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excessive immune effects of inflammatory cells against gut

microbes. In genetically predisposed individuals, these effects are

considered to contribute to the initiation and perpetuation of

mucosal injury. Oxidative stress is a fundamental tissue�destruc�

tive mechanisms that can occur due to the reactive oxygen species

and reactive nitrogen metabolites which are released in abun�

dance from numerous inflammatory cells that have extravasated

from lymphatics and blood vessels to the lamina propria. This

extravasation is mediated by interactions between adhesion mol�

ecules including mucosal addressin cell adhesion molecule�1 and

vascular cell adhesion molecule�1 on the surface of lymphocytes

or neutrophils and their ligands on endothelial cells. Thus, reac�

tive oxygen species and adhesion molecules play an important

role in the development of inflammatory bowel disease. The pres�

ent review focuses on the involvement of oxidative stress and

adhesion molecules, in particular mucosal addressin cell adhesion

molecule�1, in inflammatory bowel disease.
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IntroductionAlthough the etiology of inflammatory bowel diseases (IBD)
such as ulcerative colitis (UC) and Crohn’s disease (CD)

remains uncertain, the interplay of environmental, genetic and
immunological factors against bacterial flora is believed to
underlie the generation of IBD.(1) Uncontrolled and excessive host
immune responses, during which oxidative stress-like reactive
oxygen species (ROS) and free radicals are produced from inflam-
matory cell infiltrates in the gut mucosa, are known to trigger
mucosal injury and induce inflammation.

IBD is characterized by the extravasation of numerous inflam-
matory cells, including neutrophils and lymphocytes. Adhesion
molecules such as intercellular adhesion molecule 1 (ICAM-1),
vascular cell adhesion molecule-1 (VCAM-1), and mucosal
addressin cell adhesion molecule-1 (MAdCAM-1) mediate a
series of immune responses and gut inflammation. Among the
adhesion molecules that are upregulated in IBD, MAdCAM-1 is
considered to be preeminent for the development of chronic gut
inflammation. MAdCAM-1 expression is induced on the surface
of lymphatic vessels by ROS and by inflammatory cytokines
such as tumor necrotic factor (TNF)-α and interleukin (IL)-1β.
MAdCAM-1 has been implicated in the selective recruitment of
lymphocytes to sites of inflammation in the gut. Thus, oxidative
stress and MAdCAM-1 play important roles in IBD development
by mediating the movement and accumulation of lymphocytes
into gut interstitium and by causing mucosal injury.

The present review focuses on the involvement of oxidative

stress and MAdCAM-1 during the development of IBD.

Oxidative Stress

Oxidative stress primarily arises and causes tissue injury when
the cytotoxic effects of ROS and free radicals overwhelm elimina-
tion of their cytotoxic effects by antioxidants. ROS, which are
comprised of singlet oxygen, superoxide anions, hydroxyl radicals,
and hydrogen peroxide including free radicals, are all generated
as by-products of the normal metabolism of molecular oxygen. A
broad definition of ROS includes hydroperoxyl, peroxyl and
alkoxyl radicals, hydroperoxide, hypochlorous acid, ozone, nitric
monoxide, and nitrogen dioxide. ROS can directly impair any
oxidizable molecule.

Oxidative Damage by ROS

Excessive levels of ROS attack and impair almost all cellular
components, including cell membranes, lipids, proteins, enzymes
and DNA, and consequently cause apoptotic cell death. Regarding
the effect of ROS on the cell membrane, it is known that the
polyunsaturated fatty acids in the cell membrane lipid bi-layer
have two or more carbon double bonds within their structure
susceptible to oxidative attack.(2) Sequential attack against these
bonds by hydroxyl radicals (•OH) converts the membrane lipids
into oxidized phospholipids (lipid peroxidation). The accumula-
tion of peroxidized lipids accelerates disruption of cell membrane
integrity that occurs when the ability of the cell to remove exces-
sive products of hydroxyl radicals and their precursors, in parti-
cular the products of hydrogen peroxide (H2O2), fails. This failure
and the subsequent increase in ROS results in decreased function
of transmembrane enzymes, transporters, receptors and other
membrane proteins, which are consequently degraded.(3,4) More-
over, colonic epithelia disintegrate because of the ROS-induced
increase in mucosal permeability.(5,6)

Next, proteins and enzymes, which are predominant constituents
of the cells, are also the target of ROS and oxidative stress. Thus,
the •OH radical also attacks, and abrogates many proteins and
enzymes. The toxic oxidative effects of •OH include the induction
of protein conformational change, which is a major cause of the
partial or complete loss of protein function.(7)

Peroxynitrite (ONOO–) is a potent oxidant and nitrating species
that is formed from a rapid reaction between the superoxide anion
(O2

•–) and nitric oxide (NO).(8) ONOO– easily crosses biological
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membranes, and, despite a relatively short half-life (within 10 ms),
it can interact with target molecules in an adjacent cell within one
or two cell diameters.(9) Interestingly, exposure to ONOO– pro-
motes the conversion of tyrosine residues into 3-nitrotyrosine,
which cannot be readily phosphorylated. ONOO– thus interferes
with cellular signaling that is dependent on tyrosine phosphoryla-
tion by protein tyrosine kinases.(10) Tyrosine nitration by ONOO–

can either prevent a protein from functioning as the phosphory-
lated form and/or can mimic the structural change induced by
phosphorylation and thereby imitate the consequences of phos-
phorylation.(11) In contrast to •OH, ONOO– can up- or down-
regulate signaling cascades by controlling the activities of protein
kinases. This control is achieved by nitration of tyrosine residues,
thereby resulting in gain- or loss of function of kinase activity.(12)

Finally, regarding the effect of ROS on DNA, both nuclear
DNA(13) and mitochondrial DNA(14) are also known to be targets of
oxidative attack, particularly from •OH and ONOO–, which cause
base and sugar hydroxylation(15) as well as breaks in the double
strand, leading to adenosine triphosphate depletion, gene mutations
and mitochondrial DNA deletions.(16,17) These changes ultimately
induce malignant transformation and apoptotic cell death. Thus,
oxidative stress thus harms almost all cellular components.

Noxious Involvement of ROS in IBD

Direct measurement of ROS in cells and tissues is quite difficult
because of their short biological half-lives.(18) However, direct
quantification of ROS levels in colon biopsy specimens from UC
and CD patients using chemiluminescence assays showed that
ROS levels in these tissues are considerably increased compared
to those in normal mucosa and positively correlate with IBD.(19–22)

Mounting evidences indicate that there are increased levels of
reactive nitrogen metabolites (RNM) such as NO in the inflamed
IBD mucosa based on analysis of nitric oxide synthase activity.(23–26)

Thus, increased levels of both ROS and RNM are closely corre-
lated with the clinical development of IBD.

Relationship between Adhesive Molecules and Cytokines,
and Inflammatory Cells Infiltration and Immune Responses

The consecutive events involved in the extravasation of inflam-
matory cells from lymphatics and blood vessels to the extra-
vascular space include the following steps: 1, tethering and rolling
of the inflammatory cells on the endothelial cell surface; 2, firm
attachment to endothelial cells followed by transendothelial
migration; and 3, migration toward chemoattractants produced in
the lamina propria, which is mediated by the interaction between
adhesion molecules on the surface of lymphocytes or neutrophils
and their receptors on endothelial cells and vice versa. Various
cytokines induce the tethering and rolling of neutrophils on
vascular endothelial cells through modulation of the interactions
between L-selectin and carbohydrate antigen on neutrophils, and
P- and E-selectin on endothelial cells.(27–29) On the other hand
interactions between adhesion molecules on the surface of lym-
phocytes and the adhesion molecule MAdCAM-1 on lymphatic
endothelial cells are responsible for lymphocyte tethering.(30) At a
later stage, neutrophils and lymphocytes strongly adhere to endo-
thelial cells through other adhesion molecules including ICAM-1,
VCAM-1 and MAdCAM-1, and consequently transmigrate into
lamina propria mucosae. ROS, lipopolysaccharide (LPS) and
inflammatory cytokines such as IL-1β and TNF-α induce the
translocation of P-selectin, L-selectin and MAdCAM-1 from
intracellular locations to the cell surface. Increased surface expres-
sion of P-selectin, ICAM, and MAdCAM-1 is observed in the
colon mucosa of patients with IBD.(31,32) Interaction between
inflammatory cells and endothelial cells through these adhesion
molecules is thus involved in the development of IBD.

MAdCAM�1 and Its Receptor, α4β7 Integrin

MAdCAM-1 is a 58–66 kDa type 1 transmembrane glyco-
protein belonging to the immunoglobulin (Ig) superfamily, which
is comprised of two amino-terminal Ig-like domains and shares a
conserved amino acid sequence homology with VCAM-1.(33) The
interaction of integrin α4β7 and MAdCAM-1 is involved in cell
homing, firm adhesion, and transendothelial cell migration when
lymphocytes are recirculated to peripheral lymph nodes under
normal conditions and when lymphocytes are recruited to sites
of gut inflammation.(30) The homing of murine lymphocytes to
intestinal mucosa was first discovered to be mediated by a molecule
that bound to Peyer’s patches high endothelial venules (HEV).(34)

This molecule is known as lymphocyte Peyer’s patches HEV
adhesion molecule (LPAM)-1 and was ultimately identified as an
integrin, which is a heterodimer of α- and β-subunits. The α4-
subunit of murine LPAM-2 has 84% homology at the amino acid
level with the human integrin α4-subunit.(35) An anti-rat α4
blocking antibody inhibited lymphocyte migration to Peyer’s
patches, indicating that α4 integrin plays an important role in
mucosal homing.(36)

Initially, the murine integrin β-subunit was believed to be a
novel molecule. However, it is currently known that the human β7
integrin subunit is the human homolog of the murine integrin β-
subunit.(37,38)

MAdCAM-1 is expressed in Peyer’s patches HEV and in
mesenteric lymph nodes, intestinal mucosal venules in the lamina
propria, and lymphoid follicles in the normal murine gut.
MAdCAM-1 directly binds to its receptor, α4β7 integrin. Blocking
antibodies against either α4- or β7-subunits abrogate the binding
of lymphocytes to MAdCAM-1 in vivo and in vitro.(39) Therefore,
MAdCAM-1 binds to both α4- and β7-subunits.

IBD and MAdCAM�1

Under normal conditions, MAdCAM-1 expression is limited
to the endothelium of venules within the lamina propria and
submucosa, and to the HEVs of Peyer’s patches and mesenteric
lymph nodes. In mouse models of IBD in which experimental
colitis was induced with dextran sulfate sodium (DSS) or trinitro-
benzene sulfonic acid (TNB), and also in the inflamed colon of
human patients with UC and CD, MAdCAM-1 expression was
reported to be increased in the lamina propria and submucosal
venules within the inflamed sites of the colon compared to its
expression in non-inflamed tissues.(40–42) MAdCAM-1 transcrip-
tion is activated through translocation of the activated p50/p65
nuclear factor kappa-B (NF-κB) complex into the nucleus
following proteosomal degradation of phosphorylated IκB (inhibitor
of κB) in response to several cytokines including TNF-α and
IL-1β.(43,44) Moreover, experimental studies using a SVEC cell
line derived from axillary lymph nodes, and a colon-derived
endothelial cell line established from transgenic mice bearing a
temperature-sensitive SV40 large T antigen, have shown that
TNF-α stimulates MAdCAM-1 expression through activation of
tyrosine kinase, p38 and p42/p44 mitogen-activated protein
kinase (MAPK), and NF-κB/poly-ADP ribose polymerase (PARP)
signaling cascades.(45,46)

The addition of cytochrome P-450 (CYP450) 3A4 inhibitors
such as bergamottin and 6',7'-dihydroxybergamottin (DHB) to
cultured SVEC endothelial cells demonstrated that these CYP450
inhibitors blocked TNF-α-induced MAdCAM-1 expression and
lymphocyte adhesion in vitro.(47) Interestingly, our very recent
study showed that the angiotensin II type 1 receptor antagonist
(AT1R antagonist), candesartan, can be used as a novel therapy
for IBD. We demonstrated that this AT1R antagonist blocked
intranuclear translocation of the activated p50/p65 NF-κB complex
in a p38 MAPK independent manner and thereby downregulated
TNF-α-induced MAdCAM-1 expression, resulting in the amelio-
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ration of colitis (Fig. 1).(48) It has also shown that there is a signifi-
cant attenuation of MAdCAM-1 expression, inflammatory cell
infiltration and mucosal damages during DSS-induced colitis in
mice lacking AT1R gene compared to these parameters in wild-
type mice.(48,49) This result suggests that TNF-α can induce
MAdCAM-1 expression by three different pathways.

Blocking the pathway by which TNF-α induces MAdCAM-1
expression is thus considered to be useful for IBD treatment.
Several studies have been carried out to search for potent
candidate blockers of TNF-α-induced MAdCAM-1 expression
that could be used for IBD treatment. Such candidates include a
component present in grapefruit and grapefruit peel oil, its deriva-
tives; bergamottin and DHB,(47) CYP450 inhibitor, troglitazone,(50)

which is a γ-subtype of a peroxisome proliferator-activated
receptor (PPAR-γ) ligand that blocks phosphorylation of p65
NF-κB, and candesartan,(48) which, as mentioned above, is an
agent that blocks translocation of the activated p50/p65 NF-κB
complex into the nucleus.

Conclusion and Perspectives

It has been established that ROS and MAdCAM-1 play a critical
role in the development of IBD by mediating enhanced extravasa-
tion of lymphocytes. Future development and study of neutral-
izing or blocking antibodies, and chemicals that target molecules
involved in the development of IBD, (Table 1), will ensure that
detailed molecular mechanisms that underlie the occurrence and
perpetuation of gut inflammation will be elucidated in the future.
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Fig. 1. Localization of NF�κB p65protein in the presence and the absence of Candesartan during TNF�α stimulation. Cells were pretreated with or
without Candesartan and then stimulated with TNF�α. Immunofluorescent co�staining of NF�κB p65 protein and cell nuclei stained using DAPI was
subsequently performed. Quoted from ref. 48.
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