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Abstract: The B-box proteins (BBXs) are a family of zinc-finger transcription factors with one/two B-
Box domain(s) and play important roles in plant growth and development as well as stress responses.
Wolfberry (Lycium barbarum L.) is an important traditional medicinal and food supplement in China,
and its genome has recently been released. However, comprehensive studies of BBX genes in Lycium
species are lacking. In this study, 28 LbaBBX genes were identified and classified into five clades by a
phylogeny analysis with BBX proteins from Arabidopsis thaliana and the LbaBBXs have similar protein
motifs and gene structures. Promoter cis-regulatory element prediction revealed that LbaBBXs might
be highly responsive to light, phytohormone, and stress conditions. A synteny analysis indicated that
23, 20, 8, and 5 LbaBBX genes were orthologous to Solanum lycopersicum, Solanum melongena, Capsicum
annuum, and Arabidopsis thaliana, respectively. The gene pairs encoding LbaBBX proteins evolved
under strong purifying selection. In addition, the carotenoid content and expression patterns of
selected LbaBBX genes were analyzed. LbaBBX2 and LbaBBX4 might play key roles in the regulation
of zeaxanthin and antheraxanthin biosynthesis. Overall, this study improves our understanding
of LbaBBX gene family characteristics and identifies genes involved in the regulation of carotenoid
biosynthesis in wolfberry.

Keywords: Lycium barbarum; LbaBBX gene family; LbaBBX gene expression; carotenoid biosynthesis;
protein subcellular localization

1. Introduction

Zinc finger transcription factors (TFs) are some of the most abundant TFs in plants
and play a vital regulatory role in the regulation of transcription and various biological
functions [1,2]. B-Box (BBX) proteins are a class of zinc-finger TFs possessing one or two
B-box domains (CX2CX8CX7CX2CX4HX8H) in the N-terminus; some have an additional
CCT (CONSTANS, CO-like, and TOC1) conserved domain or VP (valine–proline) motifs in
the C-terminus. The B-box domains can be classified into two types: B-box1(B1) and B-box2
(B2). Two B-box conserved domains are recognized based on their consensus sequence
and the distance between the zinc-binding residues [3]. Potential segmented duplication
and deletion events result in differences in the consensus sequences and space between the
zinc-binding residues in the two B-box domains [3,4]. In addition, the highly conserved
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CCT domain is comprised of 42–43 amino acids and is important for the regulation of
transcription and nuclear protein transport [5,6]. According to the existence of BBX and
CCT domains, 32 BBX proteins have been identified and classified into five subgroups
in Arabidopsis [7]. Therefore, members of BBX proteins are divided into five categories
depending on the presence of B-Box domains along with the CCT domain and have been
reported in multiple species [4].

Subsequently, many studies have shown that plant BBX proteins play important roles
in diverse physiological and biochemical processes, such as flowering time regulation,
photomorphogenesis, shade avoidance, secondary metabolism, and biotic and abiotic stress
responses [8–12]. The first BBX gene (CONSTANS (CO), known as AtBBX1) was identified
and characterized in Arabidopsis; it can activate FLOWERING LOCUS T (FT) by binding to
its promoter under a long day length [13]. Other BBX genes were subsequently discovered
and functionally characterized, including BBX4, BBX6, BBX7, and BBX32, with roles in the
regulation of flowering time [14–16]. Recently, BBX proteins have been reported to regulate
secondary metabolism in fruits, especially anthocyanin and carotenoid biosynthesis. In
Arabidopsis, BBX21/22/23 are positive regulators of anthocyanin accumulation [10], while
BBX24/25/31 negatively regulate anthocyanin biosynthesis in response to several envi-
ronmental factors. The overexpression of VvBBX44 decreased the expression of VvHY5
and VvUFGT and reduced the anthocyanin content in grape calli [17]. In pear, PpBBX16,
a homolog of AtBBX22, is a positive regulator of light-induced anthocyanin accumula-
tion [18]. In apple, MdBBX1/20/21/22 and MdBBX33 promote anthocyanin biosynthesis
by light-induced anthocyanin accumulation, whereas MdBBX37 is a negative regulator of
anthocyanin accumulation via light signaling. In tomatoes, SlBBX20 regulates the synthesis
of carotenoids by directly binding to the promoter of the gene encoding the carotenoid
biosynthesis enzyme PHYTOENESYNTHASE 1 [11]. However, studies of BBX genes in
wolfberry are rare.

Wolfberry (Lycium barbarum L.; 2n = 2x = 24), a fruit tree in the family of Solanaceae, is
an important medicinal and edible plant in China. L. barbarum is a rich source of carotenoid
esters, which are mainly composed of zeaxanthin dipalmitate, lutein palmitate, antheraxan-
thin, and β-cryptoxanthin. Therefore, carotenoids are responsible for the orange, yellow,
and red colors of L. barbarum fruits [19,20]. During the past few decades, many studies have
identified TFs families with important roles in the regulation of carotenoid biosyntheses,
such as SlMYB72, SlWRKY35, MdAP2, and SlBBX20 [11,21–23]. Two R2R3-MYB family
members, LbaMYB26(Lba02g01219) and LbaMYB123 (Lba11g01830), are candidate genes
involved in the regulation of carotenoid biosynthesis in L. barbarum fruits [24]. The BBX
gene family has been identified and evaluated in many plant species, such as Solanum lycop-
ersicum [25], Capsicum annuum [26], Iris germanica [27], Prunus avium [28], Vitis Vinifera [29],
and Arabidopsis thaliana [30], and has diverse functions. Our understanding of the func-
tions of the BBX gene family, such as roles in responses to biotic and abiotic stresses and
secondary metabolite biosynthesis, has advanced. However, the mechanism by which BBX
genes contribute to the regulation of carotenoid biosynthesis is still unclear.

Comprehensive studies of BBX genes in wolfberry have not been reported to date.
The recent completion of the L. barbarum genome provides a basis for investigating the BBX
gene family in the species at the genome level [31]. To further characterize the BBX gene
family in Lycium, we performed systematic genome-wide identification and analyses of
the BBX gene family, bridging the research gap in BBX gene family studies. Analyses of
physical and chemical characteristics, collinearity analysis, phylogenetic and evolutionary
relationships, conserved domains, gene structures, cis-regulatory networks, subcellular
localizations, and expression patterns of LbaBBX genes were performed. This study lays a
foundation for further analyses of the roles of LbaBBX genes in carotenoid biosynthesis and
fruit development in wolfberry.
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2. Results
2.1. Identification and Characteristics of LbaBBX Genes

To identify BBX genes in the wolfberry genome, hidden Markov model (HMM)
searches with the B-box domain HMM profile (PF00643) and BLSATP using 32 BBX protein
sequences from Arabidopsis thaliana as queries were performed. The candidate BBX protein
sequences were used to detect the presence of B-box conserved domains by the Simple
Modular Architecture Research Tool (SMART) and the National Center for Biotechnology
Information (NCBI) batch CD-Search. A total of 28 putative LbaBBX genes were identified
(Table 1). These BBX genes were named LbaBBX1 to LbaBBX28 according to their location
on the L. barbarum chromosomes. The coding sequences (CDS) of BBX genes ranged from
330 bp to 1374 bp. They encoded proteins that were 109 to 457 amino acids (AA) in length,
with predicted putative molecular weights ranging from 12.49 kDa to 51.73 KDa. The grand
average of hydropathicity (GRAVY) values for all BBXs were negative, indicating that the
BBX proteins were hydrophilic. The subcellular localization results showed that most of
the LbaBBX proteins were found in the nucleus.

Table 1. Information on the BBX gene family in wolfberry.

Gene ID Gene Name CDS AA pI MW (kDa) GRAVY Subcellular
Localization Domains Structure

Lba01g02500 LbaBBX1 705 234 4.91 25.99 −0.393 nucleus 2BBX IV
Lba02g02688 LbaBBX2 903 300 6.20 33.42 −0.522 nucleus 2BBX IV
Lba03g02797 LbaBBX3 1224 407 5.23 46.60 −0.86 nucleus 1BBX + CCT III
Lba04g02191 LbaBBX4 900 299 5.13 32.15 −0.272 nucleus 2BBX IV
Lba04g02506 LbaBBX5 666 221 5.03 24.38 −0.582 nucleus 1BBX V
Lba04g02507 LbaBBX6 591 196 5.10 21.65 −0.683 chloroplast 1BBX V
Lba04g02527 LbaBBX7 369 122 7.52 13.83 −0.241 nucleus 1BBX V
Lba04g02528 LbaBBX8 1269 422 6.08 46.01 −0.564 nucleus 2BBX + CCT II
Lba04g02630 LbaBBX9 1239 412 5.13 45.55 −0.656 nucleus 1BBX + CCT II
Lba05g00735 LbaBBX10 1272 423 5.24 46.57 −0.508 nucleus 1BBX + CCT II
Lba05g00905 LbaBBX11 693 230 5.63 25.67 −0.343 nucleus 2BBX IV
Lba05g01291 LbaBBX12 1227 408 5.64 44.95 −0.601 nucleus 1BBX + CCT II
Lba05g01679 LbaBBX13 1338 445 7.05 48.87 −0.603 nucleus 2BBX + CCT II
Lba05g02193 LbaBBX14 1374 457 5.24 51.73 −0.741 nucleus 1BBX + CCT III
Lba06g03364 LbaBBX15 600 199 5.88 21.86 −0.518 nucleus 2BBX IV
Lba06g03380 LbaBBX16 585 194 5.88 21.54 −0.573 chloroplast 2BBX IV
Lba07g00041 LbaBBX17 1140 379 6.70 41.94 −0.35 chloroplast 2BBX + CCT I
Lba07g01710 LbaBBX18 960 319 8.40 35.23 −0.479 nucleus 2BBX IV
Lba07g01848 LbaBBX19 1068 355 5.96 39.31 −0.561 chloroplast 2BBX + CCT I
Lba09g00845 LbaBBX20 1140 379 5.27 42.66 −0.728 nucleus 2BBX + CCT II
Lba09g01983 LbaBBX21 966 321 5.69 35.91 −0.592 cytoplasmic 2BBX + CCT I
Lba10g01709 LbaBBX22 1263 420 5.37 48.09 −0.824 nucleus 1BBX + CCT III
Lba10g01753 LbaBBX23 1257 418 4.94 46.75 −0.506 nucleus 2BBX II
Lba11g00500 LbaBBX24 882 293 4.98 31.56 −0.404 nucleus 2BBX IV
Lba11g00948 LbaBBX25 624 207 4.71 23.43 −0.916 nucleus 1BBX V
Lba11g00982 LbaBBX26 345 114 8.56 12.96 −0.421 cytoplasmic 1BBX V
Lba11g01258 LbaBBX27 981 326 4.65 35.69 −0.423 nucleus 2BBX + CCT II
Lba12g01725 LbaBBX28 330 109 9.21 12.49 −0.446 cytoplasmic 1BBX V

2.2. Protein Domains and Phylogenetic Analysis of LbaBBX Proteins

The conserved sequences of B-Box domains (B-Box1 and B-Box2), CCT domain, and
VP motif in wolfberry BBX proteins were identified, and sequence logos are shown in
Figure S1. Out of 28 LbaBBXs, ten contained two B-box domains and a conserved CCT
domain, whereas three members had a valine–proline (VP) motif. Three and six members
contained one B-box domain plus a CCT domain and only one B-Box domain, respectively,
and the remaining nine members contained two B-Box domains. Conserved structures of
LbaBBX members were found with B-box1 sequence (C-X2-C-X8-C-X2-D-X4-C-X2-C-D-X3-
H-X8-H-X-R-X, X represents any amino acid) and B-box2 (C-X2-X8-C-X8-C-C-X3-X9-H-X-
R-X4). Additionally, the CCT domain was highly conserved. Multiple sequence alignments
of B-box1, B-box2, CCT domain, and VP motif for all LbaBBX proteins were also generated
(Figure S2). Based on the alignments, some absolutely conserved amino acid residues were
found, such as the Cysteine (C) and Histidine (H) residues in the B-box domain, Arginine
(R) and Lysine (K) residues in the CCT domain, and Valine (V) and Proline (P) residues in
the VP motif.
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The full-length amino acid sequences were used to construct a phylogenetic tree by
the maximum likelihood (ML) method using IQ-TREE. As shown in Figure 1a, the LbaBBX
family was divided into five subgroups, consistent with previous studies of the gene family
in tomato, pepper, and Arabidopsis [25,26,30]. We found that LbaBBX proteins assigned to
the same group possess similar domain organizations. For example, in subgroup I, three
LbaBBXs contained two B-Box domains, an additional CCT domain, and a VP domain
(Figure 1a). In order to confirm the subfamily clustering of BBX members in wolfberry,
a phylogenetic tree of LbaBBX together with SlBBX, CaBBX, StBBX, SmBBX, IcBBX, and
AtBBX was also constructed by using the ML method (Figure S3 and Table S1). All BBX
proteins were also divided into five subfamilies. Furthermore, the sequences of B-box
1 (Figure 1b), B-box 2 (Figure 1c), and CCT (Figure 1d) domains were also evaluated.
The members of subgroups I and II contained both B-Box and CCT domains, except for
LbaBBX23, which harbored only two B-Box domains. Members of subgroup III had one
B-box domain and one CCT domain. Members of subgroups IV and V had no CCT domain
and only two or one B-Box domain(s), respectively.
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Figure 1. Phylogenetic tree analysis of BBX proteins in wolfberry. (a) The trees shown were based on
the alignments of the protein sequences of the full length, and the phylogenetic tree was constructed
using maximum likelihood method with 1000 bootstrap replicates by IQ-TREE. (b–d) The tree shown
were based on the alignments of the protein’s sequences of the B-box 1 domain, B-box 2 domain
and CCT domain, respectively. The members marked in black triangle contain two B-Box and one
CCT domains.
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2.3. Gene Structure and Motif Composition of the LbaBBX Gene Family

The exon–intron structures and conserved motifs were examined to gain insight into
the structural diversity of LbaBBX genes. As shown in Figure 2b, the number of exons
ranged from one to five, with an average of 2.9. Additionally, wolfberry BBX genes in
clades I, II, III, and IV exhibited highly similar gene structures; however, LbaBBX genes
in clade V showed highly variable structures. For example, most of the LbaBBX genes
in clades I, II, III, and IV possessed two, four (except LbaBBX23), two, and four (except
LbaBBX16) genes, respectively (Figure 2a). These results suggested that exon losses or gains
occurred during the evolution of the gene family and resulted in functional divergence
among closely related LbaBBXs.
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was located on each of chromosomes 1, 2, 3, and 12, and only two were detected on chro-
mosomes 6, 9, and 10. No LbaBBX genes were located on chromosome 8. 

Different patterns of gene duplication contributed to the evolution of the BBX gene 
family, including whole-genome duplication (WGD) as well as segmental duplication, 
tandem duplication (TD), proximal duplication (PD), transposed duplication (TRD), and 
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Figure 2. Phylogenetic relationships and motif composition of the LbaBBX proteins, and gene
structure of the LbaBBX genes. (a) The phylogenetic tree was constructed based on the full-length se-
quences using IQ-TREE software by maximum likelihood (ML) method and 1000 bootstrap replicates.
(b) Exon/intron structures of BBX genes from wolfberry. The exons and introns are represented by
yellow boxes and black lines, respectively. The sizes of exons and introns can be estimated using
the scale below. (c) The conserved motifs of wolfberry proteins were elucidated by MEME. The
15 motifs were displayed by the different colored rectangles. The sequence information for each motif
is provided in Table S2. The length of protein can be estimated using the scale at the bottom.

To further examine the structural features of LbaBBX proteins, the conserved motif
compositions were analyzed using MEME. Fifteen conserved motifs were predicted and
named motifs 1–15 (Figure 2c). Motifs one and four were found in all LbaBBX proteins
except LbaBBX3. Most of the LbaBBX genes assigned to the same group shared similar motif
compositions and arrangements, which further validated the classification results. For
example, motifs 6 and 13 were detected only in groups II and I, respectively. Three LbaBBX
members (LbaBBX9, LbaBBX10, and LbaBBX12) from group II possessed maximum motifs,
containing motifs 1, 2, 3, 4, 6, 8, and 14. Except for LbaBBX7, LbaBBX26 and LbaBBX28
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harbored only two motifs (motif one and motif four) in group V. The detailed sequence
information for these 15 motifs is shown in Table S2.

2.4. Chromosomal Location and Duplication of LbaBBX Genes

We plotted the LbaBBX genes on the chromosomes of the wolfberry genome (Figure 3a).
A total of 28 LbaBBX genes were evenly distributed on 11 of 12 wolfberry chromosomes,
and the number of LbaBBX genes on each chromosome was not related to the chromosome
size (Figure S4). Each LbaBBX gene name corresponds to its physical position from the top
to the bottom of L. barbarum chromosome 1 to chromosome 12. Chromosome 4 contained
the largest number of LbaBBX genes (6 genes, ~21.4%), followed by chromosome 5 (5 genes,
~17.9%) and chromosome 11 (5 genes, ~17.9%). Only one LbaBBX gene was located on each
of chromosomes 1, 2, 3, and 12, and only two were detected on chromosomes 6, 9, and 10.
No LbaBBX genes were located on chromosome 8.
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Figure 3. Chromosomal location and duplicated genes among LbaBBX genes. (a) Intraspecific
collinearity analysis. A total of 28 LbaBBX genes were mapped onto the chromosomes based on
their physical location. The red lines indicate duplicated LbaBBX gene pairs. (b) Different models of
gene duplication in LbaBBX family. The x-axis represents the duplication type. The y-axis represents
the number of duplicated gene pairs. Whole genome duplication (WGD), tandem duplication (TD),
proximal duplication (PD), transposed duplication (TRD), dispersed duplication (DSD). (c) Analysis
of collinearity between two different species. The gray lines indicated duplicated blocks, while the
red lines indicated the syntenic BBX gene pairs. Chromosome numbers are indicated above or below
each chromosome.
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Different patterns of gene duplication contributed to the evolution of the BBX gene
family, including whole-genome duplication (WGD) as well as segmental duplication,
tandem duplication (TD), proximal duplication (PD), transposed duplication (TRD), and
dispersed duplication (DSD). We used DupGen_finder [32] to detect duplicated BBX family
gene pairs in wolfberry. The numbers of DSD, WGD, TRD, PD, and TD duplication events
in wolfberry were 23, 12, 4, 1, and 1, respectively (Figure 3b). These results indicated
that DSDs and WGDs explained the majority of gene duplication events in the LbaBBX
gene family.

In addition, collinearity was analyzed among homologous regions in other species,
including Solanum lycopersicum, Capsicum annuum, Solanum melongena, and Arabidopsis
thaliana. The interspecific collinearity results revealed 56 orthologous pairs (Figure 3c).
Orthologous relationships were detected between LbaBBX genes and genes in four species
belonging to Solanaceae and A. thaliana, including L. barbarum–S. lycopersicum (23 pairs),
L. barbarum–S. melongena (20 pairs), L. barbarum–C. annuum (8 pairs), and L. barbarum–
A. thaliana (5 pairs) (Table S3). The numbers of orthologous events of LbaBBX-SlBBX,
LbaBBX-SmeBBX, and LbaBBX-CaBBX were greater than that of LbaBBX-AtBBX. These
results indicated that wolfberry was closely related to the other three species in Solanaceae.
The high numbers of orthologous events of LbaBBX-SlBBX identified in our study suggest
that LbaBBX genes in wolfberry share a similar structure and function to those of SlBBX
genes in tomato.

2.5. Nonsynonymous (Ka) and Synonymous (Ks) Substitutions per Site, and Ka/Ks Analysis of
BBX Family Genes

We estimated rates of synonymous (Ks) and nonsynonymous (Ka) substitutions for
56 duplicated gene pairs. As illustrated in Figure 4, the Ka/Ks values for WGD-derived
gene pairs in wolfberry ranged from 0.172 to 0.403, and the Ka/Ks values for gene pairs
derived from DSD, TRD, PD, and TD were 0.098–0.527, 0.199–0.227, 0.357–0.357, and
0.444–0.444, respectively (Figure 4 and Table S6). In general, Ka/Ks value greater than 1.0
provide evidence for positive selection, values less than 1.0 suggest purifying selection,
and values equal to 1.0 suggest neutral evolution. In our study, all LbaBBX gene pairs
had Ka/Ks values less than 1, indicating that these genes primarily underwent strong
purifying selection.
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Figure 4. Different models of gene duplication in the LbaBBX family. The x-axis represents the
duplication type. The colorful dots represent duplicated gene pairs. Whole genome duplication
(WGD), tandem duplication (TD), proximal duplication (PD), transposed duplication (TRD), and
dispersed duplication (DSD).

2.6. Cis-Regulatory Elements in the Promoters of LbaBBX Genes

The 1500 bp upstream sequences of the 28 LbaBBX genes were extracted for analyses of
the cis-regulatory elements in the promoter regions. In total, 482 cis-acting elements were
identified and classified into three basic categories, including plant growth and development,
phytohormone, and stress responses (abiotic/biotic) (Figure 5 and Table S4). In the first
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subgroup (i.e., plant growth and development), the majority (84.5%) of elements were light-
responsive elements, such as GT1-motif, Box 4, G-box, and I-box, which are widespread
in plants (Figure 5c). The second subgroup included elements involved in phytohormone
responses; the ABREs for abscisic acid (ABA) responsiveness were the most common
elements, appearing 55 times in 28 LbaBBXs, accounting for 27.9% of the hormone-responsive
cis-regulatory elements (Figure 5c). The others were the CGTCA-motif and TGACG-motif
for MeJA-responsiveness elements, TATC-box and P-box for gibberellin-responsive elements,
and TGA-element for auxin-responsive elements, suggesting that LbaBBXs are regulated
by various hormones (Figure 5c). The last subgroup included elements related to different
stress responses. A cis-acting regulatory element essential for anaerobic induction (ARE)
was identified in 19 LbaBBX gene promoters (Table S4), suggesting that these genes might be
induced by low oxygen levels. W box (wounding and pathogen responsiveness), LTR (low-
temperature responsiveness), and MBS (MYB binding site involved in drought-inducibility)
were also found. Furthermore, MYC was found in 24 LbaBBX genes, suggesting that LbaBBXs
contribute to the response to abiotic stress (Table S4).
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Figure 5. Identification of cis-elements in promoter regions of LbaBBXs. (a) Three categories of
cis-acting elements in the LbaBBXs. Different numbers and color of the gird representing the number
of different elements in these LbaBBXs. (b) Histogram of the cis-acting elements in each LbaBBX gene.
The blue rectangle represents plant growth and development responsive cis-elements, the orange
rectangle represents phytohormone responsive cis-elements, and the gray rectangle represents abiotic
and biotic stress responsive cis-elements. (c) Pie charts of different sizes indicated the ration of each
promoter element in each category, respectively.
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2.7. Expression Patterns of LbaBBX Genes in Different Tissues

To further understand the dynamic gene expression patterns of BBX gene family
members in L. barbarum, we evaluated expression profiles in four tissues (leaf, stem, flower,
and fruit) with RNA-seq analysis. The LbaBBX genes exhibited tissue-specific expression
and were further divided into three groups (Figure 6 and Table S5). In Group I, six
genes (LbaBBX16, LbaBBX25, LbaBBX1, LbaBBX19, LbaBBX20, and LbaBBX21) presented
high overall expression levels in all four organs, suggesting that these LbaBBX genes
play important roles in the formation of these tissues, except two genes (LbaBBX15 and
LbaBBX25) in leaves with relatively low expression. Of 28 genes, seven BBXs were assigned
to Group II. Remarkably, not all homologous gene pairs exhibited similar patterns of
expression; for example, LbaBBX9 had the highest transcript abundance in the leaf, and
LbaBBX26 expression was highest in the stem (Figure 6b). In Group III, the remaining
14 genes shared similar low expression levels in these tissues, except LbaBBX4 (which was
highly expressed in fruits). Additionally, several genes that were highly expressed in the
fruit were identified, including LbaBBX1, LbaBBX4, LbaBBX16, and LbaBBX25 (Figure 6b).
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Figure 6. Expression pattern of LbaBBX genes. (a) Tissue-specific expression pattern of LbaBBX
genes in four tissues: leaf, stem, flower, and fruits, including five development stages. Blue and
red color indicated lower and higher transcript abundance, respectively. (b) Identification of highly
expressed BBX genes in L. barbarum. Blue, green, orange, red indicated low (1–7.3 FPKM), mid-low
(7.3–48 FPKM), mid-high (48–114 FPKM), and high (114–317 FPKM) expression, respectively.

2.8. Identification LbaBBX Genes Related to Carotenoid Contents

In order to ascertain how LbaBBX gene expression (FPKM values) may be predic-
tive of carotenoid accumulation in mature wolfberry fruit, a Pearson correlation analysis
was performed based on estimates at the mature (S5) stages. First, the carotenoid content
was analyzed by HPLC at five developmental stages in L. barbarum var. auranticarpum
(Figure 7a). During fruit development, carotenoid contents (zeaxanthin, antheraxanthin, β-
cryptoxanthin, and lutein palmitate) increased sharply as maturation progressed (Figure 7b).
Among the four types of carotenoid metabolites, zeaxanthin was the most abundant in all
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stages of fruit development. Correlation tests were performed to evaluate relationships
between abundances of various carotenoids (zeaxanthin, antheraxanthin, β-cryptoxanthin,
and lutein palmitate) and transcript abundances of LbaBBX genes. As shown in Figure 7c,
we observed a positive correlation between LbaBBX25 with zeaxanthin (r = 0.967, p < 0.05)
(Table S7). Strong positive correlations were observed between transcript levels of LbaBBX1
and LbaBBX2 with antheraxanthin contents (r = 0.993, p < 0.001; r = 0.989, p < 0.001, respec-
tively). Significant correlations were also observed between LbaBBX11 (r = 0.985), LbaBBX16
(r = 0.981), and LbaBBX25 (r = 0.985) expression levels and antheraxanthin accumulation (all
p < 0.05). Significant correlations were also observed between LbaBBX11, LbaBBX16, and
LbaBBX25 expression levels and antheraxanthin accumulation (r = 0.985, p < 0.05; r = 0.981,
p < 0.05; r = 0.985, p < 0.05, respectively). However, weak negative correlations of LaBBX9,
LbaBBX12, and LbaBBX13 expression levels with antheraxanthin contents were observed.
These correlations indicate that carotenoid accumulation in wolfberry fruits is correlated
with the expression patterns of LbaBBXs.
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cient >0.8 were included in this analysis (Figure 8). The network (visualized using Cyto-
scape) included 31 nodes connected by 123 edges. The pairwise correlations between 
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ure 8, all nine carotenoid biosynthesis genes exhibited positive correlations with carote-
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Figure 7. Identification LbaBBX genes related to carotenoid biosynthesis. (a) Fruits of Lycium bar-
barum var. auranticarpum at different stages of development. S1, S2, S3, S4, and S5 period rep-
resent 12, 19, 25, 30, and 37 days after full bloom (DAF), respectively. Scale bars represent 1 cm.
(b) Trends in carotenoids (zeaxanthin, antheraxanthin, β–cryptoxanthin and lutein palmitate) at five
developmental stages. The data contain the averages and standard deviations of three individual
replicates. Asterisks indicate a significant difference (* p < 0.05, ** p < 0.01, *** p < 0.001) compared
with S1 at the different time points during development. (c) Correlation analysis was constructed
using the expression levels of LbaBBX genes and carotenoids content in five different developmental
stages. The blue color means negative correlation, the red color means positive correlation. Asterisks
indicate a significant difference (* p < 0.05, ** p < 0.01, *** p < 0.001).

To further investigate the regulation of LbaBBX genes in wolfberry, a correlation
network was constructed combining four metabolites, 14 structural genes, and 13 LbaBBX
TFs related to carotenoid biosynthesis. Only the pairs with a Pearson correlation coefficient
>0.8 were included in this analysis (Figure 8). The network (visualized using Cytoscape)
included 31 nodes connected by 123 edges. The pairwise correlations between genes (FPKM
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values) and between gene and metabolite levels revealed that 74 and 49 pairs of nodes,
respectively, showed positive and negative correlations. As shown in Figure 8, all nine
carotenoid biosynthesis genes exhibited positive correlations with carotenoid contents, with
LbaCYP97A29 showing the highest positive correlation (Table S8). For the 13 LbaBBX TFs,
the transcript changes in LbaBBX1, LbaBBX2, LbaBBX4, LbaBBX11, LbaBBX16, LbaBBX18,
and LbaBBX25 showed positive correlations, while LbaBBX9, LbaBBX12, and LbaBBX13
showed negative correlations (Table S7). For relationships between levels of carotenoid
biosynthesis genes and BBX TFs, the highest positive correlation was observed between
LbaBBX2 and LbaPDS, followed by LbaBBX1 and LbaCRTISO, while the highest negative
correlation was found between LbaBBX11 and LbaLCYE (Table S9). It is worth noting that
LbaBBX1, LbaBBX2, LbaBBX11, and LbaBBX16 levels showed strong positive correlations
with levels of nine carotenoid biosynthesis genes each (Table S9). These results indicated
that these five LbaBBXs (LbaBBX1, LbaBBX2, LbaBBX4, LbaBBX11, and LbaBBX16) might be
involved in the regulation of carotenoid biosynthesis.
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Figure 8. Correlation network analysis for structural genes, LbaBBX transcription factors and
carotenoid content. The red ellipse boxes indicated that carotenoid metabolism, the green ellipse boxes
indicated that LbaBBX transcription factors, and the purple diamond boxes indicated carotenoid
biosynthetic genes, respectively. The black solid lines indicated positive regulation, while the dot
lines indicated negative regulation, respectively. The edges are drawn when the linear correlation
coefficient is >0.8 with p-value < 0.05. The related correlation coefficients were shown in Table S8.

2.9. Gene Expression Analyses by qRT-PCR

Nine potential LbaBBXs that showed strong correlations with the carotenoid content
during fruit development we further evaluated by qRT-PCR. The expression patterns
of several individual genes were highly correlated with the carotenoid content during
wolfberry fruit development. Our results indicated that the expression levels of LbaBBX2
and LbaBBX4 increased sharply from S1 (12 DAF) to S3 (25 DAF) and reached peak values
(Figure 9). The trends in the expression levels of these genes were consistent with trends in
zeaxanthin content. Taken together, LbaBBX2 and LbaBBX4 were identified as important
candidate genes involved in carotenoid biosynthesis and should be the focus of further
functional research.
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bacco leaves, and 35S-GFP was used as a negative control. As determined by fluorescence 
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exclusively in the nucleus, whereas the 35S-GFP control was distributed in the tobacco 
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Figure 9. The relative expression levels of nine LbaBBX genes at different fruit developmental stages.
Actin gene was used as reference gene to measure expression levels in each period. The x-axis
indicates the five distinct fruit developmental stages (12 DAF, 19 DAF, 25 DAF, 30 DAF and 37 DAF).
The y-axis indicates the relative expression. Data represent the means ± SDs (n = 3).

2.10. Subcellular Localization of LbaBBX2 and LbaBBX4

The candidate carotenoid-related genes LbaBBX2 and LbaBBX4 were selected for
further analyses of subcellular localization. Their proteins were predicted to be located
in the nucleus. To observe the subcellular localization of LbaBBX2 and LbaBBX4, 35S-
LbaBBX2::GFP and 35S-LbaBBX4:GFP were constructed and transiently expressed in tobacco
leaves, and 35S-GFP was used as a negative control. As determined by fluorescence
microscopy, the 35S-LbaBBX2::GFP and 35S-LbaBBX4::GFP fusion proteins were located
exclusively in the nucleus, whereas the 35S-GFP control was distributed in the tobacco
leaf protoplasts (Figure 10). These results indicate that both LbaBBX2 and LbaBBX4 encode
nuclear-localized proteins.
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leaves and observed by fluorescence microscopy 48 h later. The 35S-GFP was used as positive 
control. From left to right, bright field, red fluorescent protein (RFP) (nuclear localization signal 
(NLS)-RFP), green fluorescent protein (GFP), and merge image of RFP and GFP image. Scale bars 
=20 μm. 
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(tomato, pepper, potato, and wolfberry) was relatively conserved. However, there are 64 
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composition of the BBX genes in different subclades also differed among species (Figure 
S3). In wolfberry, the numbers of BBX members with two tandem B-boxes plus the CCT 
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Figure 10. Subcellular localization of LbaBBX4 protein. (a) Schematic diagram of the 35S-GFP,
35S-LbaBBX2::GFP, and 35S-LbaBBX4::GFP fusion protein constructs used for transient expression.
(b) The LbaBBX2-GFP and LbaBBX4-GFP fusion proteins were transiently expressed in N. benthamiana
leaves and observed by fluorescence microscopy 48 h later. The 35S-GFP was used as positive control.
From left to right, bright field, red fluorescent protein (RFP) (nuclear localization signal (NLS)-RFP),
green fluorescent protein (GFP), and merge image of RFP and GFP image. Scale bars =20 µm.

3. Discussion

The BBX gene family has recently been identified in many higher plants, such as
Arabidopsis, tomato, and pepper [7,25,26]. The quantity of BBX genes varies among species.
For example, 32 BBX genes were identified in Arabidopsis [7], 31 in tomato [25], 24 in
pepper [26], and 30 in potato [33]. In this study, 28 LbaBBX genes were identified in the
wolfberry genome. The number of BBX genes in the four species in the family Solanaceae
(tomato, pepper, potato, and wolfberry) was relatively conserved. However, there are
64 BBX members in apple [34]. Of note, the wolfberry genome (1.67 Gb) [31] is larger
than those of Arabidopsis (134 Mb) [35] and tomato (900 Mb) [36], although it was smaller
than the pepper genome (3.48 Gb) [37]. These results indicated that the number of BBX
gene family members might not be directly related to the plant genome size. Furthermore,
the composition of the BBX genes in different subclades also differed among species
(Figure S3). In wolfberry, the numbers of BBX members with two tandem B-boxes plus the
CCT domain, two tandem B-boxes, box 1 plus CCT, and B-box 1 were only 7, 9, 6, and 6,
respectively. The corresponding counts were 13, 8, 4, and 7 in Arabidopsis [30] and 8, 11, 5,
and 7 in tomatoes [25]. These results suggested that BBX genes shared a common ancestor
and underwent an independent expansion after the divergence between monocots and
dicots [38].
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Previous phylogenetic analyses have verified that most plant BBX genes can be divided
into five subgroups (I–IV) [4,38]. In this present study, a phylogenetic tree based on BBX
protein sequences from Arabidopsis, tomato, pepper, potato, eggplant, Iochroma cyaneum,
and wolfberry also supported their clustering into five subfamilies (Figure S3), consistent
with previous results [38]. On the other hand, BBX proteins were grouped into five groups
based on structure, depending on the presence of at least one B-box domain and a CCT
domain. For example, 32 Arabidopsis BBXs were divided into five subclades according to
a combination of conserved domains. The conserved domain-based classification of BBX
proteins in L. barbarum was rather complex. As shown in Table 1, LbaBBX17, LbaBBX19,
and LbaBBX21 were classified into group I, which had two B-boxes and a CCT plus a
VP domain. Eight BBX members were classified into group II, including three LbaBBXs
(LbaBBX9, LbaBBX10, and LbaBBX12) with one B-box plus a CCT domain, four LbaBBXs
(LbaBBX8, LbaBBX13, LbaBBX20, and LbaBBX27) with two B-boxes and a CCT domain,
and one LbaBBX (LbaBBX23) with two B-boxes. Group five contained only one B-box.
A sequence alignment of LbaBBXs revealed a high degree of conservation of the B-Box1
domain among LbaBBX1 to LbaBBX28 (Figure S2). Thus, the clustering results were similar
to those based on B-box 1. These results revealed that some LbaBBX proteins lost the B-box2
domain during evolution.

Gene duplication is one of the key factors responsible for the generation of novel genes,
including WGD, TD, PD, TRD, and DSD, contributing to the expansion of gene family
members in many species [32]. WGD, TD, and DSD are the main events in eukaryotic
genome evolution and drove the development of new functions and genetic evolution-
ary systems [39]. Gene families, such as R2R3-MYB and BAHD acyltransferase families,
expanded primarily through WGD and DSD [24,40]. WGD and TD are the main dupli-
cation events in the PMEI gene family [41]. In this study, DSD and WGD were the main
factors driving BBX expansion in wolfberry, with relatively minor contributions from other
replication modes.

The diversity of the biochemical functions of BBX genes has been identified in different
species, including roles in plant photomorphogenesis, growth, development, metabolism,
and responses to biotic or abiotic stresses [30]. For example, a number of BBXs, such as
AtBBX21, AtBBX22, and AtBBX25, are involved in photomorphogenesis in Arabidopsis [42].
In apple, MdBBX37 is a negative regulator of anthocyanin accumulation via light signal-
ing [43]. In tomatoes, SlBBX17 is a positive regulator of heat stress tolerance [12]. Despite
the diverse functions of BBX gene family members, we focus on their roles in carotenoid
biosynthesis. Few studies have reported that BBX genes are involved in the regulation
of carotenoid metabolism. In tomatoes, SlBBX20 enhances carotenoid accumulation by
activating SlPSY1 promoter activity [11]. The 28 LbaBBX genes identified in this study
showed variation in expression levels across the five stages of wolfberry fruit development.
Based on transcriptome expression profiles combined with a correlation network analysis,
expression levels of two candidate genes (LbaBBX2 and LbaBBX4) belonging to clade IV
were strongly correlated with carotenoid contents during fruit ripening. qRT-PCR analyses
of LbaBBX2 and LbaBBX4 expression yielded consistent results, supporting the validity
of the RNA-seq data. In addition, phylogenetic analyses indicated that LbaBBX2 and
LbaBBX4 share high protein sequence homology with SlBBX20 (Figure S3). Together, we
speculate that LbaBBX2 and LbaBBX4 are involved in the regulation of carotenoid biosyn-
thesis in wolfberry. A limitation of this study is that a genetic transformation system for
wolfberry plants has not been established. Therefore, the mechanism underlying LbaBBX
gene expression dynamics in wolfberry plants still needs to be fully elucidated.

4. Materials and Methods
4.1. Plant Materials

Fruits of Lycium barbarum var. auranticarpum (with yellow fruit) were picked from the
wolfberry germplasm of the National Wolfberry Engineering Research Center located at
Yinchuan in Ningxia, China (38◦38′49′′ N, 106◦9′10′′ E). Fruit samples were harvested at
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five developmental stages (12, 19, 25, 30, and 37 days after full bloom, DAF). These fruits
were immediately ground in liquid nitrogen and stored at −80 ◦C until further analysis.

4.2. Identification and Characterization of LbaBBX Genes in the L. barbarum Genome

In order to identify all possible BBX TFs in wolfberry, two strategies were used. In
the first strategy, 31 BBX genes in the Arabidopsis thaliana genome were downloaded from
the Arabidopsis Information Resource (TAIR, https://www.arabidopsis.org/, accessed on
4 January 2022) and were used as queries to search for potential BBXs in the L. barbarum
genome database [31] by BLSATP with e value cutoff set at 1 × 10−5. In the second strategy,
the HMMs of the B-box domain (PF00643) were downloaded from the Pfam database
(https://pfam.xfam.org/, accessed on 8 January 2022), and HMMER 3.2 was used to
identify BBX genes from the BLASTP alignments with default parameters. Subsequently,
the presence of the BBX domain in each of the putative gene family members was further
verified using the Pfam database (https://pfam.xfam.org/, accessed on 8 January 2022) [44],
SMART database [45] (http://smart.embl-heidelberg.de/, accessed on 8 January 2022),
and Conserved Domain Database (https://www.ncbi.nlm.nih.gov/cdd, accessed on 8
January 2022) [46]. Genes encoding proteins containing B-box domains were identified as
BBX genes. The chemical properties, including the number of amino acids (aa), isoelectric
point (pI), molecular weight (MW), and grand average of hydropathicity (GRAVY), were
obtained from the ExPasy website (https://web.expasy.org/protparam/, accessed on 15
January 2022) [47]. The subcellular localizations of LbaBBX genes were predicted using
WoLF PSORT (https://www.genscript.com/wolf-psort.html?src=leftbar, accessed on 15
January 2022) [48].

4.3. Multiple Sequence Alignment and Phylogenetic Analysis of LbaBBX Proteins

The BBX sequences for five species in Solanaceae, including tomato, pepper, eggplant,
potato, and Iochroma cyaneum, were obtained from the Solanaceae Genomics Network
(https://solgenomics.net/, accessed on 20 January 2022). First, full-length BBX protein
sequences for the six species in Solanaceae and Arabidopsis were aligned by using Muscle
v3.8 [49]. The deduced amino acid sequences in the B-box1, B-box2, and CCT domains
were then adjusted manually using GeneDoc [50]. IQ-TREE [51] was used to construct a
maximum likelihood (ML) phylogenetic tree based on all 194 full-length protein sequences.
The best-fit substitution model, JTT+G, was determined using MEGA 6.06 [52]. The number
of bootstrap replicates was 1000. The phylogenetic trees were visualized using iTOL v5
(https://itol.embl.de/, accessed on 20 January 2022) [53].

4.4. Gene Structure and Motif Composition of the LbaBBX Gene Family

The BBX genomic sequence and corresponding coding regions retrieved from the wolf-
berry genome were sent to the Gene Structure Display Server (http://gsds.gao-lab.org/,
accessed on 25 January 2022) [54] to investigate exon–intron structures. MEME (https://
meme-suite.org/meme/tools/meme, accessed on 25 January 2022) [55] was used to predict
conserved motifs with a maximum number of motifs of 15 and optimum width of 3 to 50 bp.

4.5. Chromosomal Location and Gene Duplication Analysis of LbaBBX Genes

The chromosomal distribution of LbaBBX genes was visualized using TBtools [56]. To
examine duplication events for LbaBBX genes in wolfberry and other plants, including
A. thaliana, S. lycopersicum, and C. annuum, TBtools were used. The gene duplication pairs
were visualized in Tbtools [56]. The whole-genome sequences of three species in Solanaceae,
including L. barbarum, S. lycopersicum, C. annuum, and A. thaliana, were used to analyze
collinearity. The detected syntenic blocks were visualized using Tbtools [56]. Furthermore,
Ka and Ks substitution rates were calculated for each syntenic pair using KaKs_Calculator
3.0 [57].

https://www.arabidopsis.org/
https://pfam.xfam.org/
https://pfam.xfam.org/
http://smart.embl-heidelberg.de/
https://www.ncbi.nlm.nih.gov/cdd
https://web.expasy.org/protparam/
https://www.genscript.com/wolf-psort.html?src=leftbar
https://solgenomics.net/
https://itol.embl.de/
http://gsds.gao-lab.org/
https://meme-suite.org/meme/tools/meme
https://meme-suite.org/meme/tools/meme
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4.6. Cis-Regulatory Elements in the Promoters of LbaBBX Genes

The 1500 bp genomic DNA sequences upstream of the start codon (ATG) of LbaBBX
genes were extracted from the wolfberry genome database using Tbtools [56]. The cis-
regulatory elements in these LbaBBX gene promoters were predicted by using PlantCARE
(https://bioinformatics.psb.ugent.be/webtools/plantcare/html/, accessed on 3 March 2022).

4.7. RNA Isolation, cDNA Library Construction, and RNA-Seq Analysis

Total RNA was extracted independently from different wolfberry tissues using an RNA
Kit (Tiangen, Beijing, China), according to the manufacturer’s instructions. RNA purity,
concentration, and integrity were measured using a Nanodrop spectrophotometer (Thermo
Scientific, Waltham, MA, USA) and an Agilent 2100 Bioanalyzer (Agilent Technologies,
Santa Clara, CA, USA). High-quality RNAs were used to construct a cDNA library. First-
and second-strand cDNAs were synthesized using Superscript II reverse transcriptase and
random hexamer primers. Double-strand cDNA was fragmented by nebulization and used
to generate RNA-seq libraries, as described previously [58]. Three biological replicates of
cDNA libraries were sequenced using the Illumina HiSeq 4000 platform (Illumina Inc., San
Diego, CA, USA) with a paired-end read length of 150 bp.

4.8. Expression Profiles of LbaBBXs

In order to study the expression profiles of LbaBBX genes, RNA-Seq data were down-
loaded from the NCBI database (PRJNA845109), including data for various tissues (stems,
leaves, flowers, and fruits). The estimated expression levels of the BBX genes were rep-
resented and normalized in the form of fragments per kilobase of transcript per million
mapped (FPKM). The heatmap for LbaBBX genes was visualized using Tbtools [56].

4.9. Quantitative Real-Time PCR (qRT-PCR) Analysis

RNA extraction and qRT-PCR were performed as previously described [24]. The
primers for LbaBBX genes were designed using Primer Premier 5 and are listed in Table S10.
The wolfberry Actin gene was used as an internal control [20]. Three independent biological
replications were conducted.

4.10. Carotenoid Extraction and HPLC Analysis

The extraction steps were as follows. Freeze-dried fruits were homogenized (30 Hz,
1.5 min) to a powder with a grinder (MM 400; Retsch, Haan, Germany). A mixture of
n-hexane: acetone: ethanol (1:1:1, v/v/v) was prepared as an extraction solution, and
then 0.01% BHT (g/mL) and 50 mg of power were mixed with an appropriate amount of
extraction solution and internal standard. The extract was vortexed for 20 min at room
temperature. The mixture was then centrifuged at 12,000 rpm/min for 5 min at 4 ◦C, and
the supernatant was removed. The residue was re-extracted by repeating Steps under the
same conditions. The supernatants were combined and evaporated to dryness. A mixture
of methanol and methyl tert butyl ether was prepared; the sample was resuspended with
an appropriate amount of the solution, vortexed thoroughly until it was fully dissolved,
and centrifuged. The solution was filtered through a 0.22 µm membrane filter for further
LC-MS/MS analysis [59]. Carotenoid contents were detected using the AB Sciex WTRAP
6500 LC-MS/MS platform by MetWare (Wuhan, China).

4.11. Correlation Network Construction

Expression patterns were explored based on RNA-seq data for five stages. The corre-
lation coefficients for relationships between gene pairs and the carotenoid content were
measured based on Pearson’s correlation coefficients (PCC). These values were screened
using Excel (threshold > 0.8). A network including carotenoid contents, LbaBBX TFs, and
structural genes was constructed and visualized using Cytoscape [60].

https://bioinformatics.psb.ugent.be/webtools/plantcare/html/
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4.12. Subcellular Localization

For subcellular location assays, the 35S-LbaBBX2::GFP, 35S-LbaBBX4::GFP, and
35S::NLS-RFP (control) constructs were introduced into tobacco (Nicotiana benthamiana)
epidermal cells via Agrobacterium infiltrated tobacco leaves. Samples transformed with
35-GFP were used as controls. After 2 days, GFP and RFP signals from the tobacco leaves
inoculated with A. tumefaciens were detected by fluorescence microscopy (Olympus, BX63;
Tokyo, Japan). Three independent experiments were performed for each gene.

4.13. Statistical Analyses

The data are presented as means ± SD of at least three independent experiments.
Differences were evaluated by the Student’s t-test (* p < 0.05, ** p < 0.01, *** p < 0.001).

5. Conclusions

Our study provided the first genome-wide analysis of the BBX gene family in
L. barbarum. A total of 28 LbaBBXs were identified and were unevenly distributed across
the whole genome. A systematic and comprehensive analysis of the LbaBBX gene family
was performed, including analyses of phylogenetic relationships, conserved domains, gene
structure, motif composition, chromosome location, gene duplication, cis-acting elements,
and expression patterns. Many cis-acting elements were found in the LbaBBX promoter
sequences, indicating that LbaBBX genes are involved in complex regulatory networks
controlling development. Correlation and qRT-PCR analyses revealed that LbaBBX genes
might be involved in the regulation of carotenoid synthesis. Therefore, our genome-wide
analysis of the BBX family provides a foundation for further studies of the molecular
mechanisms underlying carotenoid synthesis in wolfberry.
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Abbreviations

TFs Transcription factors
HMM Hidden Markov model
CDS Coding sequence
GRAVY Grand average of hydropathicity
MW Molecular weight
FPKM Fragments per Kilobase Million
Ks Synonymous substitutions
Ka Nonsynonymous substitutions
GFP Green Fluorescent Protein
RFP Red Fluorescent Protein
NCBI National Center for Biotechnology Information
qRT-PCR Quantitative Real-Time PCR
WGD Whole genome duplication
TD Tandem duplication
PD Proximal duplication
TRD Transposed duplication
DSD Dispersed duplication
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