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ABSTRACT
BACKGROUND: The renin-angiotensin system has been identified as a potential therapeutic target for posttraumatic
stress disorder, although its mechanisms are not well understood. Brain angiotensin type 2 receptors (AT2Rs) are a
subtype of angiotensin II receptors located in stress and anxiety-related regions, including the medial prefrontal
cortex (mPFC), but their function and mechanism in the mPFC remain unexplored. Therefore, we used a
combination of imaging, cre/lox, and behavioral methods to investigate mPFC-AT2R–expressing neurons in fear
and stess related behavior.
METHODS: To characterize mPFC-AT2R–expressing neurons in the mPFC, AT2R-Cre/tdTomato male and female
mice were used for immunohistochemistry. mPFC brain sections were stained with glutamatergic or interneuron
markers, and density of AT2R1 cells and colocalization with each marker were quantified. To assess fear-related
behaviors in AT2R-flox mice, we selectively deleted AT2R from mPFC neurons using a Cre-expressing adeno-
associated virus. Mice then underwent Pavlovian auditory fear conditioning, elevated plus maze, and open field
testing.
RESULTS: Immunohistochemistry results revealed that AT2R was densely expressed throughout the mPFC and
primarily expressed in somatostatin interneurons in a sex-dependent manner. Following fear conditioning, mPFC-
AT2R Cre-lox deletion impaired extinction and increased exploratory behavior in female but not male mice, while
locomotion was unaltered by mPFC-AT2R deletion in both sexes.
CONCLUSIONS: These results identify mPFC-AT2R1 neurons as a novel subgroup of somatostatin interneurons and
reveal their role in regulating fear learning in a sex-dependent manner, potentially offering insights into novel
therapeutic targets for posttraumatic stress disorder.

https://doi.org/10.1016/j.bpsgos.2024.100340
Posttraumatic stress disorder (PTSD) is a strong predictor of
cardiovascular disease, the primary cause of death in both
men and women in the United States. Nevertheless, the spe-
cific biological, behavioral, and causal mechanisms that
explain the co-occurrence of PTSD and cardiovascular dis-
ease, particularly with notable differences between sex, remain
unclear (1–4). Given its involvement in maintaining cardiovas-
cular homeostasis and emotional stress, the renin-angiotensin
system (RAS) has emerged as a potentially significant bridge
between these conditions (5–9). Angiotensin II serves as the
main functional peptide of the RAS, and its effects are facili-
tated by binding to its primary receptor subtypes, the angio-
tensin type 1 receptor (AT1R) and type 2 receptor (AT2R) (10).
These receptors are expressed throughout the brain, with more
extensive research focused on their presence in regions like
the hypothalamus and brainstem. However, AT1R and AT2R
are also expressed in corticolimbic brain structures, such as
the amygdala and medial prefrontal cortex (mPFC), which are
crucial regions involved in conditioned fear memory and
extinction learning (11–15). Our previous studies have
2024 THE AUTHORS. Published by Elsevier Inc on behalf of the Societ
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demonstrated AT2R expression in the central amygdala and
function in conditioned fear expression (11), while others have
reported increased expression in the mPFC (12). However, the
functional role of AT2R-expressing mPFC neurons in condi-
tioned fear learning and memory remains largely unknown.

Brain AT2R has been studied in the context of cardiovas-
cular (13,16,17) and stress (11,18–20) regulation. A Gi protein–
coupled receptor, brain AT2R has been shown to decrease the
firing rate and neuronal activity of both excitatory and inhibitory
neurons in multiple brain regions (21). This inhibitory effect
influences physiological outcomes of stress, showing both
neuroprotective and hypotensive properties (14,22), as well as
behavioral outcomes of stress, because activation of central
amygdala AT2Rs decreases fear expression while whole-brain
knockout increases anxiety in mice (11,19). Interestingly, while
most of these studies have examined these effects in male
mice, AT2R is an X-linked gene upregulated by estrogen
signaling (10,23,24), and some studies have shown that AT2R
knockout causes cognitive deficits only in female mice (25),
indicating a potentially sex-specific function. Although AT2R is
y of Biological Psychiatry. This is an open access article under the
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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highly expressed in the mPFC (12,15), a region integral to both
behavioral and physiological outcomes of fear, no studies re-
ported to date have characterized AT2R-mPFC cell types and
their potential sex-dependent role in conditioned fear learning
and memory.

The mPFC is a robust top-down regulator of learning and
memory and acts via its complex network of microcircuits in
which interneurons can regulate the firing of excitatory efferent
projection neurons to downstream brain regions such as the
amygdala, brainstem, and thalamus (26). Highlighting the
clinical importance of this circuit, these regulatory projections
are hypoactive in PTSD, and reestablishing their activity can
rescue impaired extinction and disordered fear learning
(27–32). Clinical studies have demonstrated that, among other
neuropeptidergic modulators (31,33), the RAS plays an
important role in mPFC fear regulation; treatment with the
AT1R antagonist losartan in humans facilitated fear extinction,
while concurrent functional magnetic resonance imaging
showed that losartan increased mPFC connectivity to the
basolateral amygdala (34). Given the opposing actions of AT1R
and AT2R, and some evidence that the beneficial actions of
losartan are in part mediated via AT2R (18), further investiga-
tion into the potential role of mPFC-AT2R in the regulation of
fear extinction is warranted.

To provide a greater understanding of mPFC-AT2R’s
mechanism and role in the regulation of fear learning and
memory, we therefore aimed to characterize the cellular
expression and functional role of mPFC-AT2R in conditioned
fear learning. By doing so, we provide a novel understanding of
AT2R’s mechanism and the cells that it acts on, as well as its
role in the regulation of fear learning and memory. By using
male and female mice, we investigated how AT2R’s female-
biased effects influence both neurobiology and fear-related
behavior; this factor is especially important given that women
are twice as likely to develop PTSD as men (4,35,36). Here, we
identify a novel population of AT2R-expressing interneurons in
the mPFC that affect fear learning and memory in a sex-
dependent manner, establishing a potential therapeutic target
for disordered fear learning in females.
METHODS AND MATERIALS

Animals

All experimental procedures were approved by the Institutional
Animal Care and Use Committee of the George Washington
University and followed National Institutes of Health guidelines.
Male and female transgenic mice (8–10 weeks old) were used
Table 1. Experimental Mouse Models Used

Abbreviation Genetic Information Received From

AT2R-flox Agtr2loxP/y University of Florida

AT2R-cre B6.Cg-Agtr2em 1(cre)Adk/J University of Florida

Ai14 B6;129S6-Gt(ROSA)26Sortm14(CAG-

tdTomato)Hze/J
Jackson Laboratories
007908

AT2R-cre/
tdTomato

Breeding AT2R-cre with Ai14

AT2R, angiotensin type 2 receptor.
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for the following studies and were housed in a temperature-
and humidity-controlled room on a 12-hour light/dark cycle.
Food and water were available ad libitum. All mouse lines are
on a C57BL/6 background and are summarized in Table 1.

Immunohistochemistry

Immunohistochemistry (IHC) was used to validate injection
location of AT2R-flox mice as well as to characterize AT2R-
expressing mPFC neurons in AT2R-cre/tdTomato reporter
mice. Mice were anesthetized with urethane (275 mg/mL;
Thermo Fisher Scientific) and perfused with 4% para-
formaldehyde (Electron Microscope Science). Brains were
removed and postfixed overnight in the same solution and then
transferred to 30% sucrose for 2 days for dehydration. Brains
were then embedded in optimal cutting temperature com-
pound (Thermo Fisher Scientific) and stored overnight at
280 �C. A cryostat (CryoStar NX 50; Thermo Fisher Scientific)
was used to section brains into 30-mM free-floating serial brain
sections. A total of 18 to 20 serial sections from each brain
were divided equally for costaining by antibody, and 3 to 5
sections per brain were stained per antibody. Sections were
washed in phosphate-buffered saline for 15 minutes and
blocked with 5% normal donkey serum, 5% bovine serum
albumin, and 0.3% Triton-X-100 in phosphate-buffered saline
for 1 hour at room temperature. Primary antibodies (Table 2)
were added to the solution and brain sections incubated for 24
hours at 4 �C. Sections were then rinsed (3 3 15 minutes) in
phosphate-buffered saline and incubated in corresponding
secondary antibodies (Thermo Fisher Scientific) for 2 hours at
room temperature. Following a final series of rinses (3 3 15
minutes), sections were mounted on Superfrost Plus slides
(Thermo Fisher Scientific) and air dried before being cover
slopped with ProLong Diamond Antifade Mountant (Thermo
Fisher Scientific). After staining, sections were imaged using
253 water immersion objective on a Zeiss spinning disk
confocal microscope (Carl Zeiss). Colocalization was quanti-
fied by blinded researchers using Zeiss Microscope Software
ZEN 2 (Carl Zeiss). AT2R/tdTomato1 cell bodies were identi-
fied, counted, and marked, and then colocalization with each
marker was assessed by switching microscope channels and
identifying and counting each stained cell body and whether it
was also marked as AT2R1.

Animal Stereotaxic Surgery

Ketamine (82.5 mg/kg) and xylazine (12.5 mg/kg) anesthesia
were intraperitoneally injected. Cre or GFP (green fluorescent
protein)–expressing AAV (adeno-associated virus) (GFP
Table 2. Antibodies Used for Immunohistochemistry

Antibody Manufacturer (Catalog #) Species Dilution

Anti-GFP Abcam (ab13970) Goat 1:2000

Anti-TBR1 Abcam (ab31940) Rabbit 1:500

Anti-Calretinin Abcam (ab702) Rabbit 1:100

Anti-Calbindin Abcam (ab75524) Mouse 1:1000

Anti-nNos Immunostar (24287) Rabbit 1:2000

Anti-Parvalbumin Abcam (ab11427) Rabbit 1:2000

Anti-Somatostatin Immunostar (20067) Rabbit 1:2000
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pAAV.CMV.PI.EGFP.WPRE.bGH, Addgene 105530; Cre pEN-
N.AAV.CMVs.PI.Cre.rBG, Addgene 105537) were bilaterally
injected into the mPFC of AT2R-flox mice at 2.5 mm caudal,
60.3 mm lateral to bregma, and 2.1 mm below the skull sur-
face with an UltraMicroPump III and microprocessor controller
(World Precision Instruments); 400 nL was injected bilaterally
at a rate of 100 nL/min. Following surgery, the mice were group
housed in their home cages for a 3-week postoperative period.

Messenger RNA Extraction and Reverse
Transcriptase–Quantitative Polymerase Chain
Reaction

Mice were sacrificed, and brains were collected and flash
frozen. The mPFC was collected using a 1-mm diameter brain
tissue punch. Total RNA was extracted from the punches using
Trizol reagent (Thermo Fisher Scientific) according to the
manufacturer’s instructions, and 1 mg of RNA was reverse
transcribed to complementary DNA using qScript cDNA
Supermix (QuantBiol). Gene expression changes for 18S and
AT2R were detected using TaqMan primers (18S
[Mm04277571_s1], AT2R [Mm1341373_m1]; Thermo Fisher
Scientific) and the Applied Biosystems ViiA Real-Time PCR
Systems by relative quantitative reverse transcriptase–
polymerase chain reaction, and expression fold change was
calculated using the DDCq calculation method, normalizing to
loading housekeeping gene 18S control.

Cue-Dependent Pavlovian Fear Conditioning and
Extinction

Pavlovian fear conditioning, as previously described by our
laboratory (7,9,11), was used to determine the effects of
mPFC-AT2R deletion on conditioned fear behavior by pairing
an auditory cue with a light foot shock. Mice were habituated
to the fear conditioning chamber for 2 days (20 minutes, 40
minutes) before aversive associative conditioning on experi-
mental day 3, during which mice received 5 conditioned
stimulus (CS)/unconditioned stimulus pairings using a 30-
second auditory cue (6 kHz, 75 dB, CS) coterminating with a
foot shock (0.5 seconds, 0.6 mA, unconditioned stimulus) at an
intertrial interval of 5 minutes. Mice were placed in a novel
context and underwent extinction training 24 hours later
(experimental day 4), consisting of a 5-minute pre-CS period
followed by 30 CS presentations (30 seconds each, 30-second
intertrial interval). This protocol was repeated on experimental
day 5 in the same context as extinction training to test reten-
tion of fear extinction. Seven days after fear conditioning
(experimental day 10), mice were placed in the novel context
again, and the CS was presented 40 times. The mice were
recorded, and freezing was calculated using FreezeFrame
version 3.0 software (Actimetrics).

Generalized Anxiety Measures

Open field (OF) and elevated plus maze (EPM) tests were used
as described previously by our laboratory (11) to determine
whether deletion of mPFC-AT2Rs affected locomotion or
anxiety-like behavior. These tests were performed 1 week after
fear conditioning and extinction testing. In the OF test, mice
were placed in the center of the OF arena (35 3 35 3 35 cm;
opaque plexiglass) and allowed to freely explore for 30
Biological Psychiatry: Global
minutes. Locomotion, speed, and position in the apparatus
were recorded and analyzed using Anymaze software (ANY-
Maze). In the EPM test, mice were placed in the center of the
apparatus facing the same closed arm and allowed to freely
explore for 5 minutes. The total arm entries, open arm entries,
and percentage of time spent in the open arms were analyzed
using Anymaze software (ANY-Maze).

Data Presentation and Statistical Analysis

All data analyses were completed using GraphPad Prism
version 9.0 software (GraphPad) and checked for outliers using
the ROUT outlier test (Q = 1%) as well as for variance and
normality. In all data reported, p , .05 was considered sta-
tistically significant. Mean differences between groups were
compared using unpaired t tests and 2-way repeated-
measures analysis of variance with Holm-�Sídák post hoc an-
alyses. To assure rigor, reproducibility, and minimal use of
animals, power analyses were conducted for behavioral
studies to determine a sample size providing 80% power and
significance at a level of 5%.

RESULTS

AT2R-cre/tdTomato1 Cells Are Densely Expressed
Throughout the mPFC of Males and Females

Using an AT2R-Cre mouse crossbred with a tdTomato reporter
mouse (Figure 1A), AT2R-tdTomato1 expression in the mPFC
of male and female mice was analyzed by IHC. Males and
females had similar expression of AT2R density in the pre-
limbic (PL) and infralimbic (IL) regions of the mPFC (males:
187.8 6 40.3 cells/mm2, females: 131.0 6 43.0 cells/mm2, p =
.37) (Figure 1B) throughout cortical layers L2/3–L6 (Figure 1C).
This density did not change across the rostral-caudal depth of
the mPFC (Figure 1D) in males or females (Figure 1E, F). This
dense and nonspecific expression of AT2R1 cells through the
mPFC indicates that they may contribute to mPFC top-down
regulation of fear learning (27,29–31,37).

Distribution of AT2R-Expressing Neurons Across
mPFC Cell Types

Although the mPFC is primarily populated by glutamatergic
projection neurons (26), AT2R-tdTomato1 costaining with
TBR1, a marker for excitatory neurons (38–40) (Figure 2A),
revealed sparse colocalization in the mPFC of both males and
females (n = 4/group, males: 7.3% 6 1.3%, females: 12.6% 6
3.0%, p = .15) (Figure 2B–E). This low percentage of costaining
indicates that mPFC-AT2R may be acting at a local or microcircuit
(29,41–43) level rather than acting directly on mPFC projection
neurons.

To further characterize AT2R1 cells in the mPFC, IHC was
used for costaining analysis of mPFC sections taken from male
and female AT2R-cre/tdTomato mice (n = 3/group) (Figure 3A).
Colocalization was examined between AT2R-tdTomato1 cells
and 5 interneuron cell-type markers: somatostatin (SOM) in-
terneurons, parvalbumin (PV) interneurons, neuronal nitric ox-
ide synthase (nNos) interneurons, calbindin (CB) interneurons,
and calretinin (CR) interneurons. Sex did not impact AT2R1
cell distribution on PV interneurons (Figure 3B), nNos in-
terneurons (Figure 3C), CB interneurons (Figure 3D), or CR
Open Science September 2024; 4:100340 www.sobp.org/GOS 3
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Figure 1. AT2R/tdTomato1 mPFC expression in male and female mice. (A) Generation of the AT2R-cre/tdTomato reporter mouse and experimental
approach to test mPFC-AT2R distribution with immunohistochemistry. (B) AT2R1 cells (red) are equally expressed in the PL and IL regions of the mPFC of
male (n = 4) and female (n = 4) mice (t6 = 0.96, p = .37). (C) Representative coronal sections showing laminar distribution of AT2R1 neurons in L2/3, L5, and L6
of the mPFC of male and female mice. (D) Approach for assessing distribution of AT2R1 neurons through the depth of the mPFC. (E) Rostral/caudal depth of
the mPFC had no impact on the distribution of AT2R1 neurons in male (rostral mPFC: 160.9 6 20.0 cells/mm2, central mPFC: 194.3 6 43.4 cells/mm2, caudal
mPFC: 205.4 6 56.5 cells/mm2, F2,9 = 0.36, p = .71) or female (rostral mPFC: 125.7 6 50.9 cells/mm2, central mPFC: 112.8 6 28.0 cells/mm2, caudal mPFC:
147.8 6 50.1 cells/mm2, F2,9 = 0.16, p = .85) brains. (F) Representative coronal sections showing laminar distribution of AT2R1 neurons throughout the rostral/
caudal mPFC compared with reference images from the Allen Mouse Brain Atlas (mouse.brain-map.org) at the same slice positions as the confocal images.
Scale bar = 200 mm. ACAd, dorsal anterior cingulate area; AT2R, angiotensin II type 2 receptor; CC, corpus callosum; CTX, cortex; IL, infralimbic cortex; ILA,
infralimbic area; L, layer; MO, motor area; mPFC, medial PFC; ORBm, medial orbital area; ORBvl, ventrolateral orbital area; PFC, prefrontal cortex; PL, pre-
limbic cortex; TTd, dorsal taenia tecta; VL, ventrolateral area.
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Figure 2. AT2R/tdTomato1 expression on excitatory mPFC neurons. (A) Experimental approach for costaining of AT2R-tdTomato1 cells (red) with TBR1
neurons (green) in the mPFC (n = 4/group). (B) Sex does not significantly affect AT2R colocalization with TBR1 in the PL and IL regions of the mPFC (male:
7.3% 6 1.3% colocalized, female: 12.6% 6 3.0% colocalized, t6 = 1.63, p = .15). (C) Representative coronal sections from male (left) and female (right) mPFC
showing laminar distribution of AT2R/TBR1 colocalizations. Colocalization is indicated with X. (D, E) Representative coronal sections from the male (D) and
female (E) mPFC. AT2R-tdTomato and TBR1 signals are colocalized (indicated with arrows). Right: percentage of AT2R1 neurons colocalized with TBR1 in the
mPFC of male (D) and female (E) mice. Scale bar = 200 mm. AT2R, angiotensin II type 2 receptor; CC, corpus callosum; IL, infralimbic cortex; L, layer; mPFC,
medial prefrontal cortex; PL, prelimbic cortex; TBR1, T-box brain transcription factor 1.
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Figure 3. Characterization of AT2R/tdTomato1 in mPFC cell types. (A) Experimental approach to test mPFC AT2R1 cell type in the mPFC of male and
female mice (n = 3/group). (B–E) Representative sections show that sex has no effect on AT2R (red) colocalization with (B) PV (pink) interneurons (male: 5.5%
6 2.5% colocalized, female: 6.9% 6 2.6% colocalized, t4 = 0.41, p = .70), (C) nNos (white) interneurons (male: 5.5% 6 3.3% colocalized, female: 3.5% 6
1.2% colocalized, t4 = 0.58, p = .59), (D) CB (orange) interneurons (male: 17.0% 6 4.0% colocalized, female: 19.6% 6 5.6% colocalized, t4 = 0.38, p = .72), or
(E) CR (teal) interneurons (male: 6.1% 6 1.9% colocalized, female: 6.0% 6 1.7% colocalized, t4 = 0.03, p = .98). Colocalization indicated with arrows. Scale
bar = 50 mm. AT2R, angiotensin II type 2 receptor; CB, calbindin; CR, calretinin; IL, infralimbic cortex; mPFC, medial prefrontal cortex; nNos, neuronal nitric
oxide synthase; PL, prelimbic cortex; PV, parvalbumin; Som, somatostatin.
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interneurons (Figure 3E). Across males and females, there was
minimal colocalization through the mPFC of AT2R-tdTomato1
cells with these 4 interneuron markers (PV 5.60%, nNos
4.30%, CB 18.30%, CR 6.20%) (Figure 3B–E).

Increased SOM1 mPFC-AT2R–Expressing Cells in
Female Mice

Colocalization analysis between AT2R and somatostatin in
mPFC brain sections from male and female AT2R-cre/tdTomato
mice (n = 4/group) (Figure 4A) revealed that somatostatin was
the primary AT2R-expressing cell type in females and males and
was more densely colocalized in the PL/IL of females than
males (males: 20.1% 6 3.7%, females: 34.8% 6 4.2%, p = .03)
(Figure 4B–E). In the PL of both males and females, somato-
statin colocalization was distributed throughout L2/3–L6, while
in the IL, colocalization was biased toward L5 and L6
(Figure 4C). Because SOM interneurons in the mPFC have a
known regulatory role in fear memory and extinction (44–47) and
are activated by stress in a sex-dependent manner (48), we
sought to examine the functional role of these AT2R-expressing
neurons in fear extinction in male and female AT2R-flox mice.

Cre/LoxP mPFC-AT2R Deletion Inhibits Fear
Extinction in Female but Not Male Mice

To assess the role of mPFC-AT2R in fear learning, AT2Rflox/flox

male and female mice received either Cre-expressing AAV or
GFP-expressing AAV into the mPFC to selectively delete
AT2R. Four weeks postinjection, AT2R gene expression was
significantly decreased in AAV-Cre injected mice compared
with the AAV-GFP control group, confirming site-specific AT2R
deletion in the mPFC (males: p = .02; females: p , .01)
A

B

C

Figure 4. AT2R/tdTomato1 expression on mPFC SOM interneurons in female
(red) with SOM neurons (blue) in the mPFC (n = 4/group). (B) Females have sign
mPFC (males: 20.1% 6 3.7% colocalized, females: 34.8% 6 4.2% colocalized,
female (right) mPFC showing laminar distribution of AT2R/SOM colocalizations
sections from the male (D) and female (E) mPFC. AT2R-tdTomato and somato
AT2R1 neurons colocalized with SOM in the mPFC of male (D) and female (E) m
corpus callosum; IL, infralimbic cortex; L, layer; mPFC, medial prefrontal cortex;
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(Figure 5B, C). Once mPFC-AT2R deletion was confirmed, we
used Pavlovian fear conditioning (5 CS-unconditioned stimulus
pairings) and extinction (3 days, 30 CS per day) to determine
the impact on fear behavior (Figure 5A). In males, AT2R dele-
tion had no impact on fear conditioning or freezing to the CS
during extinction testing (p = .76) (Figure 5D).

In females, however, mPFC-AT2R deletion significantly
inhibited extinction learning across 3 days (p = .03) (extinction
training, extinction testing, and a 7-day test of long-term
extinction retention). Cre-injected females displayed higher
freezing across all days of extinction testing. Together, these
results show that mPFC-AT2R deletion significantly delays
both short- and long-term extinction learning in female, but not
male, AT2R-flox mice.
Effects of mPFC-AT2R Deletion on Locomotion,
Approach/Avoidance, and Exploration Behaviors

To determine whether the difference in fear extinction observed
with AT2R-mPFC deletion may be a result of effects on anxiety,
locomotion, or a deficit in exploratory behavior, male and female
GFP- and Cre-injected AT2R-flox mice underwent OF
(Figure 6A, E) and EPM (Figure 6I, M) testing. mPFC-AT2R
deletion did not affect the total distance traveled in the OF in
males (GFP 44.11 6 5.92 m, Cre 56.00 6 10.29 m, p = .35)
(Figure 6B) or females (GFP 42.86 6 4.85 m, Cre 42.39 6 4.97
m, p = .95) (Figure 6F) or the total arm entries in the EPM inmales
(GFP 26.75 6 1.45, Cre 31.67 6 2.17, p = .09) (Figure 6J) or
females (GFP 31.20 6 2.18, Cre 36.22 6 3.96, p = .27)
(Figure 6N). While mPFC-AT2R deletion did not impact
anxiety-like measures in the OF in males (center entries: GFP
70.75 6 13.99, Cre 106.6 6 18.87, p = .16; time in center: GFP
D

E

mice. (A) Experimental approach for costaining of AT2R-tdTomato1 cells
ificantly greater AT2R/SOM colocalizations in the PL and IL regions of the
t6 = 2.62, p = .03). (C) Representative coronal sections from male (left) and
. Colocalizations are indicated with X. (D, E) Left: representative coronal
statin signals are colocalized (indicated with arrows). Right: percentage of
ice. Scale bar = 200 mm. *p , .05. AT2R, angiotensin II type 2 receptor; CC,
PL, prelimbic cortex; SOM/Som, somatostatin.
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Figure 5. AT2R cre/lox mPFC deletion delays extinction learning in females but not males. (A) Experimental protocol for the auditory cue-dependent fear
extinction test. (B) Left: strategy for injection of AAV-cre (red) or AAV-GFP (black) into the mPFC of male AT2R-flox mice and representative injection image in
the mPFC. Right: injection of AAV-cre into the mPFC successfully decreased expression of AT2R in males (GFP: 1.35 6 0.38 fold change, Cre: 0.40 6 0.11
fold change, t17 = 2.54, p = .02). (C) Left: strategy for injection of AAV-cre (blue) or AAV-GFP (green) into the mPFC of female AT2R-flox mice and representative
injection image in the mPFC. Right: injection of AAV-cre into the mPFC decreased expression of AT2R in females (GFP: 1.20 6 0.28 fold change, Cre:
0.32 6 0.07 fold change, t18 = 3.28, p , .01). (D) AT2R deletion from the male mPFC does not impact fear acquisition or extinction learning across 3 testing
days in males (F1,17 = 0.09, p = .76). (E) In females, AT2R deletion from the mPFC significantly inhibits extinction learning (F1,20 = 5.35, p = .03). n = 9–12/group.
Blocks represent groupings of 5 conditioned stimuli exposures; for example, block 1 represents conditioned stimuli 1–5, while block 6 represents conditioned
stimuli 25–30. *p , .05, **p , .01. AAV, adeno-associated virus; AT2R, angiotensin II type 2 receptor; GFP, green fluorescent protein; IL, infralimbic cortex;
mPFC, medial prefrontal cortex; mRNA, messenger RNA; PL, prelimbic cortex.
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117.60 6 27.33 seconds, Cre 175.20 6 27.85 seconds, p = .16)
(Figure 6C, D) or females (center entries: GFP 62.60 6 8.40, Cre
70.44 6 11.06, p = .58; time in center: GFP 88.38 6 13.22
seconds, Cre 113.00 6 18.67 seconds, p = .29) (Figure 6G, H),
nor approach, avoidance, or exploratory behavior in the EPM in
males (open arm entries: GFP 12.38 6 1.02, Cre 13.22 6 1.54,
p = .66; time in open arm: GFP 43.25 6 5.88 seconds, Cre
40.73 6 6.27 seconds, p = .78) (Figure 6K, L), mPFC-AT2R
deletion did increase some measures of exploratory behavior in
the EPM in females (open arm entries: GFP 12.50 6 0.96, Cre
20.00 6 2.81, p = .02; time in open arm: GFP 44.54 6 8.37
seconds, Cre 64.99 6 12.62 seconds, p = .19) (Figure 6K, L).
Taken together, these results demonstrate that AT2R deletion
from the mPFC did not affect locomotion in males or females but
may have increased some aspects of exploratory behavior in
females.
Biological Psychiatry: Global
DISCUSSION

The current results identified mPFC-AT2R1 interneurons
and their role in the extinction of conditioned fear in a sex-
dependent manner, supporting the significant ongoing
research into the neurobiology of PTSD that is directed toward
enhancing translational preclinical models with the goal of
developing more effective therapies (49,50). This is especially
important when investigating sex differences in PTSD, given
the lack of therapies developed using female animals (36,51).
Many studies are focused on the neuronal circuitry of PTSD
in therapy development because pharmacologically targeting
the circuits involved in fear extinction, for example, is critical
for further understanding and developing exposure-based
therapies, one of the most widely used treatment strategies
for PTSD (28,52–54). Further understanding sex-based
Open Science September 2024; 4:100340 www.sobp.org/GOS 7
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Figure 6. Effects of AT2R cre/lox medial prefrontal cortex deletion on behavioral assays of locomotion and exploration in males and females. (A, E)
Representative locomotor traces of GFP- and Cre-injected males (AAV-GFP: black; AAV-Cre: red) and females (AAV-GFP: green; AAV-Cre: blue) in the open
field test. (A–H) AT2R deletion has no impact on locomotion [(B) t15 = 0.97, p = .35; (F) t17 = 0.07, p = .95, total distance traveled] or generalized anxiety [(C)
t15 = 1.49, p = .16; (G) t17 = 0.57, p = .58, center entries; (D) t15 = 1.47, p = .16; (H) t17 = 1.11, p = .29, time in center] in males or females. (I, M) Representative
locomotor traces of GFP- and Cre-injected males and females in the elevated plus maze test. (I–P) AT2R deletion has no impact on exploratory behavior [(J)
total arm entries, t15 = 1.84, p = .09] or generalized anxiety in males [(K) open arm entries, t15 = 0.45, p = .66; (L) time in open arm, t15 = 0.29, p = .78]. Medial
prefrontal cortex AT2R deletion increases some aspects of exploratory behavior in females [(N) total arm entries, t17 = 1.14, p = .27; (O) open arm entries,
t17 = 2.64, p = .02; (P) open arm time, t17 = 1.38, p = .19]. n = 8–10/group. *p , .05. AT2R, angiotensin II type 2 receptor; GFP, green fluorescent protein.
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differences in neuronal circuits may also provide insight into
developing PTSD therapies that are effective in both males and
females (35,36,51,55). Consistent with this, recent preclinical
and clinical studies have identified the brain RAS as a potential
drug target for extinction-based therapies and have begun
investigating the neuronal mechanisms that it may work
through (7,8,11,34,56).

Previous studies in mice have shown that brain AT2R can
influence the neural control of cognition and fear memory as
well as physiological and cardiovascular stress, potentially in a
sex-dependent manner (11,13,19,20,23,25,57,58). For
example, pharmacological activation of AT2R in the central
amygdala decreases the expression of a fear memory (11),
while global knockout of AT2R results in anxiety-like behavior
and cognitive deficits, particularly in females (19,25,57). In the
hypothalamus, activation of AT2R has been shown to atten-
uate experimental hypertension by decreasing the firing of
pressor neurons, a protective effect that, similar to behavioral
findings, is also more pronounced in females (23,58).

Studies involving AT1R can also inform the functional role of
AT2R because AT1R and AT2R serve opposing physiological
roles. Preclinical studies from our lab and others have shown
that systemic AT1R blockade with losartan and central
amygdala–specific AT1R deletion enhance extinction learning
(7,59,60). In clinical studies, losartan improves extinction, de-
creases PTSD symptom severity, and increases top-down
control of the mPFC over the amygdala (34,61). Because evi-
dence shows that losartan upregulates AT2R, this indicates
that the benefit of AT1R blockade in both humans and mice
may be via an AT2R-dependent mechanism (62,63).
8 Biological Psychiatry: Global Open Science September 2024; 4:1003
Although the AT2R receptor is expressed in several regions of
the brain that can influence these functions directly, such as the
hypothalamus, brainstem, amygdala, and hippocampus (12), the
current study focused on the mPFC, a critical area for fear or
threat learning in both humans and mice (27,28). While immu-
nostaining studies have shown that AT2R is highly expressed in
the rodent mPFC (12,15), no research reported to date has
investigated the function of mPFC-AT2R or how its activity af-
fects top-down regulation of fear learning. Here, we identified a
novel population of mPFC-AT2R-expressing SOM interneurons
in the mPFC and and their potential role in fear-related behaviors.

To first classify the cell types that express AT2R in the
mPFC, we crossed AT2R-cre mice (58) with Ai14 tdTomato
reporter mice. Consistent with previous immunostaining
studies (12,15), we found a high density of AT2R-expressing
cells throughout the PL and IL cortices of the mPFC
(Figure 1), 2 subnuclei heavily involved in top-down regulation
of fear and extinction (26,27,29,64). The mPFC is primarily
(80%–90%) glutamatergic (26); however, IHC revealed that
only 5% to 15% of AT2R-expressing cells in the mPFC were
excitatory (Figure 2), indicating that their function may be
through interneuron modulation. In the smaller (10%–20%)
class of mPFC neurons, several overlapping and nonoverlap-
ping interneuron types are vital to modulating the activity of
excitatory projection neurons to regulate fear memory and
extinction (26,41,43,44,46,48,65). However, these populations
often have opposing or additive effects on mPFC output. For
example, the 2 main interneuron populations, PV and SOM, are
both necessary for fear memory processing (41,44); however,
PV interneurons target the cell body of excitatory projecting
40 www.sobp.org/GOS
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Figure 7. Proposed mechanism for mPFC-AT2R1 interneurons role in conditioned fear. (1) Activation of mPFC-AT2R on somatostatin interneurons of the
mPFC decreases the activity of these interneurons. (2) This decreases inhibition of glutamatergic projection neurons and increases their firing to downstream
regions. (3) Because of preferential somatostatin inhibition on brainstem (L2/3), amygdala (L5), and thalamic (L6) projecting excitatory neurons, mPFC top-
down regulation is increased to these regions [see (26)]. (4) Potential role of mPFC1AT2R interneurons in the physiology of conditioned fear. AT2R, angio-
tensin II type 2 receptor; L, layer; mPFC, medial prefrontal cortex.
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cells to control neuronal output, while SOM interneurons target
the apical dendrite to control inputs onto projecting cells (66).
There is also a large degree of heterogeneity within interneuron
subtypes, as illustrated by SOM interneurons that can be
broadly classified into Martinotti cells, the primary subtype in
L2/3, L5, and L6 that preferentially synapse onto excitatory
projecting cells, or non-Martinotti cells, which are primarily in
L4 and synapse onto PV interneurons (47,66–68). Therefore, it
is essential to characterize which mPFC interneuron subtypes
AT2R is expressed on to advance understanding of its func-
tional role and mechanism of action.

Although AT2R has been studied using both interneuron
(13) and non-interneuron (11,58) populations, its functional
role in the mPFC has not been examined. After determining
sparse excitatory coexpression (Figure 2), we stained
AT2R-cre/tdTomato brains for 5 interneuron markers (PV,
SOM, nNos, CB, and CR) to elucidate its potential role in
specific mPFC interneuron function. In both males and
females, we found that AT2R primarily colocalized with
SOM1-expressing interneurons, and females had greater
coexpression with somatostatin than males across the PL and
IL (Figure 4), indicating that AT2R may preferentially modulate
SOM1 interneurons, a key population of interneurons previ-
ously identified to play a role in cognition (43,69,70) and fear
learning (44–46) distributed in cortical layers L6 through L2/3
(26,47). The minimal levels of AT2R colocalization with other
interneuron populations (Figure 3) may inform the type of so-
matostatin cell that AT2R is found on. For example, denser
levels of AT2R/CB costaining combined with lower coex-
pression with CR and nNos interneurons indicates that AT2R is
primarily found on excitatory cell-projecting Martinotti cells
Biological Psychiatry: Global
(47,68,71,72), although this conclusion is limited by the current
study’s lack of AT2R-SOM interneuron triple immunostaining.
Additionally, the distribution of somatostatin colocalization in
females in L5 and L2/3 (Figure 4) indicates that mPFC-AT2R
may have a role in the top-down control of fear and reward
processing (44,45). While our study did not include mPFC-
AT2R electrophysiology, previous research has demonstrated
that AT2R activation reduces spontaneous neural activity by
enhancing potassium channel activity (15,21,22,58,73).
Consequently, we suggest a working hypothesis that AT2R
activation diminishes somatostatin inhibition onto excitatory
projection neurons, thereby enhancing mPFC’s top-down
regulation of fear. Our IHC findings (Figure 4) combined with
the known sex-biased effects of brain AT2R (23,25) lead us to
also hypothesize that AT2R would have a greater effect on fear
memory in female mice.

Recent studies from our laboratory and others have
demonstrated a role for AT2R in the expression of conditioned
fear and behavioral stress (11,18). The current study used male
and female AT2R-flox mice to further investigate the effects of
selective mPFC-AT2R deletion on fear extinction learning us-
ing 3 extinction tests across 7 days to examine both short- and
long-term extinction memory. Consistent with previous studies
on AT2R sex-specific effects (23–25,74), mPFC-AT2R deletion
significantly delayed short- and long-term extinction learning in
females but had no effect on fear acquisition or extinction in
males (Figure 5). Future studies will need to adopt a more
targeted Cre/Lox approach, focusing on specific subnuclei
within the mPFC, such as the IL and PL regions, which play
distinct roles in regulating fear expression and extinction
(75,76).
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http://www.sobp.org/GOS


Prefrontal Cortex AT2 Receptor and Fear
Biological
Psychiatry:
GOS
Interestingly, while mPFC-AT2R deletion did not impact
locomotion or approach/avoidance behavior in males or fe-
males, increased exploratory behavior in females (Figure 6)
was observed. These effects of AT2R deletion on extinction
learning and exploration may suggest a functional role for
AT2R-mPFC SOM1 interneurons and support previous
studies showing mPFC SOM1 cells may encode fear memory
(44–46) and regulate stress in a sex-dependent manner (48).
Furthermore, increased somatostatin signaling, which we hy-
pothesize occurs with AT2R deletion, increases exploratory
behavior in mice (69).

The behavioral effects that we see with mPFC-AT2R dele-
tion may also be dependent on a TrkB (tyrosine kinase receptor
2)/BDNF (brain-derived neurotrophic factor) signaling pathway
because there is emerging evidence that cortical AT2R is
dependent on coexpression with TrkB to influence learned fear
(18,77,78). Future studies will directly interrogate the electro-
physiological impact of AT2R activation or deletion on SOM
interneuron activity and mPFC projections, as well as whether
activation of AT2R-expressing mPFC interneurons can facili-
tate fear extinction.

Conclusions

In summary, these results identify an AT2R-expressing SOM1
interneuron population in the mPFC, with increased expression
in females compared to males. We also showed that AT2R
deletion from the mPFC inhibited extinction learning in females
only. Taken together, these results provide a basis for our
working hypothesis that activation of mPFC-AT2R on SOM1
interneurons decreases inhibition onto excitatory projection
neurons, thereby increasing mPFC modulation to its down-
stream brain targets involved in conditioned fear such as the
amygdala, thalamus, and brainstem (Figure 7).

Our study offers novel insights into the potential neurobio-
logical mechanisms of mPFC-AT2R regulation of conditioned
fear. However, several limitations prevent this study from
directly linking the expression of mPFC-AT2Rs on SOM in-
terneurons to their sex-specific function in fear extinction.
Future studies are needed to improve our understanding of the
mechanisms that underlie mPFC-AT2R sex-dependent fear
learning, which may lead to improved therapeutics for the
treatment of PTSD and comorbid cardiovascular disease risk.
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