocoon groups, the lower porosity is related to denser fiber networks and the larger bonding
area between fibers. Then, as the fibers bonding increases, fibers are more prone to fracture, rather
than unraveling from each other, which leads to the increase in Young’s modulus and tensile strength.
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without PT-12.

3.5. Interlaminar Peel Properties

The peeling force-displacement relation, maximum peeling force, and average peeling force of
PT cocoons and CB cocoons are shown in Figure 7. The interlayer connectivity in these cocoons has a
similar nonlinear load-displacement relation (Figure 7a). The average and maximum peeling force
of normal cocoons are 0.29 N and 0.54 N, respectively. The layer of the NC is easy to peel apart due
to the uneven spatial distribution of sericin bonds and low interlaminar bonding [42]. PT cocoons
exhibit relatively higher peel forces, with an average and maximum force of 0.34 N and 0.58 N for
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PT-25, 0.36 N and 0.69 N for PT-20, 0.50 N and 1.10 N for PT-14, and 0.39 N and 0.65 N for PT-12.
The highest average and maximum force (PT-14 cocoon) are 1.72 times and 2.04 times higher than
those of the control group. As for CB cocoons, their average peel forces increase from 0.29 N to 0.69 N
while the maximum forces increase from 0.54 N to 1.14 N. The significant increase in the peel forces
for PT and CB cocoons (except PT-12) indicates that high interlaminar bonding can be obtained using
methods to control the cocooning space. The relatively weak interlaminar bonding in PT-12 indicates
that too narrow a cocooning space has a negative effect on the peel resistance of silkworm cocoons.
As discussed in the above sections, this could be explained by (1) the spinning motions of silkworm
larvae are limited by too narrow a cocooning space; (2) the limited spinning motions increase the
inhomogeneity and induce more flaws in the silk fiber networks. If the cocooning space is set just
as the body size of the silkworm larvae, their cocooning process can hardly be completed. This case
should be avoided. In summary, in a relatively narrow space, the silk fibers from silkworm larvae
more easily bond together and the process can be regarded as a natural pressing process. It is reported
that the peel load of silkworm cocoons obtained by hot pressing at room temperature is lower than
that of normal silkworms, which indicates that the high-pressure compression process can destroy the
interlayer bonding structure of the cocoon and lead to cracks in the silkworm cocoon [42]. However,
the natural pressing process in this study does not damage their quality or interlayer bonding structure
and provides silkworm cocoons with robust fiber networks and compact layer structures. More fiber
bonds and a larger bonding area located in the compact layers are key contributors to the higher peel
resistance of these modified cocoons.
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4. Conclusions

In this study, we first fabricated a series of modified silkworm cocoons (PT cocoons and CB
cocoons) with special shapes, dense structures, and excellent mechanical properties through a kind of
natural pressing process. The microstructures, morphologies, compositions, and mechanical properties
of these novel cocoons were characterized and compared with the normal silkworm cocoons. Most of
these modified silkworm cocoons have denser fiber networks and lower porosities. Above a size
limit of the cocooning space, the tensile strengths, Young’s moduli, and strain energy densities of
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these modified silkworm cocoons increase with the decrease in cocooning space. Notably, the tensile
strength and Young’s modulus of the PT-14 cocoon are found to be 1.44 and 2 times higher than those
of the normal cocoons, respectively. As expected, most of these modified silkworm cocoons also exhibit
excellent peeling resistance. The strengthening mechanisms underlying the method for controlling the
cocooning space are attributed to the densification of silkworm cocoons by a natural pressing process,
which leads to a robust fiber network and improves the load capacity of these cocoons. These special
cocoons with excellent mechanical properties could have potential applications in the production of
high-performance artificial cocoon composites and biomimetic materials.
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