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ABSTRACT The mechanisms that maintain the stability of chromosome ends have broad impact on genome integrity in all eukaryotes.
Budding yeast is a premier organism for telomere studies. Many fundamental concepts of telomere and telomerase function were first
established in yeast and then extended to other organisms. We present a comprehensive review of yeast telomere biology that covers
capping, replication, recombination, and transcription. We think of it as yeast telomeres—soup to nuts.
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Eukaryotic chromosomes are linear DNA molecules with
physical ends, called telomeres. It is estimated that as

many as 10,000 DNA damaging events occur each day in
every cell in the human body (Loeb 2011). Perhaps the most
hazardous of these events are double-stranded DNA breaks
(DSBs), which create chromosome ends at internal sites on
chromosomes. Thus, a central question is how cells distin-
guish natural ends or telomeres from DSBs. Telomeres on
one hand are essential for the stable maintenance of chro-
mosomes: they must be retained—they cannot be lost by
degradation or fused with other ends. Exactly the opposite
applies to DSBs: they must be repaired by either homolo-
gous or nonhomologous recombination, and this repair of-
ten involves regulated degradation of the DSB. In fact,
unrepaired DSBs lead to cell cycle arrest to provide time
for their repair. Capping is used to describe how telomeres
prevent their degradation and recombinational fusion
(Muller 1938; McClintock 1939). Perhaps as a consequence
of capping, the regions near telomeres are gene poor. In
many organisms, telomere proximal genes are subjected to
a special type of transcriptional regulation called telomere
position effect (TPE), where transcription of genes near te-
lomeres is metastably repressed. Another key role for telo-
meres is to provide the substrate for a special mechanism of
replication. Telomere replication is carried out by telomer-
ase, a specialized ribonucleoprotein complex that is mecha-

nistically related to reverse transcriptases (Greider and
Blackburn 1987).

The biology of telomerase has broad ramifications for
human health and aging. Therefore, the discovery of
telomerase and studies on telomere capping by Elizabeth
Blackburn, Carol Greider, and Jack Szostak, were honored
with the 2009 Nobel Prize in Medicine. All three prize
winners carried out research in single-cell organisms, in-
cluding budding yeast. As described in this review, Saccha-
romyces cerevisiae continues to be a premier organism for
telomere research.

Sequence and Structure of Telomeric Regions

Like most organisms whose telomeres are maintained by
telomerase, the ends of S. cerevisiae chromosomes consist of
nonprotein coding repeated DNA (Figure 1A). There are 300 6
75 bp of simple repeats, typically abbreviated C1-3A/TG1-3.
S. cerevisiae telomeric DNA is unusual, although not unique,
in being heterogeneous. This sequence heterogeneity is due
to a combination of effects: in a given extension cycle, only
a portion of the RNA template is used and/or the RNA tem-
plate and telomeric DNA align in different registers in dif-
ferent extension cycles (Forstemann and Lingner 2001). The
heterogeneity of yeast telomeric DNA is experimentally use-
ful as it makes it possible to distinguish newly synthesized
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from preexisting telomeric DNA (Wang and Zakian 1990;
Teixeira et al. 2004). When many copies of the same telo-
mere are sequenced from a given colony, the exact sequence
of the internal half is the same from telomere to telomere
while the terminal half turns over much more rapidly (Wang
and Zakian 1990). Thus, under most conditions, only the
terminal half of the telomere is subject to degradation
and/or telomerase lengthening. These repeats in conjunc-
tion with the proteins that bind them are necessary and
sufficient for telomere function.

As in most eukaryotes, the very ends of S. cerevisiae chro-
mosomes are not blunt ends. Rather the G-rich strand
extends to form a 39 single strand tail or G tail (Figure
1A). Throughout most of the cell cycle, G tails are short,
only 12 to 15 nucleotides (nt) (Larrivee et al. 2004). How-
ever, G tails are much longer, $30–100 nt in size, during
a short period in late S/G2 phase when they can be detected
readily by nondenaturing Southern hybridization (Wellinger
et al. 1993a,b). Long G tails are not due solely to telomerase-
mediated lengthening as they are seen in late S/G2 phase
even in telomerase-deficient cells (Wellinger et al. 1996;

Dionne and Wellinger 1998). G tails are generated by cell-
cycle–regulated C-strand degradation, which is dependent
on the kinase activity of Cdk1p (Cdc28p; Frank et al. 2006;
Vodenicharov and Wellinger 2006). This generation is oblig-
atorily linked to semiconservative DNA replication, which
occurs prior to C-strand degradation (Wellinger et al.
1993a; Dionne and Wellinger 1998).

Also similar to most organisms, yeast telomeric regions
contain subtelomeric, middle, repetitive elements, often
called TAS elements (telomere associated sequences; Figure
1A and http://www.nottingham.ac.uk/biology/people/louis/
telomere-data-sets.aspx). S. cerevisiae has two classes of TAS
elements, X and Y9. Y9 is found in zero to four tandem
copies immediately internal to the telomeric repeats (Chan
and Tye 1983a,b). About half of the telomeres in a given
strain lack Y9, and the identity of Y9-less telomeres differs
from strain to strain (Horowitz et al. 1984; Zakian et al.
1986). Y9 comes in two sizes, Y9 long (6.7 kb) and Y9 short
(5.2 kb) (Chan and Tye 1983a,b), which differ from each
other by multiple small insertions/deletions (Louis and
Haber 1992). X is present at virtually all telomeres and is
much more heterogeneous in sequence and size. Although
X is found on all telomeres, it is composed of a series of
repeats, many of which are present on only a subset of
telomeres. When telomeres contain both X and Y9, X is
centromere proximal to Y9. Short tracts of telomeric DNA
are sometimes found at the Y9–X and Y9–Y9 junctions
(Walmsley et al. 1984; Figure 1A).

Subtelomeric regions are dynamic, undergoing frequent
recombination (Horowitz et al. 1984; Louis and Haber
1990). Moreover, subtelomeric repeats diverge rapidly even
among related yeast strains (Chan and Tye 1983a,b). X and
Y9 both contain potential replication origins or ARS elements
(autonomously replicating sequences) whose presence
probably contributes to the dynamic nature of subtelomeric
regions. X and Y9 have binding sites for multiple tran-
scription factors, whose identity differs from telomere
to telomere (Mak et al. 2009). Because the sequence of
subtelomeric regions and the proteins that bind them are
variable, their presence can confer distinct behaviors on in-
dividual telomeres.

Whereas complete loss of the C1-3A/TG1-3 telomeric
repeats from a chromosome end results in extremely high
loss rates for the affected chromosome, chromosomes that
lack X and Y9 at one (Sandell and Zakian 1993) or even both
ends have normal mitotic stability and go through meiosis
with ease (S. S. Wang and V. A. Zakian, unpublished
results). However, Y9 amplification by recombination can
provide a telomere maintenance function to cells lacking
telomerase (Lundblad and Blackburn 1993). Y9 can also move
by a transposition-like RNA-mediated process (Maxwell et al.
2004).

Ty5 is a transposable element found only in heterochro-
matin, including subtelomeric DNA. The number of Ty5
elements varies from strain to strain. The S288C strain has
eight Ty5 insertions: six near telomeres and two near the

Figure 1 DNA structure and major protein components of telomeres.
(A) DNA arrangement at telomeres indicating the subtelomeric X and Y9
elements as well as the terminal repeat sequences. Red strand, G-rich
strand with 39 overhanging end and blue strand, C-rich strand with 59
end. Core X and STR (subtelomeric repeated elements; Louis et al.
1994) represent subareas in the X element. (B) Proteins are schematically
positioned on the telomere drawing and the identity of the symbols
explained on the bottom. Open circles represent nucleosomes (not to
scale).
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HMR silent mating type locus (Zou et al. 1995). This chro-
mosomal distribution is quite different from that of other
classes of Ty elements, which are found close to tRNA genes.
Movement of Ty5 to telomeres and HMR is regulated by the
targeting domain of the Ty5-encoded integrase that inter-
acts directly with Sir4p, one of the silencing proteins found
in telomeric regions (Xie et al. 2001).

Telomeric Chromatin

Telomere binding proteins: direct binders
and associated proteins

Table 1 presents a list of proteins that act at telomeres, di-
vided into functional categories. Many of these proteins
have multiple roles and could be listed in more than one
category. The protein complexes associated with telomeres
can be subdivided according to the three regions to which
they bind: (A) subtelomeric areas containing Y9 and X, (B)
double-stranded terminal repeat area, and (C) the 39 G tail
(Figure 1).

(A) Subtelomeric regions are classified into XY9 and
X-only ends. While most of the subtelomeric DNA is likely
organized in nucleosomes (Wright et al. 1992), the cores of
the X elements have a low histone content, and nucleosomes
near the Xs have histone modifications characteristic of si-
lenced regions such as unacetylated lysine 16 on histone H4
(H4K16) (Zhu and Gustafsson 2009). Consistent with these
data, the NAD+-dependent histone deacetylase Sir2p, a
H4K16 deacetylase, as well as Sir3p, are also enriched
over X repeats (Imai et al. 2000; Zhu and Gustafsson
2009; Takahashi et al. 2011), and the area around many X
elements is transcriptionally silent (Pryde and Louis 1999).
The X elements on XY9 telomeres are organized similarly as
on X-only telomeres (Takahashi et al. 2011). However, on
the distal Y9 elements, the overall density of nucleosomes as
well as the occurrence of H4K16ac is similar to euchromatic
areas. In addition, Sir2p and Sir3p are not detected in this
region (Zhu and Gustafsson 2009; Takahashi et al. 2011).
Collectively, these data suggest that on X-only telomeres, the
subtelomeric DNA elements are organized into silenced
chromatin that demarcates the terminal area from more in-
ternal regions. On XY9 telomeres, the distal Y9 area is orga-
nized into chromatin that resembles that of expressed areas
with the X element, again acting as a demarcation zone
(Fourel et al. 1999; Pryde and Louis 1999; Takahashi et al.
2011). Thus, emerging evidence points toward differences
in behavior depending on subtelomeric repeat content and
perhaps even individual chromosomal context.

g-H2A, which is generated by Mec1p/Tel1p-dependent
phosphorylation, is also enriched in subtelomeric chromatin
(Kim et al. 2007; Szilard et al. 2010). Since this modification
normally marks damaged DNA, which activates checkpoints,
it is unclear why it persists on telomeres and whether its
occurrence has functional consequences. Finally, nucleo-
somes in certain areas within subtelomeric DNA contain

the histone H2A variant H2A.Z. Nucleosomes containing
H2A.Z often mark gene promoters for efficient activation
and perhaps also function as heterochromatin–euchromatin
boundary elements (Guillemette et al. 2005; Albert et al.
2007).

Remarkably, there are a few precise matches to the
vertebrate telomeric repeat sequence, (TTAGGG)n, within
X and Y9 DNA, and the essential transcription factor Tbf1p
(Brigati et al. 1993) binds these repeats in vitro (Liu and Tye
1991) and in vivo (Koering et al. 2000; Preti et al. 2010;
Figure 1A). This Tbf1p binding is functionally significant as
it participates in telomerase recruitment (Arneric and
Lingner 2007). Tbf1p can also provide Rap1p-independent
capping on artificial telomeres consisting solely of vertebrate
repeats (Alexander and Zakian 2003; Berthiau et al. 2006;
Bah et al. 2011; Ribaud et al. 2011; Fukunaga et al. 2012).
The boundary between subtelomeric DNA and telomeric
repeats appears special as it is preferentially accessible to
DNases, restriction enzymes, and DNA modifying enzymes
(Conrad et al. 1990; Gottschling 1992; Wright et al. 1992;
Wright and Zakian 1995). This behavior suggests a short
stretch of DNA that is not strongly associated with proteins.
Given this property, limited nuclease digestion can release
the distalmost portion of chromosomes containing all telo-
meric repeat DNA in a soluble and protein bound form
called the telosome (Conrad et al. 1990; Wright et al.
1992). This telosome appears to be histone free and should
contain all telomeric repeat binding proteins (Wright and
Zakian 1995).

(B) Double-stranded telomeric repeat DNA contains high-
affinity Rap1p binding sites every �20 bp, which correlates
well with the estimate that in vitro assembled Rap1 telo-
meric DNA contains 1 bound Rap1p molecule in 18 (64)
bp (Gilson et al. 1993; Ray and Runge 1999a,b; Figure 1B).
Therefore, given an average telomere length of 300 bp, in-
dividual telomeres are probably covered by 15–20 Rap1p
molecules (Wright and Zakian 1995). Rap1p is an abundant
nuclear protein of 827 amino acids that was first discovered
by its ability to repress or activate gene expression (repres-
sor activator protein 1) (Shore and Nasmyth 1987). Indeed,
given its abundance and the number of telomeric Rap1 bind-
ing sites, most (�90%) Rap1p is not telomere associated.
DNA consensus sites for Rap1p binding are quite heteroge-
neous, but those within telomeric DNA are among the high-
est affinity sites (Buchman et al. 1988; Longtine et al. 1989;
Lieb et al. 2001). Genetic evidence, chromatin immunopre-
cipitation (ChIP) and in vivo localization leave little doubt
that Rap1p covers telomeric DNA in living cells (Conrad
et al. 1990; Lustig et al. 1990; Wright and Zakian 1995;
Gotta et al. 1996; Bourns et al. 1998). Indeed, the amount
of telomere bound Rap1p, along with its binding partners
Rif1/2 somehow establishes the actual telomere length
(Marcand et al. 1997; Levy and Blackburn 2004).

Although studied extensively, the functional domains for
Rap1p are not completely defined (Figure 2). Loss of up to
340 amino acids from the N-terminal region, which has
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a BRCT domain, is well tolerated (Moretti et al. 1994;
Graham et al. 1999). However, the double myb domain
DNA binding module in the middle of Rap1p is essential
for all functions of the protein, including those at telomeres
(Graham et al. 1999). For example, temperature-sensitive

alleles of RAP1 can cause telomere shortening and telomere-
bound Rap1p is required to prevent telomere fusions (Conrad
et al. 1990; Lustig et al. 1990; Marcand et al. 2008). The C
terminus of Rap1p is key for its telomere functions as both the
silencing proteins Sir3p/Sir4p and the length regulatory

Table 1 Major genes affecting Saccharomyces cerevisiae telomeres

Gene name aa/MW (KD) Essential (yes/no) Function(s)a

Structural proteins
RAP1 827/92.4 Yes Sequence-specific double-strand DNA binding telomere capping and

length regulation, TPE, major transcription factor.
CDC13 Cdc 13 complex 924/104.9 Yes Three-protein complex comprised of Cdc13p, Stn1p, and Ten1p, which

binds single-strand TG1-3 DNA in sequence-specific manner,
capping, telomerase recruitment.

STN1 494/57.5 No
TEN1 160/18.6 No
RIF1 1916/217.9 No Interacts w. Rap1p; telomerase regulator.
RIF2 395/45.6 No Interacts w. Rap1p; telomerase regulator, capping.
YKU70 YKu complex 602/70.6 No Interacts w. TLC1; telomere length regulation; capping; TPE; telomere

positioning; nonhomologous end joining.
YKU80 629/71.2 No
SIR2 562/63.2 No Interact w. Sir4p; essential for TPE and HM silencing, histone deacetylase.
SIR3 978/111.3 No Interacts with w. Rap1p, Sir4p, histone tails; essential for TPE and HM

silencing.
SIR4 1358/152.0 No Interacts with Yku80p, Sir2p, Rap1p, and histone tails; essential

for TPE and HM silencing; telomere positioning.
TBF1 562/62.8 Yes TPE boundary function, telomerase recruitment to short telomeres;

transcription factor.
NDJ1 352/40.8 No Meiosis specific, telomere binding, essential for bouquet formation.

Telomere replication
EST1 699/81.7 No Protein subunit of telomerase; recruitment, activation.
EST2 884/102.6 No Protein subunit of telomerase; catalytic reverse transcriptase.
EST3 181/20.5 No Protein subunit of telomerase.
TLC1 1157 nt No Telomerase RNA; repeat templating.
PIF1 859/87.6 No DNA helicase, removes telomerase from DNA, also required for

maintenance of mitochondrial and nontelomeric nuclear DNA.
TEL1 2787/321.5 No Interacts w. Xrs2p, telomere length regulation; telomerase recruitment;

S phase checkpoint kinase.
MRE11 MRX Complex 692/77.6 No Acts as complex in same pathway as TEL1; recruits telomerase; required

for type II survivors and other homologous recombination events;
Mre 11p is a nuclease, Rad50p has ATPase and DNA binding activity;
Xrs2p interacts with Tel1p.

RAD50 1312/152.5
XRS2 854/96.3

MEC1 2368/273.3 Yes Major DNA damage checkpoint kinase; partially redundant function
with Tel1p in telomerase recruitment; activated when very short or no
telomere; mec1D sml1D cells are viable but deficient for both telomere
and checkpoint functions of Mec1p

RRM3 723/81.5 No DNA helicase, semiconservative telomere replication; promotes replication
at many nontelomeric sites.

Processing and recombination
SGS1 1447/163.8 No DNA helicase, end processing DSBs and telomeres, required for type II

survivors; rDNA recombination.
RAD52 471/52.4 No Essential for all homologous recombination, including type I and

type II survivors.
RAD51 400/42.9 No Homologous recombination, required for type I survivors.
SAE2 345/40.0 No 59 strand resection at DSBs and telomeres.
EXO1 702/80.1 No Nuclease, 59 end resection at DSBs and telomeres.
DNA2 1522/171.6 Yes Helicase-nuclease; 59 end resection at telomeres and DSBs; Okazaki

fragment maturation.
POL32 350/40.3 No Subunit of DNA pol d; required for break-induced replication and both

type I and type II survivors.
a See text for details and references; although many genes are involved in more than one process, each is listed here under only one heading. Essential/nonessential refers to
viability, not telomere maintenance. aa, number of amino acids; MW sizes are from the SGD website http:/www.yeastgenome.org/.

S. cerevisiae Telomeres 1077

http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005160
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005160
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005160
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005160
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000004434
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000002635
http://www.yeastgenome.org/


Rif1p/Rif2p bind this region (Hardy et al. 1992a,b; Moretti
et al. 1994; Buck and Shore 1995; Wotton and Shore 1997;
Figure 2).

Another key telomere binding protein is the yeast Ku
complex (referred to as YKu), composed of Yku70p and
Yku80p (Boulton and Jackson 1996; Porter et al. 1996;
Gravel et al. 1998). Given that YKu is essential for DNA
repair via non-homologous end joining (NHEJ) and telo-
meres are protected from NHEJ, the association of YKu with
telomeres is counterintuitive. Nevertheless, this association
is critical for telomere function (Gravel et al. 1998), not only
in yeast but in many organisms (Fisher and Zakian 2005). It
is still uncertain where and how Yku associates with chro-
mosomal termini, but there is evidence for two pools, one
bound directly to telomeric DNA in a mode similar to that
used for the nonspecific DNA end binding in NHEJ and an-
other being associated with telomeric chromatin via
a Yku80p–Sir4p interaction (Martin et al. 1999; Roy et al.
2004). ChIP experiments suggest a Sir4p-independent asso-
ciation of YKu with some, but not all, core X sequences, and
those bound areas also correlate with a high level of tran-
scriptional and recombination repression (Marvin et al.
2009a,b). Furthermore, given the ability of YKu to associate

with telomerase RNA, it has also been suggested that YKu
functions to recruit telomerase to telomeres (Peterson et al.
2001; Stellwagen et al. 2003; Fisher et al. 2004; Chan et al.
2008) and/or telomerase trafficking from the cytoplasm to
the nucleus (Gallardo et al. 2008, 2011). Consistent with
that proposal, YKu association with telomeres is indepen-
dent of its association with TLC1 RNA and occurs through-
out the cell cycle (Fisher et al. 2004).

(C) The essential Cdc13p specifically and avidly binds
single-stranded TG1-3 DNA of at least 11 nt in vitro (Lin
and Zakian 1996; Nugent et al. 1996; Hughes et al. 2000)
and is associated with telomeres in vivo (Bourns et al. 1998;
Tsukamoto et al. 2001). The DNA binding domain (DBD) of
Cdc13p is confined to amino acids 497–694 of this 924-
amino-acid protein (Figure 2), and this domain reproduces
the in vitro DNA binding characteristics of the full-length
protein (Hughes et al. 2000). Furthermore, structure deter-
minations of this DBD bound to a telomeric G strand provide
a model for the very high affinity and specificity of this
association (Mitton-Fry et al. 2002, 2004). The relatively
large N-terminal region (amino acids 1–455) may contain
two OB fold domains plus a region defining an interaction
with Est1p that is involved in telomerase recruitment (re-
cruitment domain, RD) (Nugent et al. 1996; Pennock et al.
2001; Figure 2). A direct Est1–RD interaction is shown by
in vitro experiments (Wu and Zakian 2011). Finally, the
N-terminal or first OB fold domain is important for an in-
teraction with Pol1p and for Cdc13p dimerization (Grandin
et al. 2000; Qi and Zakian 2000; Gelinas et al. 2009; Sun
et al. 2011).

Two other essential proteins with genetic and biochem-
ical interactions with Cdc13p, namely Stn1p and Ten1p,
also have a potential for direct interactions with the sin-
gle-stranded 39 overhangs (Grandin et al. 1997, 2001; Gao
et al. 2007). The three-member protein complex composed
of Cdc13p/Stn1p/Ten1p has been referred to both as the
CST complex or telomeric RPA. Herein, we refer to it as the
Cdc13 complex. There are several structural similarities be-
tween the three members of the Cdc13 complex and the
three proteins making up replication protein A (RPA) (Gao
et al. 2007; Gelinas et al. 2009), and at least one essential
OB fold domain can be swapped between Rpa2p and Stn1p
(Gao et al. 2007).

Stn1p and Ten1p may also act independently of Cdc13p.
For example, a Stn1p/Ten1p complex when overexpressed
can act as a chromosome cap in the absence of Cdc13p
(Petreaca et al. 2006, 2007; Sun et al. 2009). Stn1p can
be divided roughly into two parts, an N-terminal and a
C-terminal domain (Petreaca et al. 2006, 2007; Puglisi
et al. 2008; Figure 2). The N-terminal domain, which is
necessary for its interaction with Ten1p, is required for its
essential functions (Petreaca et al. 2007; Puglisi et al. 2008).
The C-terminal domain interacts with both Cdc13p and
Pol12p, the latter protein a subunit of the DNA Pola com-
plex that carries out lagging strand DNA replication (Grossi
et al. 2004).

Figure 2 Overall domain organizations and interaction areas for major
telomeric proteins. Shown are Rap1p, members of the Cdc13 complex,
and three protein subunits of the telomerase holoenzyme. Due to the
paucity of information for Rif1p or Rif2p, they are omitted. For details on
domain definitions, see text. Known interaction domains with other pro-
teins, RNA, or DNA are indicated with a double arrow. Below the pro-
teins, numbers define amino acid positions. Small up arrow indicates
known amino acid modifications that affect functions and the red step
on Est3p denotes a required +1 frameshift in protein translation.
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Telomere dedicated proteins vs. proteins doing
double duty

Remarkably, the majority of telomeric proteins have both
telomeric and nontelomeric functions (Table 1). For exam-
ple, both Rap1p and Tbf1p are essential to regulate expres-
sion of a large number of genes, many of which are among
the most highly transcribed genes in the genome (Pina et al.
2003; Preti et al. 2010). The Rap1p-associated proteins
Sir2p, Sir3p, and Sir4p promote transcriptional silencing
not only at telomeres but also at the silent mating type or
HM loci (Rusche et al. 2003), and Rif1p has roles in estab-
lishing heterochromatin elsewhere than just at telomeres
(Hardy et al. 1992b; Buck and Shore 1995; Buonomo
2010). The YKu complex is essential for NHEJ, in particular
during G1 phase of the cell cycle (reviewed in Daley et al.
2005). The telomerase regulator Pif1p affects maintenance
of mitochondrial DNA and replication of nontelomeric loci
with the potential to form G-quadruplex structures (Foury
and Kolodynski 1983; Schulz and Zakian 1994; Ivessa et al.
2000; Ribeyre et al. 2009; Paeschke et al. 2011). Taken
together, at least for budding yeast, it looks as if the proteins
important for telomere function by and large are doing dou-
ble duty.

How many more genes affect telomere biology?

It is not surprising that a large number of additional genes
affect telomere length as genes with general roles in DNA
replication, recombination, intra S checkpoint, protein and
RNA synthesis pathways would be expected to affect them
(Dahlseid et al. 2003; Mozdy et al. 2008). Indeed, two sys-
tematic screens of the deletion collection of nonessential
genes confirmed this idea (Askree et al. 2004; Gatbonton
et al. 2006). Of some concern, the gene sets from the two
screens show little overlap, and it is not yet clear how many
of the genes act directly.

Screens for suppressors of telomere-capping defects also
yielded numerous new interactions (Addinall et al. 2008,
2011). For example, members of the KEOPS complex
(CGI121, KAE1, BUD32, and GON7) were linked to telomere
biology because they were identified by their ability to sup-
press the growth defect of cells harboring the cdc13-1 allele
incubated at slightly elevated temperatures (Downey et al.
2006). KEOPS genes were also identified via an unrelated
screen looking for suppressors of a splicing defect (Kisse-
leva-Romanova et al. 2006), and one member of the KEOPS
complex is linked to chromosome segregation (Ben-Aroya
et al. 2008). It appears now that the primary function of
the KEOPS complex is to add a specific base modification
to certain tRNAs (t6A addition; Srinivasan et al. 2011). Sim-
ilarly, SUA5, a gene first identified as a translational suppres-
sor and then linked to telomere biology (Na et al. 1992;
Meng et al. 2009) is required for the same tRNA modifica-
tion as the KEOPS complex (Lin et al. 2010; Srinivasan et al.
2011). How this t6A tRNA modifying activity links with
telomere biology is still a puzzle. In summary, with rare

exceptions, we think it likely that all genes affecting yeast
telomeres have been identified and would not be surprised if
many of the genes identified by genome-wide approaches
act indirectly.

The Capping Function

Classical chromosome capping

Arguably the most important function of a telomere is that
of providing protection to the end of the chromosome. This
capping function is the property that prompted chromosome
researchers in the 1930s to name the ends of chromosomes
telomeres (Muller 1938; McClintock 1939). Classically, the
capping function prevents telomeres from being subject to
DNA repair by homologous recombination or NHEJ. More
recently, the capping function has expanded to include the
concept of protecting telomeres from checkpoints as loss of
a single telomere elicits a Rad9p-dependent cell cycle arrest
(Sandell and Zakian 1993). Loss of these capping functions
can be determined by monitoring the integrity of both
strands of telomeric DNA, presence of fused chromosome
ends, and/or cell cycle arrest. The conservation among
eukaryotes of the underlying structure of telomeres, duplex
telomeric DNA with G-rich 39 overhangs and corresponding
sequence-specific duplex and single-strand DNA binding
proteins, suggests that the mechanisms of capping are based
on conserved principles.

The earliest demonstration that Cdc13p functions in
chromosome capping was the discovery that in cells with
a temperature-sensitive cdc13-1 allele incubated at elevated
temperatures, telomeres are degraded in a strand-specific man-
ner such that their C strands are lost for many kilobases (Garvik
et al. 1995). In addition, at nonpermissive temperatures,
cdc13-1 cells arrest at the G2/M boundary of the cell cycle
in a RAD9-dependent fashion (Weinert and Hartwell 1993).
These phenotypes also occur in cdc13D cells (Vodenicharov
and Wellinger 2006). Therefore, cells lacking Cdc13p dis-
play the two central hallmarks of telomere uncapping, un-
stable chromosome ends, and activation of a DNA damage
checkpoint. Cdc13p undergoes cell cycle phase-specific post-
translational modifications, including phosphorylation and
SUMOylation that may affect capping (Tseng et al. 2006;
Li et al. 2009; Hang et al. 2011). Genetic and biochemical
data indicate that these capping activities of Cdc13p involve
Stn1p and Ten1p, both of which are also essential for capping
(Grandin et al. 1997, 2001; Gao et al. 2007; Petreaca et al.
2007; Xu et al. 2009).

An inducible degron allele of Cdc13p combined with cell
cycle synchrony experiments demonstrated that the Cdc13
complex is only required for capping during late S and G2/M
phases, but not in G1 or early S (Vodenicharov and Wellinger
2006, 2007, 2010). One might speculate that replication
through the telomere would disrupt its capping function
and therefore capping must be reassembled thereafter, cre-
ating a time-restricted situation of enhanced requirement for

S. cerevisiae Telomeres 1079

http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005160
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000006049
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005160
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000002200
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000004434
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000002635
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000000479
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000004526
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000004500
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000001746
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003494
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003720
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000002379
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003137
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000002625
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000002379
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000002379
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000002379
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000002625
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000002379
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000002379
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000002379
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000002379
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000002489
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000004000
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000002379
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000002379


capping and hence Cdc13 complex function. This proposal is
in line with the fact that during telomere replication, CDK-
dependent end processing is at its peak (Ira et al. 2004;
Frank et al. 2006; Vodenicharov and Wellinger 2006). How-
ever, given that members of the Cdc13 complex interact with
components of the lagging strand machinery, it is also pos-
sible that the capping functions of the Cdc13 complex are
directly associated with the passage of the replication fork
(Nugent et al. 1996; Qi and Zakian 2000; Grossi et al. 2004;
Vodenicharov and Wellinger 2010). In this context it is
noteworthy that Cdc13p, although very sequence specific,
does not require a physical 39 end for its binding, as it can
bind single-strand TG1-3 DNA even if the telomeric DNA is
on a circular plasmid (Lin and Zakian 1996; Nugent et al.
1996). It thus remains unclear whether the C-strand–
specific degradation of telomeres observed when Cdc13
complex-mediated capping is hampered is due to problems
at the physical ends or problems associated with terminating
replication of telomeric repeats (Figure 3; Anbalagan et al.
2011).

Outside S phase, Rap1p is critical for capping. Rap1p
with C terminus-associated Rif2p, and to a much lesser ex-
tent Rif1p, are important for preventing telomere fusions
and limiting end resection (Marcand et al. 2008; Bonetti
et al. 2010; Vodenicharov and Wellinger 2010). Further-
more, Rif2p (but not Rif1p) has a prominent role in prevent-
ing the association of Tel1p/MRX complex to telomeres
(Hirano et al. 2009; Bonetti et al. 2010). MRX is a heterotri-
meric complex composed of Mre11p, Rad50p, and Xrs2p
that serves important roles in both DSB recognition, telo-

mere capping, and checkpoint activation (Boulton and Jackson
1998; Nugent et al. 1998; Ritchie and Petes 2000; D’Amours
and Jackson 2001; Grenon et al. 2001). Most likely there is
a nucleolytic activity associated with the complex (Llorente
and Symington 2004), and it appears the complex also has
the capacity to hold broken chromosome ends in proximity
for eventual repair (Kaye et al. 2004; Lobachev et al. 2004).
On the other hand, Rif1p, and to a much lesser extent Rif2p,
is important to maintain viability in cells where CDC13 cap-
ping is compromised (Addinall et al. 2011; Anbalagan et al.
2011). Thus, Rap1p and the associated Rif1p and Rif2p pro-
teins have important capping functions outside of S phase with
Rif1p and Rif2p making specific and separable contributions
to this capping.

Finally, Yku affects capping in G1 phase (Vodenicharov
and Wellinger 2007, 2010; Bonetti et al. 2010) as telomeres
in ykuD cells are resected at this time, even when bound by
the Cdc13 complex. However, the G1 resection in ykuD cells
is much more modest than, for example, the resection that
occurs during late S phase in cdc13-1 cells at elevated tem-
peratures, and this limited resection does not activate a DNA
damage checkpoint (Bonetti et al. 2010; Vodenicharov and
Wellinger 2010).

It is unclear whether telomerase has a capping function
that is independent from its telomere elongation activity.
Physical assays do not reveal increased end degradation in
tlc1D48 or yku80-135i cells (Vodenicharov and Wellinger
2010), mutations that result in reduced Est2p telomere
binding (Fisher et al. 2004). However, cdc13-1 cells that also
carry either the tlc1D48 or yku80-135i mutation are more
temperature sensitive than cdc13-1 cells, suggesting that
capping is compromised further by reduced Est2p telomere
binding in these backgrounds (Vega et al. 2007). Moreover,
cells lacking telomerase and the recombination protein
Rad52p lose telomeric DNA more rapidly than if they lack
telomerase alone (Lundblad and Blackburn 1993). One ex-
planation for these data are that telomerase protects ends
from recombinational lengthening (Lee et al. 2007).

Alternative ways of capping

While the Cdc13p-mediated capping of chromosome ends is
essential, situations of telomere capping without Cdc13p
have been described. In all such cases, chromosomes still
end in canonical terminal TG1-3 sequences and in some
cases, the repeat sequences are still maintained by telomer-
ase (Larrivee and Wellinger 2006; Petreaca et al. 2006;
Zubko and Lydall 2006; Dewar and Lydall 2010). In one
particular case, capping requires the DNA polymerase a-as-
sociated Pol12p and overexpression of both an N-terminal
part of Stn1p and Ten1p (Petreaca et al. 2006). In another
case, cdc13D cells can be obtained by first deleting key
genes involved in exonucleolytic degradation of DNA
ends (EXO1, RAD24, and SGS1) and DNA damage check-
points (RAD9 and PIF1) (Zubko and Lydall 2006; Dewar
and Lydall 2010; Ngo and Lydall 2010). In these cases,
telomeres are still maintained by telomerase, if homologous

Figure 3 Preventing DNA damage checkpoint signaling at telomeres.
Schematic of hypotheses for how DNA damage checkpoint signaling is
prevented (A) during the passage of the replication fork through the
double-stranded telomeric repeat area and (B) after having passed the
end. Symbols are as in Figure 1.
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recombination is impossible due to a deletion of RAD52
(Zubko and Lydall 2006). Lastly, if telomere repeat mainte-
nance is already accomplished by recombination, as in the
survivors that arise in telomerase-deficient cells, then loss of
Cdc13p can be tolerated in a small subset of cells. The fact
that only a minor fraction of the culture survives suggests
that additional events are required to maintain telomeres in
such cells (Larrivee and Wellinger 2006).

DNA structures can also provide an alternative mode of
capping. For example, cells that lack both major pathways
for telomeric repeat maintenance, i.e., telomerase and ho-
mologous recombination, and that are also deficient in
Exo1p, a 59 to 39 single-stranded exonuclease that processes
DSBs, can divide and form colonies (Maringele and Lydall
2004b). Chromosomes in these survivor cells do not end in
telomeric repeats but rather in DNA palindromes distal to
the first essential gene on each chromosome arm.

Crosstalk between DNA damage checkpoint activation
and DNA repair

Given that capping protects telomeres from repair and
checkpoint activation, it seemed logical to think that
proteins involved in DNA repair and checkpoints would
not act at telomeres. Paradoxically, many checkpoint and
DNA repair proteins associate with telomeres and contribute
in important ways to telomeric functions, including capping.
For example, the yeast YKu complex, which is critical for
NHEJ, is telomere associated (Gravel et al. 1998), and in its
absence, telomeres are very short and have long G tails
throughout the cell cycle (Boulton and Jackson 1996; Porter
et al. 1996; Gravel et al. 1998; Polotnianka et al. 1998). YKu
contributes not only to capping but also protects telomeres
from recombination, mediates nuclear import and/or reten-
tion of telomerase RNA, promotes TPE and telomere tether-
ing (Polotnianka et al. 1998; Peterson et al. 2001; Stellwagen
et al. 2003; Hediger et al. 2006; Ribes-Zamora et al. 2007;
Gallardo et al. 2008; Marvin et al. 2009a) and is involved
in telomere replication (Cosgrove et al. 2002; Gravel and
Wellinger 2002).

Mec1p, the most important checkpoint kinase in yeast,
has a minor role in telomere length regulation (Ritchie et al.
1999). Consistent with this, Mec1p binding is only detected
at ultrashort telomeres that are probably already nonfunc-
tional (Abdallah et al. 2009; McGee et al. 2010; Hector et al.
2012). In fact, Cdc13p inhibits Mec1p binding to a DSB
(Hirano and Sugimoto 2007). Moreover, Mec1p prevents
telomere formation at DSBs by phosphorylation of Cdc13p,
which inhibits Cdc13p association with the DSB (Zhang and
Durocher 2010; Ribaud et al. 2011). In addition, Mec1p
phosphorylation of Pif1p inhibits telomere addition to DSBs
(Makovets and Blackburn 2009). Normally, association of
Mec1p to DSBs occurs after end processing and by binding
to single-stranded DNA via the replication protein A hetero-
trimer (RPA) and Ddc2p (Zou and Elledge 2003). An impor-
tant issue is whether or not RPA binds the single-stranded G
tails generated at the end of S phase (Figure 3). RPA is

detected transiently at telomeres at this time (Schramke
et al. 2003; McGee et al. 2010), but this binding could be
explained by the RPA that associates with telomeres during
semiconservative replication (McGee et al. 2010). Mec1p
binding is not detected at this time, suggesting that Cdc13p
prevents RPA binding so that Mec1p-mediated DNA damage
signaling is not elicited by the telomeric single-stranded
G tails (Figure 3; Gao et al. 2007; Gelinas et al. 2009; McGee
et al. 2010).

Although Tel1p associates with DSBs (Nakada et al.
2003; Shima et al. 2005), it has only minor functions in
DNA repair. Rather, its major function is telomere length
maintenance. Tel1p binds telomeres (Bianchi and Shore
2007b; Hector et al. 2007; Sabourin et al. 2007) via an in-
teraction with the Xrs2p subunit of MRX. Indeed, Tel1p
interacts preferentially with short telomeres and is thought
to be involved in telomerase recruitment. However, in con-
trast to its binding at a DSB, its association with short telo-
meres does not elicit a checkpoint response, a difference that
is not fully understood.

Other experiments involving the fate of DSBs made next
to telomeric DNA emphasize the interconnections between
telomeric DNA and checkpoints. For example, there is some
evidence that a tract of telomeric DNA can affect cell cycle
progression when it is adjacent to a DSB (Michelson et al.
2005; but note conflicting data in Hirano and Sugimoto
2007). In these experiments, an inducible DSB is created
such that one of the ends exposes telomeric repeats and
the other does not. The exposure of telomeric DNA does
not affect the initial checkpoint response, but it allows for
an accelerated recovery from the checkpoint arrest and re-
sumption of cell cycle progression (Michelson et al. 2005).
Intriguingly, this effect could be dependent on keeping the
two ends created by the break in close proximity with Rif
proteins at the DSB contributing to dampening of the check-
point response (Ribeyre and Shore 2012).

Regulated resection

Given that G tails are an essential feature of chromosome
ends, they must be regenerated after DNA replication. This
processing is particularly a problem for the end replicated
by the leading strand polymerase, which is predicted to
produce a blunt end (Figure 4A). This problem is solved by
postreplication C-strand degradation (Wellinger et al.
1996), which remarkably depends on the same genes that
resect the ends of DSBs to generate the 39 single-strand tails
that initiate homologous recombination. This congruence is
surprising as one of the key functions of telomeres is to
prevent DNA repair at natural ends. Recent insights suggest
a solution to this conundrum. C-strand resection at telo-
meres is strongly dependent on Sgs1p or Sae2p. Sgs1p is
a 39 to 59 RecQ family DNA helicase, while Sae2p is an
endonuclease whose phosphorylation by Cdk1 is critical
for its activity (Huertas et al. 2008; Bonetti et al. 2009).
Indeed, Cdk1 activity is required for cell-cycle–dependent
telomere resection (Frank et al. 2006; Vodenicharov and
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Wellinger 2006). The MRX complex acts in the same path-
way as Sae2p to generate G tails. Although G tails are
shorter in mre11Δ cells, they still increase in length in late
S/G2 phase in this background (Larrivee et al. 2004). How-
ever, the nuclease activity of Mre11 is not required to gen-
erate G tails (Tsukamoto et al. 2001). Thus, MRX is not as
critical as Sae2p for G-tail generation. Likewise, in sae2Δ
cells, C-strand degradation is not eliminated, as there is
the second and partially overlapping degradation pathway
that requires Sgs1p (Bonetti et al. 2009). The fact that mul-
tiple nucleases are involved in telomeric end processing is
also true at DSBs (Zubko et al. 2004; Gravel et al. 2008;
Mimitou and Symington 2008; Zhu et al. 2008). Indeed,
on a DSB, a slow MRX-dependent and restrained resection
soon gives way to fast and extensive resection carried out by
Exo1p or Dna2p. At telomeres, the Cdc13 complex together
with the YKu complex seems to inhibit this switch, as deep
resection into telomere adjacent unique DNA rarely occurs.
Consistent with this idea, there is rampant C-strand resec-
tion in cells expressing the temperature-sensitive cdc13-1
allele and growing at high temperatures. The YKu complex
also contributes to limiting C-strand resection as cells lacking

YKu have constitutively long G tails, and this phenotype is sup-
pressed by deletion of EXO1 (Gravel et al. 1998; Polotnianka
et al. 1998; Maringele and Lydall 2002). Furthermore, Rap1p
and particularly the associated Rif2p act as inhibitors of MRX-
dependent telomere resection (Bonetti et al. 2010). Taken
together, these data suggest that telomere processing in late
S phase, which occurs right after conventional DNA replica-
tion, is triggered similarly at telomeres and DSBs: a Cdk1p-
stimulated Sae2p/MRX-mediated activity generates a short G
tail. However, at telomeres, further resection is inhibited by
a combination of YKu, the Cdc13 complex, and the Rif pro-
teins such that resection is limited to �30–100 nt, occurring
only in the distal half of the telomere. Since no deep resection
occurs, no unique sequence single-stranded DNA is uncov-
ered, and no DNA damage checkpoint activity or cell cycle
arrest is elicited. In this scenario, YKu association to telomeres
is the primary inhibitor of initiation of resection, while the
other factors limit deep resection once resection has begun
(Bonetti et al. 2010; Vodenicharov and Wellinger 2010).
Telomeres on which resection generates G tails longer than
the 10–15 nt must be processed prior to mitosis (Wellinger
et al. 1993a,b). This processing probably involves C-strand
resynthesis by conventional DNA replication, but there is also
evidence for limited nucleolytic trimming of G tails (Diede
et al. 2010).

Telomere Replication

Semiconservative replication of telomeric
and subtelomeric DNA

Discussions of telomere replication usually focus on telo-
merase, a telomere-specific reverse transcriptase that repli-
cates the very end of the chromosome. However, most of the
telomeric repeats are replicated by standard semiconserva-
tive DNA replication. Conventional replication of telomeric
DNA is one of the last events in S phase. Density transfer
experiments reveal that Y9 repeats and the unique regions
adjacent to telomeres replicate very late in S phase (McCar-
roll and Fangman 1988; Raghuraman et al. 2001). This late
replication is due primarily to late activation of origins near
telomeres, such as the late firing ARS501 (Ferguson and
Fangman 1992). This late firing is independent of origin
sequence as an origin that is normally activated in early
S phase, such as ARS1 or the origin from the 2-mm plasmid,
is activated late in S phase when placed near a telomere
(Ferguson and Fangman 1992; Wellinger et al. 1993a). Like-
wise, ARS501 fires in early S phase when moved to a circular
plasmid, while linearization of the ARS501 plasmid by telo-
mere addition results again in its late activation (Ferguson
and Fangman 1992). One possibility is that late origin firing
results from the topological freedom enjoyed by unre-
strained ends. This model is ruled out by the finding that
when a DSB is induced next to an early firing origin, that
origin still activates in early S phase (Raghuraman et al.
1994). Thus, telomeres exert a position effect on the timing

Figure 4 Molecular models for telomere replication. (A) DNA structures
thought to be generated during telomere replication when the replication
fork is still in the double-stranded telomeric repeats (left) and after having
reached the physical end (right). Strand colors as in Figure 1. Brown,
subtelomeric sequences. (B) Proposed telomeric chromatin changes dur-
ing a cell cycle. Note that telomerase elongation drawn for late S does not
occur on all telomeres in every cell cycle. This step occurs preferentially on
short telomeres. Bottom shows involved proteins and complexes as well
as a sketch of the proposed secondary structure of the TLC1 RNA with
associated proteins (telomerase). Short red line in RNA indicates templat-
ing area. Symbols for other proteins are the same as in Figure 1.
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of origin activation. Late activation of telomere adjacent
origins is programmed in G1 phase. Thus, if a telomere prox-
imal ARS is excised from the chromosome in late G1 phase,
a circular plasmid containing it still replicates in late S phase
(Raghuraman et al. 1997). Late firing of telomere adjacent
origins is affected by telomere length as origins next to short
telomeres fire earlier in S phase than origins near wild-type
(WT)–length telomeres (Bianchi and Shore 2007a).

It is tempting to speculate that late activation of telomeric
origins is due to the same heterochromatic chromatin
structure that causes TPE. However, depleting cells of Sir3p,
which eliminates TPE, has little effect on replication timing
of telomere adjacent DNA (Stevenson and Gottschling
1999). In contrast, the YKu complex, whose absence causes
telomere shortening, long G tails, and reduced TPE, is es-
sential for late activation of telomeric origins yet it does not
affect activation of more internal origins (Cosgrove et al.
2002). Deletion of Rif1p, which causes telomere lengthen-
ing, also results in early replication of telomeric regions
(Lian et al. 2011).

Perhaps because of late replication, telomere length is
particularly sensitive to mutations in conventional replica-
tion proteins. For example, telomeres lengthen in cells with
temperature-sensitive alleles of several replication proteins,
such as DNA polymerase a, DNA replication factor C, and
Rad27p (Carson and Hartwell 1985; Adams and Holm
1996; Parenteau and Wellinger 1999, 2002; Adams Martin
et al. 2000; Grossi et al. 2004). Since the telomere length-
ening in these mutants is telomerase dependent (Adams
Martin et al. 2000), it likely reflects a competition between
semiconservative DNA replication and telomerase extension,
both of which occur in late S phase. The key player in this
competition is probably the Cdc13 complex, as two of its
subunits interact with subunits of the DNA polymerase a

complex, Cdc13p with the catalytic subunit of DNA poly-
merase a (Qi and Zakian 2000; Sun et al. 2011) and Stn1p
with Pol12p (Grossi et al. 2004). Cdc13p also interacts with
Est1p, a telomerase subunit (Qi and Zakian 2000; Pennock
et al. 2001; Wu and Zakian 2011). Thus, when replication
proteins are limiting, it may facilitate Cdc13p interaction
with telomerase and promote telomere lengthening.

Semiconservative replication of telomeres is a prerequisite
for the C-strand degradation that occurs in late S/G2 phase
(Wellinger et al. 1993a; Dionne and Wellinger 1998). The
two telomeres on each chromosome are synthesized differ-
ently, and these differences affect their need for C-strand
degradation. At one end, the new strand is the product of
leading strand synthesis while at the other end, it is the
product of lagging strand synthesis (Figure 4A). Theoreti-
cally, the telomere replicated by leading strand synthesis can
be replicated fully to generate a blunt end, while the other
end will be left with a small gap at the 59 end of the newly
replicated strand after removal of the terminal RNA primer
(Figure 4A). Although both ends of at least some DNA mol-
ecules are subject to C-strand degradation in a given cell
cycle (Wellinger et al. 1996), the leading strand and lagging

strand telomeres are treated differently (Parenteau and
Wellinger 2002). While both bind Cdc13p, only the telomere
replicated by the leading strand polymerase binds the MRX
complex (Faure et al. 2010).

When most people think about difficulties replicating
chromosome ends, they think about telomerase and its role
in solving the “end replication” problem. However, even
semiconservative replication of telomeric DNA poses prob-
lems, as replication forks in yeast and other organisms move
more slowly through telomeric DNA than through most
other regions of the genome (Ivessa et al. 2002; Miller
et al. 2006; Sfeir et al. 2009). This difficulty is thought to
arise from the GC-rich nature of telomeric DNA, which gives
it a high thermal stability and also allows it to form stable
secondary structures, such as G-quadruplex DNA, which can
pose problems for DNA replication (Lopes et al. 2011;
Paeschke et al. 2011).

The first evidence that telomeric DNA, even at non-
telomeric sites, slows replication forks came from two-
dimensional gel analyses (Ivessa et al. 2002). Additionally,
there are multiple other sites in subtelomeric regions, such
as inactive replication origins, that slow fork progression.
Slow replication of telomeric regions is also seen in genome-
wide studies that monitor DNA polymerase II occupancy
(Azvolinsky et al. 2009). The yeast replication fork also
moves slowly through human telomeric DNA (Bah et al.
2011).

Although fork slowing is detected in telomeric and
subtelomeric DNA in wild-type cells, this slowing is 10-fold
higher in the absence of Rrm3p, a 59 to 39 DNA helicase
(Ivessa et al. 2002; Azvolinsky et al. 2009). The effects of
Rrm3p on fork progression are not limited to telomeres
(Ivessa et al. 2000; Ivessa et al. 2003) as it promotes fork
progression at many nontelomeric loci, such as RNA poly-
merase III transcribed genes. All of the Rrm3p-sensitive sites
are bound by stable protein–DNA complexes whose removal
obviates the need for Rrm3p during DNA replication (Ivessa
et al. 2003; Torres et al. 2004). Eliminating any of the si-
lencing proteins Sir2p, Sir3p, or Sir4p reduces replication
pausing within telomeres in RRM3 cells. However, when
both Sir proteins and Rrm3p are absent, telomeric pausing
is still high (Ivessa et al. 2003).Taken together, these data
suggest that the sequence, as well as the chromatin struc-
ture, of telomeres contribute to their negative effects on fork
progression.

Telomere maintenance via telomerase

End replication problems and the discovery of telomerase:
All DNA polymerases synthesize DNA only in the 59 to 39
direction and are unable to start replication de novo. Thus,
DNA polymerases require a primer, which for eukaryotic
chromosomes is a short 8–12 nt stretch of RNA. A DNA
polymerase can theoretically extend this primer on the so-
called leading strand, until it reaches the end of the chro-
mosome to produce a blunt end. In contrast, the lagging
strand is made discontinuously, and each Okazaki fragment
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starts with an RNA primer. Removal of the most distal RNA
primer leaves a gap of 8–12 nt at the 59 ends of newly
replicated strands that cannot be filled in by a conventional
DNA polymerase. In the absence of a special end replication
mechanism, the product is shorter than the starting tem-
plate. This dilemma is the so-called end-replication problem,
as classically defined (Watson 1972).

Since eukaryotic chromosomes end with 39 single-
stranded G tails that are essential for chromosome stability,
there is a second end-replication problem that affects lead-
ing strand replication (Lingner et al. 1995). The leading
strand DNA polymerase should generate a blunt ended
DNA terminus, rather than a G tail (Figure 4A). Postreplica-
tion C-strand degradation at both ends of chromosomes can
solve this problem (Wellinger et al. 1996). In this scenario,
the 59 ends of the template for leading strand synthesis is
degraded to generate long G tails. RNA primed C-strand
resynthesis can fill in the C strand, but when the RNA that
primes this synthesis is removed, a short G tail will be
generated.

In the vast majority of eukaryotes, the continuous loss of
DNA due to incomplete replication is solved by telomerase.
This activity was first identified by a biochemical approach
using extracts from the ciliate Tetrahymena (Greider and
Blackburn 1985). Telomerase consists of both protein and
RNA subunits (Greider and Blackburn 1987). During DNA
extension, telomerase uses a short segment within its inte-
gral RNA subunit as the template to extend the 39 end of the
G-rich strand of the telomere (Greider and Blackburn 1989).
Thus, telomerase-generated telomeric repeats are templated
not by the chromosome but by telomerase RNA. Once telo-
merase extends the 39 strand, RNA primed DNA replication
by a conventional DNA polymerase can fill in the comple-
mentary C strand.

C-strand degradation makes a de facto lagging strand-like
terminus at the telomere that was lengthened by the leading
strand polymerase. This degradation has the benefit of gen-
erating a G tail, but it will magnify the first end-replication
problem as now, in the absence of telomerase, both the lead-
ing and the lagging strand telomeres lose �10 nt per S phase
(assuming that the average RNA primer is 10 nt). However,
the measured loss rate is only half this rate (Lundblad and
Szostak 1989; Singer and Gottschling 1994). A possible ex-
planation for this discrepancy is that telomerase provides pro-
tection from a telomerase-independent lengthening activity,
such as recombination. In this model, telomeres in telomer-
ase-deficient cells would be lengthened by recombination
that would partially compensate for sequence loss by incom-
plete replication. This proposal provides an explanation for
why telomeric repeats are lost at a faster rate, �10 nt/gen-
eration, in strains that are both telomerase and recombination
deficient compared to a strain deficient for telomerase alone
(Lundblad and Szostak 1989; Singer and Gottschling 1994;
Lee et al. 2007).

Telomerase does not act on blunt-ended DNA molecules.
Thus, C-strand degradation of the blunt end produced by

leading strand replication generates not only a G tail for
binding of the Cdc13 complex, it also creates a potential
substrate for telomerase. With G tails at both ends of a chro-
mosome, telomerase could theoretically act on telomeres
replicated by either the leading or lagging strand polymerase.
However, MRX, which recruits Tel1p and hence telomerase to
telomeres, binds preferentially to telomeres replicated by the
leading strand polymerase (Faure et al. 2010), perhaps be-
cause MRX is needed to process blunt ends. MRX also binds
preferentially to short telomeres (McGee et al. 2010) and to
DSBs next to short (81 bp) but not long (162 bps) tracts of
telomeric DNA (Negrini et al. 2007; Hirano et al. 2009). Since
MRX is needed for efficient recruitment of telomerase, these
data predict that telomerase acts preferentially at short telo-
meres replicated by the leading strand DNA polymerase.

Biochemical characterization of S. cerevisiae telomerase
was slow in coming, perhaps because the enzyme is not
abundant. In contrast, genetic analysis of telomerase was
pioneered in S. cerevisiae. The first known telomerase sub-
unit, EST1 (ever shorter telomeres 1), was identified in
a screen for genes with defective telomere function (Lund-
blad and Szostak 1989). Although est1D cells are viable,
they slowly but progressively lose C1-3A/TG1-3 telomeric
DNA. Once telomeres become very short, chromosome loss
and cell cycle length go up dramatically. After 50–100 gen-
erations, most est1D cells die. The combination of progres-
sive telomere loss and eventual chromosome instability and
cell death is known collectively as the est phenotype (Lund-
blad and Szostak 1989).

A similar screen identified an additional three genes whose
deletion (EST2 and EST3) or mutation (EST4) also yields an
est phenotype (Lendvay et al. 1996). When the wild-type
copy of est4 was cloned, it was found to be a separation-
of-function allele of the previously identified essential CDC13
gene and renamed cdc13-2 (Nugent et al. 1996). Cells with
the cdc13-2 allele are telomerase deficient but viable because
the end protection function of Cdc13p is intact. A separate
screen to identify genes whose overexpression interfered with
TPE, unexpectedly identified another est gene, called TLC1
(telomerase component 1) (Singer and Gottschling 1994).
TLC1 encodes a large RNA whose sequence has a 17-nt
stretch complementary to the G strand of yeast telomeric
DNA. Altering the putative template region in TLC1 produced
mutant telomeric repeats in vivo, proving that TLC1 is indeed
the templating RNA. Est2p was identified as the catalytic re-
verse transcriptase subunit of yeast telomerase when its se-
quence was found to be similar to that of the biochemically
purified catalytic subunit of Euplotes aediculatus (a ciliated
protozoan) telomerase (Lingner et al. 1997).

Now that the entire yeast genome has been evaluated for
telomeric roles, it is clear that TLC1, EST1, EST2, EST3, and
CDC13 are the only genes whose mutation yields a telomer-
ase null phenotype. However, certain double mutations also
have an est phenotype. TEL1 encodes an ATM-like check-
point kinase, but its major function is in telomere length
maintenance. A tel1D strain has very short but stable telomeres
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and does not senesce (Lustig and Petes 1986; Greenwell
et al. 1995; Morrow et al. 1995). The kinase activity of Tel1p
is required for its role in telomere length maintenance as
a kinase dead allele has the same phenotype as tel1D (Mallory
and Petes 2000). Cells deficient for Mec1p, the yeast ATR
equivalent and the major checkpoint kinase in yeast, have
a very modest decrease in telomere length (Ritchie et al.
1999). Although MEC1 is essential, both its checkpoint and
telomere maintenance functions are dispensable for cell via-
bility. Its essential function can be bypassed by deleting SML1,
an inhibitor of ribonucleotide reductase (Zhao et al. 1998).
Although neither tel1D nor mec1D sml1D cells senesce, cells
deficient in both kinases have an est phenotype (Ritchie et al.
1999). Cells lacking any one (or all three) of the MRX sub-
units act in the same pathway as Tel1p to affect telomere
length (Nugent et al. 1998). Thus, like tel1D cells,mrxmutants
have short but stable telomeres and an est phenotype in com-
bination with loss of Mec1p (Ritchie and Petes 2000). Like-
wise, mrx ykuΔ cells have an est phenotype (DuBois et al.
2002; Maringele and Lydall 2004a).

Tel1p and the MRX complex are not part of the telomer-
ase holoenzyme but have important roles in recruiting telo-
merase to telomeres. Consistent with this interpretation,
fusion of Cdc13p to Est2p allows telomere maintenance in
tel1 mec1 cells (Tsukamoto et al. 2001). Moreover, tel1 mec1
cells have normal telomerase activity by in vitro assays and
can maintain telomeres in a rif1D rif2D background (Chan
et al. 2001).

Characteristics of components of the telomerase holoen-
zyme: Est1p: The EST1 ORF predicts a 699-amino-acid pro-
tein with no strong structural motifs (Figure 2; Lundblad
and Szostak 1989). Est1 binds RNA and single-stranded
TG1-3 DNA in vitro (Virta-Pearlman et al. 1996; DeZwaan
and Freeman 2009). Unlike Cdc13p, Est1p binding to TG1-3

DNA requires a 39 OH end. Although Est1p is conserved
through mammals, its sequence is divergent, even in fungi
(Beernink et al. 2003; Reichenbach et al. 2003; Snow et al.
2003). Unlike the other telomerase subunits, Est1p abun-
dance is cell cycle regulated, low in G1 phase (�20 mole-
cules/cell) when telomerase is not active and higher in
late S/G2 phase (�110 molecules/cell) when it is (Taggart
et al. 2002; Wu and Zakian 2011). This cell cycle pat-
tern is due primarily to proteasome-dependent cell-cycle–
regulated proteolysis (Osterhage et al. 2006), although
Est1 mRNA degradation by Rnt1p also contributes to its cell-
cycle–regulated abundance (Spellman et al. 1998; Larose et al.
2006).

Although est1D cells have a classic telomerase-deficient
phenotype in vivo, standard primer extension assays for telo-
merase activity in vitro are not Est1p dependent (Cohn and
Blackburn 1995). Nonetheless, Est1p immunoprecipitates
with both TLC1 RNA and telomerase activity, suggesting
that it is an integral part of the telomerase holoenzyme
(Lin and Zakian 1995; Steiner et al. 1996). Est1p binds di-
rectly to a stem-bulge region in TLC1, and disruption of this

interaction confers an est phenotype in vivo (Seto et al.
2002). The Est1p–TLC1 interaction is essential to bring both
Est1p and Est2p to telomeres in late S/G2 phase (Chan et al.
2008).

Genetic evidence using fusion proteins provided the first
evidence that a Cdc13p–Est1p interaction recruits the telo-
merase holoenzyme to telomeres. Est1p is dispensable for
telomere maintenance in cells expressing a fusion of the
DNA binding domain of Cdc13p (DBDCdc13) and Est2p
(DBDCdc13–Est2) (Evans and Lundblad 1999). These results
suggest that the critical function of Est1p is to mediate the
interaction between telomerase and the telomere. Two-
hybrid and coimmunoprecipitation studies support this hy-
pothesis by providing physical evidence of an interaction
between the two proteins (Qi and Zakian 2000). Moreover,
this interaction is direct, as purified Cdc13p and Est1p in-
teract in vitro to form a 1:1 complex (Wu and Zakian 2011).
The interaction is also specific, as Cdc13p does not interact
with Est3p and is sufficient for recruiting Est1p to Cdc13p-
coated TG1-3 single-strand DNA in vitro.

The telomerase null phenotypes of certain mutations in
CDC13 and EST1, such as cdc13-2 and est1-60, are proposed
to be due to a disruption of the Cdc13p–Est1p interaction
(Pennock et al. 2001). These particular mutations are charge
swap alleles: while each mutation alone confers an est phe-
notype in vivo, cdc13-2 est1-60 cells have short, stable telo-
meres and do not senesce. Because the charge interaction
between the two proteins is restored in the double mutant,
the telomerase proficiency of the double mutant can be
explained by restoration of a physical interaction between
Cdc13p and Est1p. Consistent with this interpretation,
cdc13-2 cells have low Est1p and Est2p binding to telomeres
(Chan et al. 2008) and DSBs (Bianchi et al. 2004). However,
the strengths of various combinations of interactions (i.e.,
Cdc13p–Est1p, Cdc13–2p–Est1p, and Cdc13p–Est1–60p)
are indistinguishable in vitro (Wu and Zakian 2011). The
best model to fit all of the data is that these charge swap
mutants support wild-type levels of Cdc13p–Est1p interac-
tion, but the resulting complex is somehow defective in vivo
such that it is unable to support wild-type levels of telomerase–
telomere interaction or telomerase extension. Indeed, visu-
alization of telomerase RNA in living cells suggests that it as-
sociates with telomeres in cdc13-2 cells, but this association
is transient (Gallardo et al. 2011).

In addition to its role in telomerase recruitment, Est1p is
thought to activate telomerase. The best evidence for this
model also comes from studies with fusion proteins. Cells
expressing a DBDCdc13–Est2 fusion protein have hyperelon-
gated telomeres, presumably because telomerase is always
telomere associated (Evans and Lundblad 1999). However,
telomeres are not hyperelongated in est1D cells expressing
the fusion. In line with an activating role for Est1p, biochem-
ical studies show that Est1p interacts directly with Est3p, an
interaction that is required for Est3p telomere binding
(Tuzon et al. 2011). The role of Est1p in recruiting Est3p
might explain its activation function.
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Est2p: The EST2 ORF predicts an 884-amino-acid protein
with motifs found in other reverse transcriptases including
three invariant aspartate residues that are essential for ca-
talysis (Lingner et al. 1997). Mutation of any one of the
conserved aspartates leads to an est phenotype equivalent
to that seen in est2D cells and also eliminates telomerase
activity in vitro. Thus, Est2p is the catalytic reverse transcrip-
tase subunit of S. cerevisiae telomerase.

Like other telomerase reverse transcriptases (TERTs), but
unlike most other reverse transcriptases, Est2p contains
a long basic N-terminal (TEN) domain that is essential for
telomerase activity in vivo and in vitro (Friedman and Cech
1999; Figure 2). The TEN domain supports multiple inter-
actions within the holoenzyme, including interactions with
TLC1 (Friedman and Cech 1999) and Est3p (Friedman et al.
2003; Talley et al. 2011). Est2p is a low abundance protein
(,40 molecules/cell; Tuzon et al. 2011), and its levels are
TLC1 dependent (reduced by �50% in tlc1D cells; Taggart
et al. 2002).

Est3p: The EST3 ORF, which predicts an 181-amino-acid
protein, has the unusual property of being generated by a
programmed translation frameshift (Figure 2) (Morris and
Lundblad 1997). Like Est1p, Est3p is essential for telomere
maintenance in vivo but not for catalysis in vitro (Lendvay
et al. 1996; Lingner et al. 1997). Nonetheless, coimmuno-
precipitation shows that Est3p is part of the telomerase ho-
loenzyme (Hughes et al. 2000). The association of Est3p
with telomerase is Est1p dependent (Osterhage et al.
2006), consistent with the direct interaction of purified
Est1p and Est3p seen in vitro (Tuzon et al. 2011). By genetic
and biochemical criteria, Est3p also interacts with the TEN
domain of Est2p (Friedman et al. 2003; Talley et al. 2011),
and Est3p association with telomeres is also Est2p depen-
dent, especially in G1 phase (Tuzon et al. 2011).

Although Est1p and Est3p have certain similarities, they
do not have redundant functions. For example, a DBDCdc13–
Est3 fusion protein can maintain telomeres in est3D
but not est1D cells (Hughes et al. 2000). Likewise, an
Est1–DBDCdc13 fusion protein does not rescue the telomerase
defect of est3D cells, and a DBDCdc13–Est2 fusion bypasses
the need for Est1p, but not Est3p (Evans and Lundblad
1999).

So far Est3p is found only in budding yeasts. However,
a possible key to its function comes from a predicted struc-
tural similarity between it and a mammalian telomere struc-
tural protein TPP1 (Lee et al. 2008; Yu et al. 2008). Unlike
Est3p, TPP1 is not a telomerase subunit but rather part of
the multiprotein shelterin complex that protects telomeric
DNA. However, TPP1 affects telomerase by cooperating with
Pot1, a mammalian G-strand binding protein, to increase
telomerase processivity (Wang et al. 2007; Xin et al. 2007).

TLC1: Like the Est proteins, the TLC1 RNA is not abun-
dant, present in �30 molecules/cell (Mozdy and Cech
2006). Transcription of TLC1 RNA by RNA polymerase II
generates two populations, a slightly longer polyadenylated
form (5–10% of total) and a polyA minus form (. 90%), the

version in active telomerase (Chapon et al. 1997; Bosoy et al.
2003). Akin to snRNAs and snoRNAs, the 59 end of the TLC1
RNA has a trimethylguanosine cap (Seto et al. 1999; Franke
et al. 2008), while generation of the mature nonpolyadeny-
lated 39 end occurs via the Nrd1p-dependent noncoding
RNA termination pathway (Jamonnak et al. 2011; Noel
et al. 2012). Similar to several fungal telomerase RNAs,
TLC1 is .1000 nt in size, much larger than its ciliate
(�160 nt) or mammalian (�450 nt) counterparts (Singer
and Gottschling 1994). However, a TLC1 RNA derivative
that reduces the native RNA from 1157 to 384 nt is sufficient
to maintain short, but stable yeast telomeres in vivo and to
support catalysis in vitro (Zappulla et al. 2005). Thus, much
of TLC1 RNA is dispensable for enzyme activity.

Although the sequence and size of telomerase RNAs
evolve rapidly, conserved secondary structures have been
deduced. The structure predicted for the S. cerevisiae TLC1
RNA centers about a conserved pseudoknot domain that
contains the templating region of the RNA and interacts
with Est2p (Livengood et al. 2002; Dandjinou et al. 2004;
Lin et al. 2004; Zappulla and Cech 2004; Qiao and Cech
2008). The remainder of the RNA forms three largely duplex
arms that are proposed to act as a flexible scaffold to orga-
nize TLC1 RNA interacting proteins (Figure 4). One arm
binds Est1p, and this binding is essential for telomerase
activity in vivo (Seto et al. 2002). One arm binds Yku80p,
an interaction that is not essential for telomere maintenance
but brings TLC1 to the nucleus and recruits Est2p to telo-
meres in G1 phase (Stellwagen et al. 2003; Fisher et al.
2004; Vega et al. 2007; Gallardo et al. 2008). The third
arm binds the seven-member Sm protein ring, an association
that is dispensable for activity but important for TLC1 accu-
mulation (Seto et al. 1999).

Regulation of telomerase by the cell cycle: Two experiments
using quite different approaches show that telomerase-
mediated lengthening is cell-cycle regulated. The first exper-
iment followed telomerase action at a DSB induced next to
a short stretch of telomeric repeats (Diede and Gottschling
1999). When this break is made in G2/M arrested cells, it is
lengthened by telomerase. However, the break is not length-
ened in G1-arrested cells, suggesting that telomerase does not
act at this time. However, in vitro assays show similar levels of
telomerase activity in extracts prepared from cells arrested at
these two points in the cell cycle.

The second assay studied the fate of a short telomere in
cells with otherwise wild-type length telomeres by using
site-specific recombination to generate a single short telo-
mere (Marcand et al. 2000). The resulting short telomere is
preferentially lengthened by telomerase (Marcand et al.
1999), but this lengthening does not occur in G1 or early
S phase but rather only in late S/G2 phase (Marcand et al.
2000).

One way to reconcile the finding that telomerase is active
in vitro in extracts from G1-phase cells with its inability to
lengthen telomeres in vivo in G1 phase is if the telomere
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is inaccessible to telomerase in G1 phase. An obvious way to
test this model is to use chromatin immunoprecipitation
(ChIP) to detect the presence of telomerase at telomeres
as a function of position in the cell cycle. This type of exper-
iment yields support both for and against regulated accessi-
bility (Taggart et al. 2002). Cdc13p is telomere associated
throughout the cell cycle, but its binding increases dramat-
ically in late S phase, as expected by the occurrence of long
G tails at this time (Wellinger et al. 1993b). The telomere
binding of Est1p (Taggart et al. 2002) and Est3p (Tuzon
et al. 2011) is largely limited to late S/G2 phase, consistent
with regulated accessibility. However, Est2p is telomere as-
sociated throughout most of the cell cycle, including in G1
and early S phase when telomerase does not act (Taggart
et al. 2002). Nonetheless, Est2p binding is not constitutive
as there is a second peak of Est2p binding in late S/G2
phase.

The two peak pattern of Est2p telomere binding reflects
two independent pathways of telomerase recruitment. Both
pathways are TLC1 dependent as there is no telomere-asso-
ciated Est2p in tlc1D cells (Taggart et al. 2002). However,
Est2p telomere association in G1 phase requires a specific
interaction between Yku80p and a 48-bp stem-loop struc-
ture in TLC1 RNA (Fisher et al. 2004) while the late S/G2
phase binding requires Est1p binding to a stem-bulge region
in TLC1 as well as its interaction with Cdc13p (Chan et al.
2008). The Est2p that is telomere associated in G1 phase
is likely not engaged with the very end of the chromosome
as expected for active telomerase as much of it is bound
.100 bp from the chromosome end (Sabourin et al.
2007). Consistent with this view, the G1-phase association
is not necessary for telomerase action as mutations that
eliminate it (tlc1D48; yku80-135i) (Fisher et al. 2004) result
in only modest telomere shortening (Peterson et al. 2001).
Even this small reduction in telomere length may not be due
to lack of G1-phase telomerase binding as nuclear levels of
TLC1 are reduced in the absence of the TLC1–Ku interaction
(Gallardo et al. 2008; Pfingsten et al. 2012). Thus, the short
telomeres in tlc1D48 and yku80-135i cells could be a conse-
quence of reduced amounts of holoenzyme being imported
and/or retained in the nucleus. Recent data indicate that
Yku binding to DNA and RNA are mutually exclusive
(Pfingsten et al. 2012). Since the binding of Est2p to telo-
meres in G1 phase requires a Yku80p–TLC1 interaction, it is
likely that the Yku that is involved in this interaction asso-
ciates with the telomere via protein–protein interactions,
not by direct DNA binding.

Cell-cycle–limited telomerase activity at telomeres is
also inferred from results in which TLC1 RNA is visualized
in individual cells in real time (Gallardo et al. 2011). Telo-
merase RNA marked with GFP is much more mobile than
telomeres in G1 and G2 phases, whereas in late S phase,
telomerase RNA movement slows. Thus, TLC1 association
with telomeres is more transient in G1 and G2 phases than
in late S phase. Genetic experiments argue that the more
stably associated TLC1 reflects active telomerase, as these

associations are less frequent in genetic backgrounds where
telomerase recruitment is impaired. Thus, results with live
cell imaging support previous findings that the association
of telomerase with telomeres can occur throughout the
cell cycle (Taggart et al. 2002), but only the late S phase
telomere-associated Est2p is important for telomere length
regulation (Fisher et al. 2004). This study also suggests that
more than one telomerase complex is present on elongating
telomeres as the TLC1 complexes, dubbed T-Recs (telomer-
ase recruitment clusters), are brighter and larger in late
S phase (Gallardo et al. 2011).

Est1p is cell cycle regulated with peak abundance in late
S/G2 phase (Taggart et al. 2002; Osterhage et al. 2006).
Moreover, Est3p telomere binding is Est1p dependent, so
its telomere binding also occurs mainly in late S/G2 phase
(Tuzon et al. 2011). Thus, telomerase is cell cycle limited
at least in part because the telomerase holoenzyme is as-
sembled only during a narrow window in the cell cycle
(Osterhage et al. 2006). However, even when Est1p is
expressed in G1 phase, which results in both Est1p and
Est3p being Est2p–TLC1 associated, telomerase is still not
active on telomeres in G1 phase (Osterhage et al. 2006).
Thus, Est1p abundance is not the whole answer to cell-
cycle–regulated activity. Rif proteins also contribute to lim-
iting telomerase action to late S phase as in the absence
of either protein, short telomeres can be lengthened in G1
phase (Gallardo et al. 2011). Cell-cycle–regulated changes
in telomere structure, such as C-strand degradation, which is
Cdk1 dependent, may also contribute to cell cycle limited
telomerase action (Frank et al. 2006; Vodenicharov and
Wellinger 2006).

Regulation of telomerase by telomere length: Two types of
experiments indicate that short telomeres are preferentially
lengthened by yeast telomerase. The first evidence comes
from experiments where lengthening of a single short
telomere is followed over time (Marcand et al. 1999). It
takes �50 generations to return a short telomere to a
wild-type length. However, its rate of lengthening changes
as it lengthens. When the telomere is at its shortest, it
lengthens by �15 nt/generation. This rate progressively
decreases until it is only �1 nt/generation when the once
short telomere approaches wild-type length.

The preferential lengthening of short telomeres is best
illustrated using the single telomere extension assay (STEX)
that monitors lengthening of individual telomeres in a single
S phase at nucleotide resolution (Teixeira et al. 2004). STEX
is particularly informative because it monitors events at in-
dividual telomeres rather than being a population average.
In this assay, telomerase-deficient cells (recipient cells) are
mated to telomerase proficient cells (donor cells). Telomere
extension is monitored in the first generation after mating.
The recipient cells contain marked telomere(s) that can be
examined specifically by PCR because of differences in sub-
telomeric DNA from the same telomere in donor cells. Be-
cause the yeast telomeric sequence is heterogeneous, the
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starting telomeric DNA can be distinguished from newly
added telomeric repeats simply by lining up telomeres and
comparing their sequences.

In a given cell cycle, STEX finds that ,10% of wild-type–
length (�300 bp) telomeres are lengthened by telomerase,
while a 100-bp telomere is lengthened �50% of the time
(Teixeira et al. 2004). Thus, length-dependent extension is
not an all or none event: many short telomeres are not
lengthened while some long telomeres are. Although the
frequency of telomerase action is dependent on length, the
amount of telomeric DNA added is not until telomeres are
very short (#100 bp). On these very short telomeres, telo-
merase appears to be more processive. STEX is also useful to
determine how different proteins affect telomerase. By
STEX, Rif1p and Rif2p inhibit the frequency of telomere
lengthening but not the amount of telomeric DNA added
per S phase (Teixeira et al. 2004). The preference for telo-
merase action at short telomeric tracts is also reflected dur-
ing de novo telomere addition. A DSB induced next to an
81-bp stretch of telomeric DNA is more efficiently elongated
than a break next to 162 bp of telomeric DNA (Negrini et al.
2007; Hirano et al. 2009).

ChIP is useful to determine the protein content of short
vs. wild-type–length telomeres. Using inducible short telo-
mere assays (Marcand et al. 1999), Est2p and Est1p have
approximately fourfold higher binding at short telomeres
specifically in late S/G2 phase, when telomerase is active
(Bianchi and Shore 2007b; Sabourin et al. 2007). The sim-
ilar level of increase for Est1p and Est2p argues against the
idea that an elongation-incompetent Est2p binds all telo-
meres in G1 phase and then is activated in late S/G2 phase
by Est1p binding.

Short telomere assays have also helped us understand
how telomerase is targeted to short telomeres. Since Est2p
recruitment to telomeres requires a Yku80p–TLC1 interac-
tion in G1 phase and a Cdc13p–Est1p interaction in late
S/G2 phase, if Yku80p and/or Cdc13p bound better to short
telomeres, it could explain why short telomeres bind more
telomerase. However, Yku80p and Cdc13p bind to similar
extents at short and WT length telomeres (Bianchi and
Shore 2007b; Sabourin et al. 2007). Another possibility is
that Yku80p or Cdc13p is preferentially modified at short
telomeres. For example, Cdc13p is phosphorylated by Cdk1p
late in the cell cycle, and in the absence of this phosphory-
lation, Est1p telomere binding and telomere length are mod-
estly reduced (Li et al. 2009). Cdc13p is also sumoylated in
early to mid S phase, a modification that limits telomerase
action probably by increasing the Cdc13p–Stn1p interaction
(Hang et al. 2011).

In tel1D cells, telomeres are very short (Lustig and Petes
1986; Greenwell et al. 1995; Morrow et al. 1995) yet unlike
other short telomeres, tel1D telomeres bind very little Est1p
or Est2p (Goudsouzian et al. 2006). These data suggest that
Tel1p might affect preferential lengthening of short telo-
meres. Indeed, while Tel1p binding to wild-type–length
telomeres is low, transient, and limited to late S/G2 phase,

Tel1p binding is about 10 times higher at short telomeres
(Sabourin et al. 2007). Tel1p binding to short telomeres is
detectable even in early S phase, increases in magnitude as
cells progress through the cell cycle, and persists for at least
two cell cycles. In contrast, Mec1p telomere binding is ex-
tremely low, even in tel1D cells where it is required for
telomere elongation. Preferential binding of Tel1p to short
telomeres is also seen when short telomeres are generated
by deleting YKu or by deleting a telomerase subunit (Hector
et al. 2007).

Tel1p binding to telomeres is dependent on an interac-
tion between Tel1p and the carboxyl terminus of Xrs2p
(Hector et al. 2007; Sabourin et al. 2007), just as it is at
DSBs. Moreover, each of the three MRX subunits binds pref-
erentially to short telomeres, and like high Tel1p binding,
this high binding persists for at least two cell cycles (McGee
et al. 2010). MRX binding occurs mainly at telomeres that
have been replicated by the leading strand DNA polymerase
(Faure et al. 2010). A unifying model for these data are that
MRX binds preferentially to short telomeres replicated by
the leading strand DNA polymerase; this binding recruits
Tel1p, Tel1p phosphorylates one or more telomere proteins,
and these changes in telomeric chromatin result in higher
telomerase recruitment. Indeed, deleting TEL1 eliminates
preferential binding of telomerase to short telomeres that
lack subtelomeric repeats (Arneric and Lingner 2007;
Sabourin et al. 2007). However, when telomeres contain
subtelomeric binding sites for Tbf1p, short telomeres are still
preferentially lengthened in tel1D cells, and tethering Tbf1p
to a short telomere with no natural Tbf1p binding sites
allows its preferential elongation in tel1D cells (Arneric
and Lingner 2007). Thus, Tbf1p and Tel1p act in a partially
redundant manner to distinguish short from wild-type–
length telomeres. Like Rif2p, Tbf1p inhibits MRX, and hence
telomerase, binding to short telomeres (Fukunaga et al.
2012).

Although the kinase activity of Tel1p is required for its
role in telomere length maintenance (Mallory and Petes
2000), its critical targets at telomeres are not yet identified.
Like other ATM-like kinases, Tel1p phosphorylates SQ/TQ
motifs (Mallory and Petes 2000; Tseng et al. 2006). Xrs2p
and Mre11p are phosphorylated in a Tel1p-dependent
process in response to DNA damage, but mutation of the
phosphorylated residues in these proteins to nonphosphor-
ylatable amino acids does not result in short telomeres
(Mallory et al. 2003). Cdc13p is another candidate for a
Tel1p target as it contains 11 SQ/TQ motifs. Clusters of
these motifs are in functionally important regions of Cdc13p,
one in the DBD and one in the RD (Figure 2; Tseng et al.
2006). In vitro, Tel1p phosphorylates Cdc13p on three RD
serine residues (S225, 249, and and 255). Moreover, simul-
taneous mutation of two of these residues (S249 and S255)
results in an est phenotype. In addition, if Est1p is targeted
to the telomere using a DBDCdc13–Est1 fusion protein,
phosphorylation of these residues is no longer required for
telomerase action.
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The phenotype of cdc13-S249A, S255A cells makes
a strong argument that their phosphorylation is critical for
Cdc13p–Est1p interaction (Tseng et al. 2006). However,
cells expressing a cdc13 allele in which each of the S/TQ
motifs is mutated to AQ supports near wild-type–length telo-
meres (Gao et al. 2010). In addition, exhaustive mass spec-
trophotometric analysis of purified Cdc13p detects 21 sites
of phosphorylation but no phosphorylation at S249 or S255,
even in G2/M phase (W. Yun, P. A. DiMaggio, Jr., D. H.
Perlman, V. A. Zakian, and B. A. Garcia, unpublished results).
One possible way to reconcile these data are if cdc13-
S249A, S255A cells are telomerase defective because these
mutations destabilize the RD domain (rather than prevent-
ing it from being phosphorylated). In any case, the key sites
of Tel1p phosphorylation relevant to telomerase recruit-
ment have probably not been identified.

Telomere length is proportional to the number of Rap1p
binding sites at a given telomere (Lustig et al. 1990). Rap1p
recruits Rif1p, Rif2p, Sir3p, and Sir4p, each of which binds
to the C terminus of Rap1p (Figure 2). Sir proteins function
mainly in TPE, not telomere length control, but both Rif
proteins negatively regulate telomerase (Teng et al. 2000).
Deletion of either RIF1 or RIF2 results in telomere elonga-
tion (Hardy et al. 1992b; Wotton and Shore 1997). Since
deletion of both proteins results in synergistic lengthening,
Rif1p and Rif2p do not act redundantly (Wotton and Shore
1997). Rif1p and Rif2p also act synergistically to inhibit
telomere addition at DSBs induced near a 162-bp tract of
telomeric DNA (Negrini et al. 2007; Hirano et al. 2009).

By definition, telomeres progressively lose Rap1p binding
sites concomitant with loss of telomeric DNA. Thus, an
appealing model is that short telomeres are marked for
MRX binding by their low content of Rif1p and Rif2p. Sur-
prisingly, short telomeres have about the same amount of
Rif1p binding as wild-type–length telomeres (Sabourin et al.
2007; McGee et al. 2010). Thus, short telomeres are not
distinguished from long telomeres by their Rif1p content,
although Rif1p may be selectively modified at short telo-
meres. In contrast, Rif2p content is lower at short telomeres
so its absence could mark short telomeres for elongation.
Consistent with this possibility, Tel1p no longer binds pref-
erentially to short telomeres in rif2D cells (McGee et al.
2010). The observation that shortening telomeres lose Rif2p
before losing Rif1p suggests that the two proteins are dis-
tributed nonrandomly along the telomere with Rif2p being
closer to the chromosome terminus than Rif1p (Figure 1).

A mechanistic explanation for the effects of Rif2p on
Tel1p binding comes from studies on DSBs made adjacent
to telomeric DNA (Hirano et al. 2009). Tel1p binding to
these DSBs is increased in rif2D cells, suggesting that Rif2p
inhibits Tel1p association with the break. Moreover, tether-
ing Rif2p to a nontelomeric DSB decreases Tel1p but
not MRX binding to the break. Rif1 has similar but much
smaller effects in these assays. Finally, coimmunoprecipita-
tion shows that the N terminus of Rif2p, but not Rif1p,
interacts with the C terminus of Xrs2p. Since Tel1p also

binds this portion of Xrs2p, Rif2p, and Tel1p probably com-
pete with each other for binding to MRX. If these results are
applicable to telomeres, Rif2p could sequester Xrs2p in a
manner that prevents its interaction with Tel1p.

Like Rif proteins, Pif1p, a 59 to 39 DNA helicase, is a neg-
ative regulator of telomerase. However, Rif proteins and
Pif1p inhibit telomere elongation by different mechanisms
as their absence has additive effects on telomere length
(Schulz and Zakian 1994). Genetic data suggest that Pif1p
interacts with the finger domain of Est2p (Eugster et al.
2006). Pif1p also reduces the number of gross chromosomal
rearrangements, complex genetic changes of the type seen
in cancers, by channelling DSBs toward recombination,
rather than telomere addition (Myung et al. 2001). Length-
ening of existing telomeres by telomerase is also inhibited by
Pif1p, and its effects at both DSBs and telomeres require its
ATPase activity (Schulz and Zakian 1994; Zhou et al. 2000).
Although Pif1p inhibits telomerase at both telomeres and
DSBs (Schulz and Zakian 1994), it may help distinguish
the two as Pif1p phosphorylation by Mec1p is required for
its inhibition of telomerase at DSBs but not at telomeres
(Makovets and Blackburn 2009). Pif1p also appears to con-
tribute to the preferential lengthening of short telomeres
since in its absence, Est2p binds equally well to short and
wild-type–length telomeres. This behavior can be explained
by the finding that Pif1p itself binds preferentially to long
telomeres. Like Est1p, Pif1p is cell cycle regulated by pro-
teasome-dependent proteolysis such that nuclear Pif1p
peaks in abundance in S/G2 phase (Vega et al. 2007).

In vitro telomerase assays: Although yeast telomerase is
constitutively expressed, it is present at low levels, which
probably explains why its detection by in vitro assays lagged
behind other organisms. Even after in vitro assays were
established, they were (and still are) inefficient, generating
only short extension products (Cohn and Blackburn 1995).
Furthermore, although these assays require TLC1 and Est2p,
they are not Cdc13p, Est1p, or Est3p dependent (Cohn and
Blackburn 1995; Lingner et al. 1997). However, as it is not
clear whether the fractionated telomerase prepared from
extracts from wild-type cells even contained Est1p, Est3p,
or Cdc13p, their absence might explain why the in vitro
reactions are not robust. Molecular chaperones such as
Hsp82p affect telomerase activity in vitro as well as having
modest effects on telomere length in vivo (Toogun et al.
2008).

Definitive answers to the mechanistic contributions of Est
proteins to telomerase activity will almost surely require
purified components. Recombinant Cdc13p, Est1p, and
Est3p (but not Est2p) have recently been purified by multi-
ple labs. All three proteins are reported to influence primer
extension assays, although these analyses are in early stages
and are sometimes contradictory. Cdc13p has been reported
to inhibit (Zappulla et al. 2009) and to stimulate in vitro
telomerase activity (DeZwaan and Freeman 2009). The rea-
sons for this difference are not clear, but there are multiple
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experimental differences in the two studies. Another in vitro
study found that, in the context of Stn1p and Ten1p,
Hsp82p can modulate Cdc13p DNA binding and thereby
its effects on telomerase activity (DeZwaan et al. 2009).
Purified Est1p is reported to increase the amount of product
in a primer extension assay by up to 14-fold. Surprisingly,
this stimulation does not require that Est1p be able to in-
teract with the stem-bulge region in TLC1 RNA or to bind
TG1-3 single-strand DNA. An earlier report using a PCR
rather than primer extension assay found that long exten-
sion products were Est1p dependent, perhaps providing ad-
ditional evidence for an activating role for this subunit (Lin
and Zakian 1995). Finally, two groups report that purified
Est3p from S. cerevisiae (Talley et al. 2011) or the related S.
castelli (Lee et al. 2010) stimulates telomerase two- to three-
fold. This stimulation requires interaction of Est3p with the
TEN domain of Est2p (Talley et al. 2011). It is not clear
whether the Est3p stimulation is Est1p dependent. Although
more experiments are needed, the availability of in vitro
assays should provide more detailed mechanistic informa-
tion on the telomerase reaction.

S. cerevisiae telomerase is not very processive in vitro. The
enzyme pauses after each nucleotide addition and rarely
translocates on the DNA template as required for multiple
rounds of synthesis. This lack of processivity is not due to

enzyme falling off the DNA primer. Rather, after elongation,
yeast telomerase remains tightly bound to its DNA substrate
(Prescott and Blackburn 1997). However, if the Pif1p DNA
helicase is added to the in vitro reaction, Est2p is released
into the supernatant (Boule et al. 2005). As a result of this
release, Pif1p reduces telomerase processivity in vitro. Like-
wise, in vivo, telomerase can dissociate and then reassociate
with a given telomere in a single cell cycle (Chang et al.
2007). The effects of Pif1p on telomerase require its enzy-
matic activity as Walker A box Pif1 mutant proteins bind
single-stranded DNA as well as wild-type Pif1p but do not
displace telomerase from DNA or reduce telomerase proces-
sivity (Boule et al. 2005).

Telomere maintenance via recombination

Telomerase is not the only activity that can maintain
telomeric DNA. Although discovered in S. cerevisiae (Lundblad
and Blackburn 1993), telomere maintenance by recombina-
tion is widespread occurring from yeasts to mammals. Re-
combinational maintenance of telomeres was detected by
the finding that a small fraction of est1D cells survive senes-
cence and form viable colonies. The importance of recombi-
nation was inferred from the virtual absence of survivors in
est1D rad52D strains. All est strains, exceptmec1 tel1, produce
survivors via recombination (Figure 5).

Figure 5 Outline of the proposed sequence of events
leading to telomere maintenance via recombination after
telomerase loss. DNA strand coloring is as above. Tick
marks on the brown sequence indicate a conserved XhoI
restriction enzyme site. Most cells die after �50–100 gen-
erations of growth, but rare cells with the indicated two
types of DNA arrangements can continue to divide. Virtu-
ally all events are dependent on RAD52 and POL32. Bot-
tom: Typical southern blot analysis using XhoI-digested
DNA derived from indicated strains. The probe consisted
of a 32P labeled DNA fragment specific for telomeric re-
peat sequences. M, molecular size standards; yku, DNA
derived from a strain lacking YKU80 and harboring short
terminal repeat tracts. WT, DNA from a wild-type strain;
type I, DNA from type I survivors; type II, DNA derived from
type II survivors. Red square, location of terminal XhoI
fragments. Blue square, signal for the amplified Y9 ele-
ments in type I survivors. Note that the fragment pattern
for type II survivors is highly variable and unstable; thus the
patterns shown in the last two lanes should be taken as an
example for illustration purposes only.
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Even in very early telomerase negative cultures, some
cells stop growing when the average telomere length is
expected to be near wild type (Lundblad and Blackburn
1993; Enomoto et al. 2002; Khadaroo et al. 2009). Thus,
the progressive shortening of the majority of telomeres is
probably not the major determinant for growth arrest
(Abdallah et al. 2009; Khadaroo et al. 2009; Noel and
Wellinger 2011). Most likely, this arrest is due to an occa-
sional short telomere that arises during DNA replication and
that cannot be relengthened by telomerase (Hackett et al.
2001; Hackett and Greider 2003). Indeed, only one chro-
mosome end that lacks a telomere is sufficient to trigger
growth arrest, and this arrest occurs even in telomerase pro-
ficient cells (Sandell and Zakian 1993; Abdallah et al. 2009;
Khadaroo et al. 2009). The survivors that emerge from the
arrested cultures continue to divide. However, individual
survivor clones often grow considerably slower than wild-
type cells, and some may even go through additional growth
arrests.

Survivors have one of two different arrangements of
telomeric DNA (Lundblad and Blackburn 1993), now
dubbed type I and type II survivors (Teng and Zakian
1999; Figure 5). In addition to RAD52, generation of both
classes requires the replication protein Pol32p (Lydeard
et al. 2007), suggesting that the recombination that main-
tains telomeric DNA involves replication. Type I survivors
are more common than type II survivors. For example, in
one strain background, 90% of survivors have type I telo-
meres (Teng et al. 2000). However, type I survivors are not
stable and easily convert to type II cells, which owing to
their faster growth rate, take over liquid cultures. This effect
shows that the two major survivor pathways are not mutu-
ally exclusive.

Type I survivors: These cells grow slowly with intermittent
periods of growth arrest. The vast majority of telomeres in
these cells contain multiple tandem Y9 repeats, but the very
ends still have short (50–150 bp) tracts of duplex telomeric
DNA and normal G tails (Lundblad and Blackburn 1993;
Larrivee and Wellinger 2006; Figure 5). The terminal arrays
of Y9 repeats can be so substantial that individual cells can
have up to 70-fold increase in Y9 elements (Lundblad and
Blackburn 1993). Type I survivors also contain extrachromo-
somal circular Y9 elements that are proposed to serve as
substrates for Y9 recombination (Larrivee and Wellinger
2006). Chromosomes of type I survivors do not enter aga-
rose gels that are used to separate very large DNA mole-
cules, probably because they contain a high fraction of
highly structured recombination intermediates (Liti and
Louis 2003; E. Louis, personal communication).

About half of the Y9 repeats contain an ORF encoding
a potential helicase called Y9-Help1 (Louis and Haber
1992; Yamada et al. 1998). Expression of this ORF is greatly
increased during growth arrest in telomerase lacking cells
(Yamada et al. 1998). Although amplification of Y9 usually
occurs by recombination (Lundblad and Blackburn 1993), in

cells lacking telomerase, Y9 can also move by a transposi-
tion-like RNA-mediated process that relies on the Ty1 retro-
transposon (Maxwell et al. 2004). In addition to RAD52 and
POL32, the RAD51, RAD54, RAD57, and presumably RAD55
genes are also required to generate type I survivors (Le et al.
1999; Chen et al. 2001).

Type II survivors: Telomeres in type II survivors show
only minor amplifications of subtelomeric repeats but rather
large increases in C1-3A/TG1-3 telomeric repeats (Figure 5).
Telomeres in type II survivors are highly heterogeneous with
some exceeding 12 kb in size and others being very short
(Teng and Zakian 1999; Teng et al. 2000; Figure 5). The
long telomeres are not stable but progressively shrink during
outgrowth and then are subject to stochastic and dramatic
lengthening events, consistent with rolling circle replica-
tion as an initiating event (Teng et al. 2000). In agreement
with this hypothesis, circles of telomeric DNA are detected
in type II survivors but not in wild-type cells (Lin et al.
2005; Larrivee and Wellinger 2006). Unlike type I survi-
vors, the generation of type II survivors requires the MRX
complex, RAD59 and SGS1, the yeast RecQ helicase, which
is an ortholog of the Blm helicase (Le et al. 1999; Teng
et al. 2000; Chen et al. 2001; Huang et al. 2001; Johnson
et al. 2001).

Telomeric length control by telomeric rapid deletions: In
wild type, telomerase positive cells, over-elongated telo-
meres can be shortened to approximately normal length via
a single intrachromosomal recombination event between
telomeric repeats, a mechanism dubbed telomeric rapid de-
letion (TRD) (Li and Lustig 1996; Bucholc et al. 2001). This
process contributes to keeping the average telomere length
within a normal range (Bucholc et al. 2001). As a side prod-
uct of this reaction, extrachromosomal circular DNA mole-
cules with telomeric repeats are generated. TRD could
produce the circular telomeric DNA molecules necessary
for rolling circle replication during generation of type II
survivors (Lustig 2003) as demonstrated in Kluyveromyces
lactis (Natarajan and McEachern 2002; McEachern and
Haber 2006) and proposed for human cells (Pickett et al.
2009; Cesare and Reddel 2010).

Transcription at Telomeres

Telomere-associated RNA

Despite having hallmarks of heterochromatin, subtelomeric
sequences are actually transcribed to yield a new class of
noncoding RNAs called telomeric repeat-containing RNA
(TERRA) (Azzalin et al. 2007; Luke et al. 2008; Iglesias
et al. 2011). TERRA occurs widely in eukaryotes as it
has been detected in yeasts, plants, and vertebrates, includ-
ing mammals, suggesting conserved functions (Luke and
Lingner 2009; Feuerhahn et al. 2010). For budding yeast,
earlier investigations had already shown that an artificially
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constructed telomere where the C strand of the telomere is
transcribed at high levels shortens by �25% of its overall
initial length (Sandell et al. 1994). However, transcription
on a telomere per se did not induce signs of telomere dys-
function, such as high levels of chromosome loss, except that
silencing of the adjacent gene was lost (Sandell et al. 1994).

Naturally occurring TERRA is composed of composite
RNAs containing both subtelomeric sequences, such as Y9
and X, and telomeric G-strand transcripts. The size of TER-
RAs range from 100 to 1200 nt, they are generated by RNA
polymerase II, and are polyadenylated. In wild-type cells,
TERRA is rapidly degraded by the essential RNA exonucle-
ase Rat1p, which also functions in processing standard
mRNAs (Rosonina et al. 2006; Luke et al. 2008; Rondon
et al. 2010). TERRA probably regulates telomere length
and replication. For example, rat1-1 cells grown at semiper-
missive temperatures and having increased levels of TERRA
have shorter telomeres, and this telomere shortening is due
to impairment of the telomerase pathway (Luke et al. 2008).
However, the telomere shortening due to reduced Rat1p
levels can be reversed by overexpression of RNaseH. Since
RNaseH removes RNA that is basepaired to DNA, this find-
ing suggests that TERRA is associated with telomeric DNA
when it inhibits telomerase. TERRAs transcribed from X
telomeres vs. XY9 telomeres are subject to different regula-
tion (Iglesias et al. 2011). Both are repressed via a Rap1p-
mediated pathway, but only the X TERRA is repressed by Sir
proteins. X and Y9 TERRAs are repressed by Rif1p and to
a lesser extent, Rif2p.

Telomere silencing or TPE

Telomeric silencing (or TPE) was discovered serendipitously
in S. cerevisiae during attempts to generate a uniquely
marked telomere that could be used for chromatin studies
(Gottschling et al. 1990). To mark the telomere, URA3 was
inserted immediately adjacent to the left telomere of chro-
mosome VII, in the process deleting the TAS sequences that
are normally present at this telomere. Cells carrying URA-
TEL, the URA3 marked telomere, are Ura+ as expected but
unexpectedly, many of them are also FOA resistant (FOAR;
FOA is a drug that kills cells expressing Ura3p). The FOAR

cells have not lost or mutated URA3 as the FOAR phenotype
is reversible. These effects correlate with URA3 mRNA lev-
els: cells growing on medium lacking uracil have �10 times
more URA3 mRNA than FOA-grown cells (Gottschling et al.
1990). Thus, TPE is due to repression of transcription, but
this repression is reversible.

TPE is gene and telomere nonspecific. Expression of
multiple RNA Pol II transcribed genes are repressed when
they are near a telomere, and TPE is detected at other
truncated telomeres (Gottschling et al. 1990). The metasta-
ble nature of TPE is easily visualized when ADE2 is the
telomeric marker, as Ade2+ cells produce white colonies
while Ade22 cells generate red colonies. A large fraction
of ADE2-TEL cells produce largely red colonies (ADE2 ex-
pression repressed), while about an equal number produce

largely white colonies (ADE2 expressed). However, red col-
onies have many white sectors, and white colonies have
many red sectors. These sectors reflect phenotypic switches
in transcription state within individual cells during the �25
divisions it takes to generate a colony. This altered state is
then inherited by their progeny to produce a sector of op-
posite color.

Over 50 genes affect TPE, although the effects of many
are relatively minor, suggesting that some may act indirectly.
Moreover, FOA medium can affect ribonucleotide reductase
expression in such a way that assays using URA3 as a TPE
reporter can misidentify genes, such as POL30 and DOT1, as
having roles in TPE when their effects are more likely due to
metabolic changes (Rossmann et al. 2011; Takahashi et al.
2011). In contrast, Sir2p, Sir3p, Sir4p (Aparicio et al. 1991),
and the YKu complex (Boulton and Jackson 1998) are all
essential for TPE, although ykuD cells are TPE proficient if
they also lack RIF1 and RIF2 (Mishra and Shore 1999). Since
Rif1p, Rif2p, Sir3p, and Sir4p all interact with the C termi-
nus of Rap1p, the absence of the two Rif proteins probably
reduces their competition with Sir3p and Sir4p for the
Rap1p interaction, which brings them to telomeres.

Sir2, 3, 4, and YKu bind telomeres and thus act directly to
promote TPE. The three Sir (silence information regulator)
proteins are part of the Sir silencing complex, which is also
needed for transcriptional repression at the two silent mat-
ing type loci, HML and HMR. The carboxyl terminus of
Rap1p, the major sequence-specific telomeric binding pro-
tein, interacts with both Sir3p and Sir4p, while Sir4p inter-
acts with Sir2p (Moretti et al. 1994; Moretti and Shore
2001). Thus, Sir3p/Sir4p–Rap1p and Sir2p/Sir4p interac-
tions recruit these silencing proteins to telomeres. Sir4p also
interacts with YKu (Tsukamoto et al. 1997), which provides
a Rap1p independent pathway to recruit silencing proteins
to telomeres (Martin et al. 1999; Luo et al. 2002). Both re-
cruitment pathways are essential for TPE.

After TPE is initiated at telomeres, it spreads several
kilobases from the Rap1p-bound telomeric repeats into sub-
telomeric nucleosomes. This spread is mediated by protein–
protein interactions between Sir3p and Sir4p with the
N-terminal tails of histones H3 and H4 (Hecht et al. 1995;
Strahl-Bolsinger et al. 1997). Thus, deleting the amino ter-
minal tails of histones H3 and H4 abolishes TPE (Aparicio
et al. 1991; Mann and Grunstein 1992; Thompson et al.
1994). Spreading also requires the histone deacetylase ac-
tivity of Sir2p, as acetylation, especially of histone H4 K16,
decreases Sir3/4p–histone interactions (Hoppe et al. 2002).
Many other genes that modify histones or that regulate
these modifications also affect TPE.

Early studies suggested that TPE requires proximity to
a telomere, not just telomeric sequence, as an 81-bp internal
tract of telomeric DNA does not silence an adjacent gene
(Gottschling et al. 1990). However, long ($300 bp) internal
tracts of telomeric DNA can repress transcription, even if the
affected gene and adjacent tract are on a circular chromo-
some (Stavenhagen and Zakian 1994). This phenomenon is
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called C1-3A-based silencing, CBS. The fraction of cells
exhibiting CBS increases with the length of telomeric se-
quence, but CBS is never as effective as TPE. However,
CBS acts synergistically with TPE as the closer an internal
tract is to a telomere, the more effectively it silences. This
synergism suggests a higher order chromatin structure, such
as looping, that brings internal telomeric tracts close to chro-
mosome ends. Consistent with their ability to silence, inter-
nal tracts of telomeric DNA efficiently bind Rap1p and Sir
proteins (Bourns et al. 1998).

TPE was discovered using truncated telomeres that lack X
and Y9, so it was not clear from early studies if this regula-
tion affects genes that reside near native telomeres. This
possibility was first tested by inserting a marker gene near
a telomere without deleting its subtelomeric repeats. By this
assay, only 6 of 17 telomeres (only half of the telomeres
were tested) are subject to TPE (Pryde and Louis 1999).
X-only telomeres are more likely than XY9 telomeres to si-
lence. However, there is enormous variation in the TPE phe-
notypes of different telomeres. These differences are largely
due to telomere-to-telomere variation in the identity and
precise sequence of X and Y9. Subtelomeric sequences, espe-
cially X, contain recognition sites for different transcription
factors such as Reb1p, Tbf1p, and Abf1p. Indeed, computa-
tional analysis of genome-wide ChIP data for 203 transcrip-
tion factors finds that .10% of these show preferential
association with the 25-kb regions next to telomeres (Mak
et al. 2009). These enrichments are particularly high in
stressed cells. Of these transcription factors, some activate
and others repress TPE while others contribute to boundary
activity, which limits the spread of silencing. The effects of
these transcription factors on TPE may differ from their
effects on transcription at nontelomeric loci. For example,
Reb1p promotes transcription of ribosomal RNA (Morrow
et al. 1989), but in subtelomeric DNA, Reb1p has boundary
activity (Fourel et al. 1999). The binding of transcription
factors to subtelomeric repeats explains why silencing is
propagated differently at truncated vs. natural telomeres.
At telomeres like URA-TEL, TPE extends inward contin-
uously but dissipates quickly as the marker gene is
moved further from the telomere (Renauld et al. 1993).
However, at natural telomeres, domains of silencing are
discontinuous.

TPE in the context of native telomeres is also assessed by
examining mRNA levels and the effects of Sir3p on these
levels for genes that are naturally located near telomeres.
Thus, transcription of a Ty5 transposon near the III-L telo-
mere is low in wild-type cells but higher in sir3 cells (Vega-
Palas et al. 1997). Genome-wide studies also provide
insights into the biological importance of TPE. For example,
the 267 yeast genes that are within 20 kb of a telomere
produce about five times fewer mRNA molecules (average
of 0.5/cell) than nontelomeric genes, providing support for
the repressive effects of telomere proximity (Wyrick et al.
1999). However, transcription of only 20 of these genes
is Sir3p inhibited, and almost all such genes are very close

(#8 kb) to a telomere. Thus, from the classical view of TPE
as a Sir-dependent phenomenon, very few genes are regu-
lated by TPE. However, if criteria other than Sir3p depen-
dence are used, many more genes are affected by telomere
proximity. For example, in hda1D cells, which lack a histone
deacetylase, genes that are 10–25 kb from telomeres are
specifically derepressed (Robyr et al. 2002). Thus, Hda1p-
sensitive regions are near telomeres but are distinct from
Sir3p sensitive regions, which are even closer to telomeres.
Unfortunately, none of these studies include the classic test
to establish a position effect, which requires moving the gene
away from the telomere and showing that its expression
pattern is telomere dependent.

Many of the genes located near telomeres are members of
multigene families. The functions of these telomere-regulated
genes include rapamycin resistance (Ai et al. 2002), stress
responsiveness, and ability to grow in nonstandard carbon
sources (Robyr et al. 2002). For example, four of five mem-
bers of the FLO gene family are near telomeres and are usu-
ally repressed except under nutrient conditions that promote
pseudohyphal growth (Guo et al. 2000; Halme et al. 2004).
Many of the transcription factors that bind X repeats (e.g.,
Rox1p, Gzf3p, and Oaf1p) regulate TPE in response to either
stress or metabolic change (Smith et al. 2011). Thus, almost
all genes that are naturally regulated by TPE, whether or not
this regulation is Sir3p or Hda1p dependent, are genes that
are not expressed under standard growth conditions. This pat-
tern suggests a genomic logic where rarely or situationally ex-
pressed genes are located near telomeres where transcription
is usually low.

Telomeres and Nuclear Organization

Higher order chromatin structure and telomere folding

In some organisms, including mammals (Griffith et al. 1999)
and plants (Cesare et al. 2003), telomeres end in t-loops.
T-loops are formed by G tails looping back and invading the
duplex region of the telomere. This invasion displaces the
G-rich strand to form a single-stranded displacement (D)-loop.
T-loops are thought to contribute to telomere capping by
sequestering the 39 end of the chromosome within the telo-
meric tract (Griffith et al. 1999). Alternatively (or in addi-
tion), t-loops may be recombination intermediates (Cesare
and Griffith 2004).

Throughout most of the cell cycle, G tails on S. cerevisiae
telomeres are probably too short to form t-loops. However,
yeast telomeres do form a higher order fold-back structure
or telomere loop (Strahl-Bolsinger et al. 1997). Unlike
t-loops, which are held together by DNA base pairing, the
yeast telomere loop is maintained by protein–protein inter-
actions. Telomere looping was proposed as an explanation
for why Rap1p can be cross-linked in vivo not only to
the telomeric repeats but also to subtelomeric DNA. As sub-
telomeric DNA is histone (not Rap1p) associated, and Rap1p
does not interact with histones, its detection in these regions
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is explained by a fold-back structure that puts the Rap1p-
bound telomeric repeats in proximity to subtelomeric chro-
matin. Yku80p binds both C1-3A/TG1-3 repeats and X ele-
ments, and it too is proposed to contribute to telomere
folding (Marvin et al. 2009a). High rates of transcription
through a telomere eliminate TPE in cis (Sandell et al.
1994) as well as telomere looping, suggesting that TPE
might require this fold-back structure (de Bruin et al.
2000). Probably the best evidence for the importance of
telomere looping comes from gene expression studies (de
Bruin et al. 2001). A yeast upstream activating sequence
(UAS) is similar to enhancers in other organisms, except that
it affects transcription only when it is upstream of a gene.
However, a downstream UAS can activate transcription if the
affected gene is next to a telomere. Telomere looping, which
is expected to bring the downstream UAS close to the gene’s
promoter, is a possible explanation for why the UAS works in
the downstream context. In addition to a possible role in
TPE, telomere folding is proposed to protect the telomere
from ectopic recombination (Marvin et al. 2009a,b).

Telomere organization in mitotic cells

Telomeres are clustered and at the nuclear periphery in
many organisms. However, in most cases, it is not clear
whether this pattern is functionally important or is just a
passive consequence of the way chromosomes segregate at
mitosis with centromeres leading the way and telomeres
lagging behind. Yeast chromosomes are small and thus hard
to visualize. As a result, the first suggestion for their non-
random localization came from the subnuclear distribution
of telomere binding proteins. Rap1p concentrates in 7–8 spots
(called Rap1p foci) on the nuclear periphery (Palladino et al.
1993). These Rap1p foci also contain Sir2p, Sir3p, Sir4p, and
the YKu complex and �70% of the Y9 repeats (Palladino et al.
1993; Gotta et al. 1996; Laroche et al. 1998). As these studies
were done in diploid cells where there are 68 telomeres, the
much larger number of telomeres compared to the number of
Rap1p foci suggests that individual Rap1p foci contain many
telomeres.

Although yeast chromosomes are too small to localize by
fluorescent in situ hybridization (FISH), they can be visual-
ized if they are marked with multiple binding sites for
a GFP–DNA binding protein expressed in the same cells
(Robinett et al. 1996). This system confirmed that the VII-L
telomere is located at the nuclear periphery in �50% of cells
(Tham et al. 2001). This fraction changes throughout the
cell cycle, being particularly low after DNA replication. Pe-
ripheral localization of the VII-L telomere does not require
Sir3p or Yku70p and thus is independent of both Rap1p foci
and TPE. Other telomeres are also at the periphery but the
fraction localized and their requirements for localization
vary from telomere to telomere (Hediger et al. 2002). Thus,
as with TPE, individual telomeres have different behaviors
in terms of subnuclear localization. This variation is ex-
plained in part by differences in the TAS content of different
telomeres (Mondoux and Zakian 2007). The GFP–DNA

binding protein visualization method also confirmed telomere
clustering, but found that the clusters are quite transient and
do not involve specific subsets of telomeres (Therizols et al.
2010).

A priori, association with the nuclear periphery requires
at least two proteins, one that is telomere associated and
one located at the nuclear periphery. There are at least two
nuclear envelope proteins that affect telomere tethering,
Esc1p (establishes silent chromatin; Andrulis et al. 2002)
and Mps3p (monopolar spindle; Bupp et al. 2007). Esc1p
resides at the inner face of the nuclear envelope and inter-
acts with the C-terminal portion of Sir4p (called the PAD4
domain; Andrulis et al. 2002). The Esc1p–Sir4p interaction
can tether plasmid and chromosomal telomeres to the nu-
clear periphery (Andrulis et al. 2002; Taddei et al. 2004).
However, the PAD4 domain also interacts with Yku80p, and
this interaction also affects telomere tethering (Taddei et al.
2004). Although Mps3p was discovered as an essential sub-
unit of the spindle pole body (yeast centrosome), a fraction
of Mps3p is in the nuclear envelope (Jaspersen et al. 2002).
Mps3p spans the inner nuclear envelope with its nonessen-
tial N terminus extending into the nucleoplasm where it can
interact with telomere bound Sir4p or Yku. These interac-
tions are important for telomere positioning as cells express-
ing the N-terminally truncated mps3D75-150 allele are
viable but unable to tether telomeres (Bupp et al. 2007).

Sumoylation is also important for telomere tethering. The
two known telomere parts of the tether, Sir4p and Yku80p,
are both sumoylated in vivo by the SUMO E3 ligase SIZ2,
and this modification affects their tethering functions (Zhao
and Blobel 2005; Ferreira et al. 2011; Hang et al. 2011). In
siz2D cells, tethering is lost, but TPE and Rap1p foci are
unaffected. For Yku80p, loss of tethering is probably a direct
result of loss of sumoylation, as an Yku80p–SUMO fusion
increases tethering, and this tethering is now Siz2p indepen-
dent (Ferreira et al. 2011).

Telomerase has also been implicated in telomere tether-
ing. By two-hybrid and coimmunoprecipitation, Mps3p
interacts with Est1p (Antoniacci et al. 2007). In early S
phase, tethering requires a specific interaction between
Yku80p and TLC1 (Schober et al. 2009), the same interac-
tion needed for Est2p telomere binding in G1 phase (Fisher
et al. 2004). The Mps3p–Est1p interaction raises the possi-
bility that telomere tethering might regulate telomerase.
However, while mps3D75-150 cells are tethering deficient
(Bupp et al. 2007), they have wild-type–length telomeres
(M. Paul and V. A. Zakian, unpublished results). Nonetheless,
telomeres in siz2D cells are modestly longer than wild-type
telomeres, and this lengthening is telomerase dependent
(Ferreira et al. 2011; Hang et al. 2011). Moreover, epistasis
analysis suggests that Siz2p and Pif1p act in the same path-
way to affect telomere length as telomeres are no longer in
pif1 siz2 cells than in the absence of Pif1 alone (Ferreira
et al. 2011). Because pif1 cells have higher levels of telomere-
bound telomerase (Boule et al. 2005), this result led to the
hypothesis that siz2D telomeres are longer because they
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bind more telomerase. Furthermore, pif1D restores telomerase-
dependent tethering in siz2D cells, presumably by increasing
the amount of telomere-bound Est2p/Est1p (Ferreira et al.
2011). These data lead to the somewhat contradictory view
that telomerase tethers telomeres to the periphery in a man-
ner that is not permissive for telomere lengthening, while
release of telomeres from the periphery promotes telomerase
lengthening of the released telomere. Perhaps, when telo-
meres are bound at the periphery by an Mps3p–Est1p interac-
tion, Est1p cannot interact with Cdc13p in a productive way.
Consistent with this view, artificially tethering a telomere to
the periphery results in telomere shortening without affecting
the lengths of other telomeres in the cell (Mondoux et al.
2007). However, given that many telomere proteins are mod-
ified by sumoylation (Hang et al. 2011), it is probably wise to
be cautious in attributing the modest telomere lengthening
seen in siz2D cells to telomeres being lengthened preferentially
when released from the nuclear envelope.

Tethering is lost in siz2D cells, yet TPE and Rap1p foci are
normal. These results seem to rule out a critical role for
tethering in TPE (Ferreira et al. 2011). This conclusion is
consistent with experiments indicating that TPE and tether-
ing are separable phenotypes (Tham et al. 2001; Mondoux
and Zakian 2007). However, this conclusion is still surpris-
ing, given numerous examples in diverse organisms for
a connection between the nuclear periphery, heterochroma-
tin formation, and gene silencing. Perhaps the importance of
concentrating silencing proteins at the periphery is not to
support silencing but to sequester silencing proteins from
the rest of the genome so that actively transcribed genes
are not inadvertently repressed (Taddei et al. 2009).

Finally, telomere tethering has been suggested to affect
recombination and repair of telomeric regions. Deleting
YKU80, which reduces the association of some telomeres
with the periphery, increases recombination between telo-
meres and nontelomeric sites in a pathway that acts through
Yku80p-associated X elements (Marvin et al. 2009a,b).
These data suggest that telomere tethering suppresses ec-
topic recombination within telomeric regions. In contrast,
efficient repair of subtelomeric DSBs may require telomere
localization at the periphery as such breaks within the XI-L
telomere are less often repaired in genetic backgrounds
where telomere tethering is lost (Therizols et al. 2006).

Telomeres in meiosis

It has been known for many years that meiotic chromosomes
in most organisms assume a characteristic conformation
called the bouquet in early prophase of the first meiotic
division with telomeres clustered at the nuclear periphery at
a position near the spindle pole body. Progress has been
made in S. cerevisiae in learning how the bouquet is set up,
although its functional significance is still being established.
The S. cerevisiae NDJ1 was discovered in a screen for genes
whose overexpression causes mis-segregation of meiotic
chromosomes (Conrad et al. 1997). Ndj1p expression is lim-
ited to meiosis, and it localizes to meiotic telomeres in vivo.

Cytological studies show that telomere clustering is Ndj1p
dependent, making NDJ1 the first gene linked to bouquet
formation in any organism. Meiotic chromosome segrega-
tion is also defective in ndj1 cells, suggesting that the bou-
quet configuration is important for normal meiotic
chromosome behavior. Ndj1p interacts with nuclear enve-
lope-localized Mps3p (Conrad et al. 2007, 2008). Mps3p is
the yeast member of the conserved SUN family of inner
nuclear membrane proteins. SUN proteins interact with
chromosomal binding proteins in the nuclear interior and
with outer nuclear membrane proteins in the space between
the inner and outer nuclear membranes. Because the outer
nuclear membrane protein can directly or indirectly bind to
the cytoskeleton, the formation of a linker complex involv-
ing Mps3p and Ndj1p is able to move chromosome ends
within the nucleus into a bouquet using energy derived from
the cytoplasmic cytoskeleton. In contrast to Schizosaccharo-
myces pombe and multicellular eukaryotes, meiotic bouquet
formation in S. cerevisiae is actin-, not tubulin dependent
(Scherthan et al. 2007; Koszul et al. 2008).

Time-lapse imaging reveals that meiotic chromosomes
engage in rapid and sustained movements throughout
prophase in virtually all eukaryotes. These rapid meiotic
chromosome movements were first documented in fission
yeast where they are particularly dramatic (Chikashige et al.
1994). However, fission yeast meiosis is unusual in that it
occurs in the absence of synaptonemal complexes. There-
fore, the discovery of similar movements during S. cerevisiae
meiosis was important because it made clear that these
movements are not restricted to organisms with an atypical
meiosis (Trelles-Sticken et al. 2005; Scherthan et al. 2007;
Conrad et al. 2008; Koszul et al. 2008). In S. cerevisiae,
meiotic chromosome movements are often rapid, in excess
of 1 mm/sec and are dependent on the nuclear envelope
protein, Csm4p, whose expression is also limited to meiosis
(Conrad et al. 2008). The outcome of meiosis in csm4D cells
suggests that meiotic chromosome movements are impor-
tant for meiotic progression, in part by preventing spindle
checkpoint activation (Zanders et al. 2011). However, since
Csm4p is also needed for bouquet formation, it is not clear
whether its effects on meiotic progression are due to its role
in telomere clustering or chromosome movement (Wanat
et al. 2008). Current models suggest that meiotic chromo-
some movements test homology between chromosomes to
facilitate pairing and synapsis of homologous chromosomes.

Classical genetic studies showed that meiotic recombina-
tion occurs at lower levels near telomeres than in the rest of
the genome (Barton et al. 2003). Genome-wide mapping of
meiotic DSB positions confirms that DSBs are infrequent
near telomeres with the best estimate being that they occur
3.5-fold less often in the 20 kb closest to telomeres than
in most other genomic regions (Pan et al. 2011). Although
the mechanistic basis for the relative paucity of meiotic re-
combination in telomeric regions is not known, a plausible
explanation for its significance is to prevent exchanges be-
tween nonhomologous chromosomes.
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Outlook

Given the multiple genome-wide approaches available in
S. cerevisiae, it is likely that most genes affecting telomeres
are identified. However, the functions of many of these
genes have not been explored. Moreover, we lack mechanis-
tic information even for well-studied telomere proteins. For
example, although Rif1p has been known for years to act in
cis to inhibit telomerase-mediated telomere lengthening, the
mechanism(s) by which it does so is not understood. Like-
wise, the Tel1p kinase is critical for telomere length regula-
tion yet there is no consensus on its phosphorylation targets
nor information on how these targets differ at telomeres vs.
DSBs. It is not known how the highly abundant RPA com-
plex, which binds in a sequence nonspecific manner to sin-
gle-stranded DNA, is excluded from TG1-3 tails, a binding
that is expected to trigger a checkpoint-mediated arrest.
Even though Est1p was the first identified telomerase sub-
unit, its exact role and that of Est3p are only beginning to be
understood. The recently discovered TERRA opens up a
whole new area of possibilities for telomerase regulation.
There is a lot of information on telomere tethering, yet its
functional role is not resolved. Of particular interest is to
establish how telomere tethering can be telomerase depen-
dent while at the same time telomere release from the pe-
riphery promotes telomerase action. Research over the past
years demonstrates that telomeres have individual person-
alities: they differ by their subtelomeric repeats, TPE behav-
ior, and nuclear localization, suggesting that we will only
fully understand the impact of genes and conditions on telo-
mere behavior if we study individual chromosome ends. The
list of important unanswered questions goes on and on, making
it clear that yeast telomere biologists still have a lot to do.

What do we think will be particularly important for
future advances? Biochemical approaches for yeast telomer-
ase have long been thwarted by difficulties isolating
telomerase proteins and reconstituting telomerase. Given
recent success with in vitro assays, this is an area that will
likely yield new insights in the near future. The impact of
in vitro studies will be increased enormously by the large
number of mutants that have been generated and charac-
terized in vivo, reagents that are not available to anywhere
near the same extent in other organisms. So far, there is no
successful mass spectrometry on yeast telomerase, yet this
approach has been extremely fruitful for both mammalian
and ciliate research. The small size of yeast chromosomes
has limited cell biological approaches in telomere research.
However, the ability to visualize specific telomere regions
with GFP technology has largely solved this problem. We
anticipate that soon these chromosome visualization techni-
ques will be combined with new methods to visualize telo-
merase itself to yield important information on telomerase
dynamics vis a vis nuclear organization at the single-cell
level. TERRA is so newly discovered that it seems inescap-
able that its continued analysis will provide new and per-
haps unanticipated findings.

Research in ciliates and to a lesser extent yeasts,
pioneered the field of telomere biology. In the past decade
or so, there has been a lamentable decline in the number of
labs doing telomere research in ciliates. As a consequence,
the importance of yeast as a model organism for telomere
research has, if anything, become more apparent. Many
important discoveries on mammalian telomerase were in-
spired by work in yeast. We expect this trend to continue.
Given the clear links between telomere biology and human
aging and cancer, there is little doubt that basic research in
yeast telomere biology has an important place in biomedical
research.
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