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Abstract

Current advances in next-generation sequencing techniques have allowed researchers to

conduct comprehensive research on the microbiome and human diseases, with recent stud-

ies identifying associations between the human microbiome and health outcomes for a num-

ber of chronic conditions. However, microbiome data structure, characterized by sparsity

and skewness, presents challenges to building effective classifiers. To address this, we

present an innovative approach for distance-based classification using mixture distributions

(DCMD). The method aims to improve classification performance using microbiome com-

munity data, where the predictors are composed of sparse and heterogeneous count data.

This approach models the inherent uncertainty in sparse counts by estimating a mixture dis-

tribution for the sample data and representing each observation as a distribution, conditional

on observed counts and the estimated mixture, which are then used as inputs for distance-

based classification. The method is implemented into a k-means classification and k-nearest

neighbours framework. We develop two distance metrics that produce optimal results. The

performance of the model is assessed using simulated and human microbiome study data,

with results compared against a number of existing machine learning and distance-based

classification approaches. The proposed method is competitive when compared to the other

machine learning approaches, and shows a clear improvement over commonly used dis-

tance-based classifiers, underscoring the importance of modelling sparsity for achieving

optimal results. The range of applicability and robustness make the proposed method a via-

ble alternative for classification using sparse microbiome count data. The source code is

available at https://github.com/kshestop/DCMD for academic use.

Author summary

The uneven performance of conventional distanced-based classifiers when using micro-

biome profiles to predict disease status has motivated us to develop a novel distance-based

method that accounts for uncertainty when modeling sparse counts. We propose a classi-

fication algorithm that uses mixture distributions to measure normed distances between

microbiome distributions, which better models the underlying structure by handling
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excess zeros and sparsity inherent in microbial abundance counts. Applications of DCMD

have shown improved classification performance and robustness, making the proposed

method an improved alternative for classification using microbiome data.

This is a PLOS Computational Biology Methods paper.

Introduction

The increasing accessibility of high-throughput technology has generated a wide array of data

types for analysis. One type of data that has recently gained popularity is the microbiome com-

munity data, which is composed of site-specific counts for identified bacteria. There is a

steadily growing number of studies that have demonstrated associations between the human

microbiome and health outcomes, such as inflammatory bowel disease [1], type 2 diabetes [2],

and cardiovascular disease [3], making it an important topic of research. However, the pres-

ence of sparsity and skewness, which characterizes this type of data, brings a number of chal-

lenges to statistical modelling. These challenges have motivated methodological developments

that expand the existing algorithms, particularly for classification tasks related to disease risks.

One popular class of approaches often used with microbiome data are distance-based meth-

ods, which differentiate and classify samples using distances derived from multivariate mea-

sures. Ubiquitous methods include k-means [4] and k-Nearest Neighbours (k-NN) [5], which

have been adapted to such data with variable transformations using Euclidean distances, Man-

hattan distance, and several other measures [6–8]. Other adaptations such as the distance-

based nearest shrunken centroid (NSC) classifier, which was developed for the use of microar-

ray data [9]. NSC takes the average of the relative abundances for each class as class centroids

[10,11] and then calculate standardized squared distances between new samples and class

centroids.

A number of linear and additive machine learning classifiers; such as LASSO, ridge regres-

sion (RR), random forest (RF), gradient boosting (GB), and support vector machines (SVM)

are also commonly used for high-throughput data [7,11–13]. Some methods rely on penaliza-

tion (LASSO and RR) in logistic models [14,15], typically with log-transformed adjusted

counts or relative abundances of operational taxonomic units (OTUs) to address skewness

[16]. The RF and GB algorithms rely on sequentially constructed classifiers and automatically

incorporate feature selection [17,18]. Other recent methodological developments for micro-

biome data include regression models with a phylogenetic tree-guided penalty term [19] and

inverse regression to deal with the over-dispersion of zeros in count data [20]. However, the

tree-guided method can be overly influenced by tree information [19], and the phylogenetic

tree is not always available. The existing methods incorporate observed count data or relative

abundance directly when computing distances or defining covariates, with some kinds of

transformation of OTUs to account for skewness. None of the methods explicitly account for

and model the underlying uncertainty inherent in sparse count data.

This paper aims to address these problems in a classification framework, where predictors

are sparse and heterogeneous count data. Shestopaloff et al. [21] proposed representing count

data using a mixture distribution to analyze the differences between microbiome communities.

We extend the method to distance-based classification using mixture distributions (DCMD)

that specifically addresses the uncertainty in sparse and low-count data. DCMD measures the
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distance between the sample-specific distributions of OTUs rather than between counts or rel-

ative abundances, which better models the structure of microbiome data for the distance mea-

sure. DCMD is also able to handle excess zero counts, which can potentially improve the

predictive accuracy when using sparse OTUs. In this paper, we use two simulation studies to

show the advantage of DCMD for classification over existing distance metrics and compare it

against common machine learning methods. We provide a comprehensive comparison of dis-

tance-based classification methods (k-means, k-NN, and NSC) and machine learning methods

(RF, GB, LASSO, RR, and SVM) in different simulation settings, which to our knowledge has

not been studied before. We also illustrate the effectiveness of DCMD on two human micro-

biome studies [22,23]. The paper concludes with a discussion of the merits, drawbacks and the

scope of applicability of the proposed methodology.

Method

In this section we outline the framework of DCMD. The main steps of the model include mix-

ture distribution specification and parameter estimation for modelling observed data, calcula-

tion of conditional distributions for each sample, and calculating distances between samples

and cluster centres to use in distance-based classification methods. The mixture model and

conditional distribution estimation are described in Shestopaloff et al. [21]. It is proposed to

model the underlying population rate structure of the observed count data using a mixture dis-

tribution with Poisson-Gamma components, then conditioning on observed sample counts

and resolution to obtain sample-specific distributions. In the next step, we use the sample-spe-

cific distributions for classification by calculating the distances between distributions.

Model specification and estimation

Microbiome data typically consists of OTU counts, as illustrated in Table 1. The notations

used in our method formulation are as follows:

nij, i = 1,. . .,I for j = 1,. . .,J, the count of the jth OTU of the ith sample.

Ni, the total number of aligned reads of sample i, Ni = ∑jnij

Without loss of generality, we focus on a specific OTU and omit the jth subscript for subse-

quent notation. Assume that the observed counts, ni, are Poisson distributed with rate ri =

qiNi, i = 1,. . .,I for sample i, where qi is the individual-specific relative abundance and is sam-

pled from some general OTU relative abundance distribution Gq. Then we have,

ri ¼ qiNi ¼ r�i ti;

where ti ¼ Ni=
�N ; r�i ¼ qi

�N , and �N ¼
P

iNi=I, with r�i sampled from G ¼ Gq
�N , which is the

rate normalized to the average sample reads to make sure that the counts are treated on the

Table 1. An OTU table for microbiome data.

OTU 1 . . . OTU J Total Reads

Sample 1 n11 . . . n1j N1

Sample I nI1 . . . nIJ NI

https://doi.org/10.1371/journal.pcbi.1008799.t001
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same scale. Thus, the observed count for a specific site of OTU is

nijti; r
�

i � Poissonðr�i tiÞ;

r�i � G:

Since the distribution of OTU is zero-inflated, skewed, and heavy tailed, we propose a mix-

ture distribution to approximate G. For positive rates on a given interval, we specify a set of

Gamma components, Γ(α, β), with shape α and rate β, to cover the range of the data. To sepa-

rate structural zeros from low-rate and undetected samples, we include a zero-point mass,

nijti; r�i � 0, where P(ni = 0) = 1. Additionally, for sparse high rates, we define a high-count

point mass, nijti; r�i � C � 1ðni > CÞ, where P(ni>C) = 1, C is the truncation point and 1(�) is

the indicator function. The full set of mixture components is O = (Gz, G1, G2,. . .,GM, GC+)

where Gz is a zero-point mass, Gm, m = 1,2,. . .,M, is a set of Gammas components Γ(αm, βm),

and GC+ is a high-count point mass. The process for defining the mixture model components

is described in detail in the Simulation section.

Define the weight of each component as

w ¼ ðwz;w1;w2; . . . ;wM;wCþÞ
0
;

where wz is the weight of the zero-point mass, wm, m = 1,2,. . .,M, is the weight for mth corre-

sponding Gamma component, and wC+ is the weight of high-count point mass. Define

yx ¼
P

i1ðni ¼ xÞ;

the number of species observed x times across all samples for x = z, 0,1,2,. . .,C,C+. Then our

goal is to minimize
PCþ

x¼0
½yx � yE

x �
2
, where yE

x is the expected aggregate counts of yx. Note that

given Γ(αm, βm), sample counts conditional on ti are distributed as a negative binomial NB[αm,

βm/(ti+βm)] [21]. Define

pxmi ¼ PNBðX ¼ xjti; am; bmÞ

as the probability of observing count x from the mth mixture component conditional on the

resolution ti. Then yE
x ¼

P
wm2w

wmpxm � I, where pxm = ∑ipxmi/I. Thus, we have the objective

function:

arg min
w!

PCþ
x¼z½yx � ð

P
wm2w

wmpxmÞ; I�
2
; ð1Þ

s:t:
X

m
wm ¼ 1;wm � 0; 8m:

The estimate, ŵ, is obtained by optimizing the least-squares objective function (1), using

the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [24] with the augmented Lagrang-

ian method [25] for the constraints.

Due to the sparse nature of the data, we only optimize the weights and fix the Gamma

parameters. Attempting to model the low-rate structure by optimizing both weights and

Gamma parameters (αm, βm) via expectation-maximization (EM) results in biased structural

zero estimates and a poor overall fit of the low counts [26]. In this context, the EM is also

prone to numerical issues, convergence to local minima and can often be too slow computa-

tionally for this type of application [26]. On the other hand, BFGS provides a much faster and

robust alternative.
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Weighted mixture distribution

To address the uncertainty around specifying components for the mixture model, particularly

for the low rates where sparsity is often an issue, we define a set of nested models Fl, l = 1,. . .,

L, with varying components for modelling the rate structure around zero. We estimate the

joint mixture model using a nonparametric bootstrap algorithm. As stated in Shestopaloff

et al. [21], we can obtain the weight v(l) of each candidate model, which is the proportion of

times each model is selected as optimal relative to the observed data, and calculate the weights

for the joint mixture distribution. Let wl be the estimated weights for each candidate model,

Fl, with zeros assigned to the weights of components not included in a specific model, then the

weights of the joint model are w = ∑lv(l)wl.

Sample-specific distribution

Once we have a distribution for the OTU, we can estimate sample-specific distributions by

conditioning on the observed count ni, estimated mixture weights w, and resolution ti. We can

obtain the probability that sample i sampled from a specific component, as:

pim ¼ Pði 2 Gmjni; ti;wÞ ¼ wGm

Gðni þ amÞ

Gðni þ 1ÞGðamÞ

bm

ti þ bm

� �am

1 �
bm

ti þ bm

� �ni

: ð2Þ

The probability of being assigned to the zero-point mass is P(i2G0) = 1(ni = 0) and to the

high-count point mass is P(i2GC+) = 1(ni>C). Define the sample-specific mixture weights as

wi ¼ ðwiz;wi1; . . . ;wiC;wiCþÞ
0
;

where

wim ¼ Pði 2 GmÞ=
P

mPði 2 GmÞ ¼ pim=
P

mpim:

Since the sample-specific weights have been adjusted for the individual resolutions ti
through the pim probabilities, the Poisson-Gamma mixture probabilities are NB(α, β/(1+β)).

Also note that we have differentiated the zeros in our mixture distribution, which are defined

as structural zeros, x = z, and observed zeros, x = 0. Given the underlying rate distribution

from the joint mixture model, we can then calculate the probability of observing count x = z,

0,1,. . .,C, C+ from each mixture component Gm as

PGm
ðxÞ ¼ PðX ¼ xjGmÞ ¼ PNBðX ¼ xjam; bmÞ:

For the point masses we have P(X = x|Gz) = 1(ni = 0) and P(X = x|GC+) = 1(ni>C), respec-

tively. To simplify the representation of the distribution, define a vector of probabilities

PðxÞ ¼ ½PðX ¼ xjGzÞ; PðX ¼ xjG1Þ; . . . ; PðX ¼ xjGmÞ; PðX ¼ xjGCþÞ�

¼ ½PGz
ðxÞ; PG1

ðxÞ; . . . ; PGM
ðxÞ; PGCþ

ðxÞ�;

for x = z, 0,1,. . .,C, C+. Then we can define the discrete probability density for sample i as

Pi ¼ ½PiðzÞ; Pið0Þ; . . . ; PiðCÞ; PiðCþÞ� ¼ wi
0P;

where

PiðzÞ ¼ wGz
;

PiðCþÞ ¼ 1 � ½
PC

x¼0
PiðxÞ þ PiðzÞ�;
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P ¼ ½PðzÞ;Pð0Þ; . . . ;PðCÞ;PðCþÞ�:

The P(x) vectors in the matrix P are the vectors giving the probability of observing x from

each mixture component, which can be pre-calculated for distance calculations. The overview

of how to obtain sample-specific mixture distributions given a set of mixture distribution com-

ponents is shown in Fig 1.

Classification

Once the distribution for each sample has been computed, we use k-means and k-Nearest

Neighbours (k-NN) algorithms for classification. In this section, we outline how to apply these

algorithms using two distance measures, discrete L2 (D-L2) norm and continuous cumulative

L2 (CC-L2) norm.

Distance measures. Given posterior probability fi, cumulative posterior probability Fi,

and an estimated set of weights wi for sample i, the distance metrics are:

D-L2 Norm:

dD� L2ðfi; fjÞ ¼
X

x

½fiðxÞ � fjðxÞ�
2

¼
P

x½ðwi � wjÞPðxÞ�
2
; ð3Þ

where x = z, 0,1,. . .,C, C+. Note that we include the structural zero component, z, separately

and that the distances only depend on the weights. For multiple predictors, j = 1, . . ., J, the

total distance between samples i1 and i2 is the sum across all predictors,

Dði1; i2Þ ¼
P

jdjðfi1 ; fi2Þ.

Fig 1. Workflow for obtaining a sample-specific mixture distribution for each sample i in OTU j: 1) Specify a set of

nested candidate mixture distributions using a specific set of components; 2) Apply bootstrap to the set of nested

models and calculate the weights of each candidate mixture model, then calculate the weights of the joint mixture

distribution; 3) Estimate sample-specific distributions conditional on ni, ti, and the joint mixture distribution.

https://doi.org/10.1371/journal.pcbi.1008799.g001
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CC-L2 Norm:

dCC� L2ðFi; FjÞ ¼

Z C

0

½FiðxÞ � FjðxÞ�
2dx

¼ ðwi � wjÞGm1m2
ðwi � wjÞ

0
; ð4Þ

where Gm1m2
is a matrix with the (m1, m2) entry set to

R
Gm1
ðxÞGm2

ðxÞdx for each of the contin-

uous mixture component. Details of the derivation can be found in Shestopaloff [26].

Distance-based classification. We use the distances calculated in Eqs (3) and (4) in a k-

means and k-NN framework. In k-means, the mean of each class is calculated from the train-

ing data and points are classified to the nearest class. In k-NN, samples are classified as the

mode of the labels from k closest neighbours of the training set. The steps of k-means and k-

NN algorithms are as follows:

K-means: To adapt the k-means algorithm, we estimate the mean distribution for each class

by minimizing the distributional distances between it and the class samples, conditional on a

specified distance. Since distances are L2 norms and only depend on the weights, as shown in

Eqs (3) and (4), the mean of the weights for each class gives the optimum. The algorithm is

implemented as follows:

Step 1: Determine the mean of the weights for the jth predictor in class k,

wμk ;j
¼
P

i2k;jwk;j=jNk;jj, where |Nk,j| is the number of samples in class k of predictor j,

k = 1,. . .,K and j = 1,. . .,J;

Step 2: Compute the distance to the mean for sample i across all predictors,

Dði; mkÞ ¼
P

jdðPi;j;Pμk ;j
Þ;

Step 3: Predict the label of sample i as the closest mean,

ŷi ¼ argmin
k

Dði; mkÞ:

K-NN: After computing the pairwise distances between samples and summing across pre-

dictors, these can be used directly to identify the nearest neighbours for classification. The

algorithm for k-NN is as follows:

Step 1: Compute the pairwise distance of sample i1 and i2, i1, i2 = 1,. . .,I, i16¼i2,

Dði1; i2Þ ¼
P

jdðPi1 ;j
;Pi2;j
Þ;

Step 2: For sample i, pick the k samples with smallest distance to sample i, the optimal k can be

determined using cross-validation (CV) in the training set or existing heuristics.

Step 3: Tally the labels of the k nearest neighbours, then sample i is predicted as the mode of

the k labels.

The overall workflow of DCMD within the k-means and k-NN frameworks is presented in

Fig 2.
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Predictive metrics

Let ŷi be the predicted class for sample i. The classification accuracy is defined as the propor-

tion of correctly predicted cases: Accuracy ¼ 1

I

PI
i¼1

Iðŷi ¼ yiÞ. For binary outcomes we also

include precision, recall, and F1 score as metrics to measure predictive performance. We

count the number of true positive (TP), false positive (FP), and false negative (FN) and defined

these metrics as follows [27]:

Precision ¼ TP=ðTP þ FPÞ;

Recall ¼ TP=ðTP þ FNÞ;

F1 Score ¼ 2� precision� recall=ðprecisionþ recallÞ:

Simulation

Data generation

To evaluate the performance of the DCMD method, we design simulation studies that mimic

microbiome community count data and assess classification performance. We simulate a sepa-

rate mixture distribution for each class, individual sample rates, and resolutions to generate

observed counts. For the mixture distribution, the number of components, M, is sampled

from Unif(5, 15). And the number of samples to be taken from each mixture component is set

by binning samples from a Beta(αb, βb) at uniform intervals, with the αb varied to give different

class means and levels of sparsity and with βb~Unif(2, 6.5) to control dispersion. The observed

counts for each sample are then generated as ni � Poissonðr�i tiÞ, where r�i is the sampled rate

and resolution ti~Unif(2/3, 5/4).

We consider two- and three-class outcomes with several simulation scenarios for each case.

For the two-class outcome, parameter settings and summary statistics for each scenario are

shown in Table 2. Scenarios 1 and 2 have low sparsity data, and scenarios 3 and 4 are highly

sparse. Scenarios 1 and 3 have weakly differentiated classes (small difference in αb), while sce-

narios 2 and 4 have strongly differentiated classes (large difference in αb). The sample size is

Fig 2. Illustration of k-means and k-NN framework using sample-specific distributions. For k-means (top panel), the

distance between the new sample to the mean of class A is smaller than to the mean of class B, hence the new sample is

predicted as class A. For k-NN (bottom panel), using 3 nearest neighbours, the new sample is predicted as class A.

https://doi.org/10.1371/journal.pcbi.1008799.g002
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I = 800, with 400 samples per class and J = 25 OTUs. For the three-class outcome, parameter

settings and summary statistics are shown in S1 Table. Scenarios 1–3 have strongly differenti-

ated classes, with varying levels of sparsity. The sample size is I = 1200, with 400 samples in

each class and J = 25 OTUs. A null case scenario is also generated by permuting class labels,

and performance metrics for each outcome and scenario are computed over 100 simulation

replicates.

Mixture model specification

The specification of the mixture model components should be data-driven, and the main

requirement is that the Gammas allow for appropriate coverage of the observed data. We split

the count data into five intervals and apply different strategies to specify components on each

interval. Modelling of the zeros and low-rate structures is based on [28], and modelling of the

higher counts is based on [21].

1. Structural zeros: For data with observed zeros, a zero-point mass P(X = 0) = 1 is included to

model zero inflation.

2. Low counts (x2[0,1,2,3]): We specify components as Poisson rate posteriors with uniform

priors for each of the counts, which is Γ(x+1, 1). Hence, we include Γ(1,1), Γ(2,1), Γ(3,1)

and Γ(4,1). The cut-off is set to x = 3 because rate posteriors for higher values have a low

probability of observing zero, and we want to differentiate the distributions relevant to

modelling zero inflation. We also want to examine whether more mass close to zero

improves the fit for the low rates. Therefore, we add exponentials with a higher rate, β, to

have more mass near zero. In this case, we include Γ(1,2) into the candidate models. We

can potentially include Γ(1,3) or other terms into the model, then apply the procedure

described above to select the optimal mix. A fuller discussion, drawn from modelling sparse

counts for total species estimation, can be found in [28].

3. Integer counts (x2[4,5,6,7]): Components in this range are also specified as the rate poste-

rior Γ(x+1, 1) at integer intervals. This block exists as a buffer to ensure no gaps in the cov-

erage after the low-count distributions, as this can potentially bias the structural zero and

low-rate estimates. This is specified until the last integer component has little overlap with

the previous low-rate component. In our formulation, we use an upper limit of x = 7 as sim-

ulations showed negligible differences between x = 7 and x = 8. The integer components

include Γ(4,1),. . .,Γ(7,1).

4. High counts (x2[8,. . .,C]): The higher counts tend to have a large range, and it’s not practi-

cal to specify them on integer intervals. In this case, we set the number of components

based on the range of the data and specify αm at uniform intervals on a linear-log scale from

Table 2. Two-class outcome: the parameter settings for each scenario and the corresponding summary statistics of each class over 100 replicates.

Scenario Signal Sparsity Class Size αb range Mean ZP (SD) Mean

1 Weak Low 1 400 (1.5, 1.8) 0.32 (0.13) 7.91

2 400 (1.8, 2.1) 0.26 (0.12) 9.63

2 Strong Low 1 400 (1.5, 1.8) 0.33 (0.13) 7.74

2 400 (2.7, 3.0) 0.14 (0.09) 15.12

3 Weak High 1 400 (0.2, 0.4) 0.84 (0.07) 1.05

2 400 (0.4, 0.6) 0.74 (0.10) 1.92

4 Strong High 1 400 (0.2, 0.4) 0.84 (0.07) 0.98

2 400 (0.8, 1.0) 0.56 (0.13) 3.61

https://doi.org/10.1371/journal.pcbi.1008799.t002

PLOS COMPUTATIONAL BIOLOGY DCMD

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008799 March 12, 2021 9 / 18

https://doi.org/10.1371/journal.pcbi.1008799.t002
https://doi.org/10.1371/journal.pcbi.1008799


8 to C = qp, a set quantile of the data. Using between 10 and 15 components worked well in

past applications [21]. For our modelling, p = 0.85 is an effective threshold, which means C

is the 85% quantile of the sample.

5. Extreme high counts (x>C): These counts are truncated to a point mass P(X>C) = 1, in

part because of the low density in this range and the uncertainty in modelling them and in

part to decrease computation time. The mixture model specification heuristics described

above are primarily for modelling low-abundance OTU, which covers the most information

of the microbiome data. Higher abundance OTU can be modelled by restricting the compo-

nent specification to higher counts and increasing p.

The full model we use for our data includes [Γ(1,2), Γ(1,1),. . .,Γ(7,1), Γ(8,1)], along with

varying high-count components. Nested models are generated by progressively excluding Γ
(1,2), [Γ(1,2), Γ(1,1)],. . . for a total of five models. A sample model specification for one of the

OTU is presented in S2 Table.

Model fitting and comparison methods

The proposed method is compared with k-means and k-NN using Euclidean and Manhattan

distances of relative abundances, distance-based NSC, as well as LASSO, RF, GB, RF and SVM

classifiers [29]. Models are trained using a 60/40 training and test set split [30], with the train-

ing set remaining the same for all classifiers within each replicate. For the machine learning

methods, we use existing packages and tune the hyper-parameters using cross-validation when

appropriate, see details in S1 Text.

Simulation results

For the two-class outcome, classification accuracy for each model and scenario is presented in

Fig 3. The orange boxplots are the results for the proposed DCMD method in a k-means and

k-NN framework. The blue boxplots are the other distance-based methods, including k-means

and k-NN with Euclidean and Manhattan distance and NSC. The green boxplots give results

for the machine learning methods, including RF, GB, LASSO, RR, and SVM. The dashed red

line gives the average accuracy of the best method in each scenario. The results show that in

Scenarios 1 and 2, when sparsity is low, k-means with CC-L2 norm performs best, followed by

k-means with D-L2 norm, while in Scenarios 3 and 4, when sparsity is high, k-means with D-

L2 norm gives the best performance, followed by k-means with CC-L2 norm. Overall, DCMD

in a k-means framework with L2 norms outperforms the other classification methods for all

types of signals and data structures for the two-class outcome. Differences in accuracy within

the distance-based methods are also progressively more pronounced in favour of DCMD,

among which k-means outperforming k-NN. The specialized NSC approach performed simi-

larly to DCMD within the k-NN framework. However, NSC generally falls short of k-means

DCMD and other machine learning methods.

Table 3 shows the summary statistics of the F1 Score over 100 replicates for the two-class

outcome. The top results in each scenario are highlighted. Similar to accuracy, DCMD with L2

norms produce the highest F1 Scores (F1 Score (SD) = 0.68 (0.034), 0.92 (0.017), 0.77 (0.028),

0.95 (0.014) in Scenarios 1–4, respectively), which are better than the best machine learning

method (GB: 0.64 (0.033), RF and RR: 0.89 (0.019), LASSO: 0.75 (0.030), GB: 0.94 (0.016) in

Scenarios 1–4, respectively). DCMD shows consistent good performance in each scenario

compared among the methods.

The classification accuracy of each model and scenario for a three-class outcome is pre-

sented in Fig 4. For Scenarios 1–3, the classes are differentiated under varying levels of sparsity,
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and we observe that DCMD is competitive with the optimal machine learning methods.

Although RR has similar predictive accuracy to DCMD in Scenario 1 and 3, and GB has simi-

lar predictive accuracy in Scenario 2, DCMD is consistently improved over the optimal

Fig 3. Two-class outcome: boxplot of the accuracy over 100 replicates for each method and scenario. The proposed DCMD method is shown in

orange for k-means and k-NN with D-L2 and CC-L2 distances. The other distance-based methods are shown in blue, including k-means and k-NN

with Euclidean and Manhattan distances and NSC. Machine learning methods are shown in green, including random forest (RF), gradient boosting

(GB), LASSO, ridge regression (RR), support vector machine (SVM). The dashed red line gives the average accuracy of the best method in each

scenario.

https://doi.org/10.1371/journal.pcbi.1008799.g003
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comparison method. None of the models is systematically over-fit, as predictive accuracy in

the null case (Scenario 4) is near the baseline accuracy of 0.33.

Application

Data description

We test our method on data from two microbiome studies. The first is a study on colorectal

cancer reported by [22]. A total of 190 samples (95 pairs) were collected from 95 patients in

Vall d’Hebron University Hospital in Barcelona and Genomics Collaborative. The study

aimed to identify associations between tumor microbiome and colorectal carcinoma. Both the

colorectal adenocarcinoma tissue and adjacent non-affected tissues were collected. The OTU

count table generated by 16S amplification was obtained from the Microbiome Learning Repo

[12]. Prior to model training, eighteen samples with total reads less than 100 were dropped

from the dataset, and we also excluded OTUs with mean relative abundance less than 0.001,

resulting in 149 OTUs and 172 samples (86 pairs) used to differentiate tumour and normal tis-

sue. The second study is a case-control study of Crohn’s disease (CD) from a multi-center

cohort, which was designed to examine how microbiota contributes to CD pathogenesis [23].

The profiles were obtained using Illumina 16S rRNA sequencing. The dataset was downloaded

from the Microbiome Learning Repo [12] and consisted of 140 ileal tissue biopsy samples.

Minimal sample depth is set at 100, and OTUs are restricted to less than 90% zero proportion,

leaving 140 samples (78 cases and 62 controls) and 31 OTUs for analysis.

Model fitting and evaluation

For both datasets, we compare our proposed L2-norm based k-means and k-NN classifier with

five other distance-based classifiers (k-means-Euclidean, k-means-Manhattan, k-NN-Eucli-

dean, k-NN-Manhattan, NSC) and six machine learning methods (RF, GB, LASSO, RR, SVM).

We assess model performance using 10-fold CV. In each iteration, one fold of the data is

treated as the test set, and the remaining nine are used for training. The specification of

DCMD and other classifiers is the same as that in the simulations (see S1 Text). We calculate

accuracy, precision, recall, and F1 score as metrics for comparison.

Table 3. Two-class outcome: the summary of F1 Scores for each model over 100 replicates.

Model Scenario 1 (SD) Scenario 2 (SD) Scenario 3 (SD) Scenario 4 (SD)

k-means-D-L2 0.67 (0.033) 0.90 (0.019) 0.77 (0.028) 0.95 (0.014)

k-means-CC-L2 0.68 (0.034) 0.92 (0.017) 0.76 (0.028) 0.94 (0.016)

k-means-Euclidean 0.56 (0.054) 0.73 (0.047) 0.66 (0.039) 0.79 (0.026)

k-means-Manhattan 0.58 (0.065) 0.78 (0.040) 0.69 (0.030) 0.77 (0.022)

k-NN-D-L2 0.59 (0.050) 0.85 (0.028) 0.74 (0.022) 0.85 (0.021)

k-NN-CC-L2 0.59 (0.048) 0.88 (0.028) 0.73 (0.025) 0.85 (0.020)

k-NN-Euclidean 0.60 (0.043) 0.77 (0.023) 0.68 (0.031) 0.79 (0.020)

k-NN-Manhattan 0.66 (0.037) 0.77 (0.015) 0.71 (0.017) 0.75 (0.016)

NSC 0.56 (0.067) 0.85 (0.023) 0.69 (0.046) 0.86 (0.022)

RF 0.63 (0.036) 0.89 (0.019) 0.74 (0.038) 0.94 (0.017)

GB 0.64 (0.033) 0.89 (0.020) 0.75 (0.033) 0.94 (0.016)

LASSO 0.64 (0.039) 0.89 (0.021) 0.75 (0.030) 0.93 (0.015)

RR 0.62 (0.052) 0.89 (0.019) 0.74 (0.037) 0.93 (0.015)

SVM 0.64 (0.031) 0.82 (0.028) 0.72 (0.026) 0.86 (0.021)

https://doi.org/10.1371/journal.pcbi.1008799.t003
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For the colorectal cancer data, we reduce the predictor space for distance-based classifiers

by the univariate screening of OTUs with a nonparametric Mann-Whitney U test on the train-

ing set. To adjust for multiple comparisons, we use q-values obtained by the Benjamini–

Fig 4. Three-class outcome: boxplot of accuracy over 100 replicates for each method and scenario. The proposed DCMD method is shown in

orange for k-means and k-NN with D-L2 and CC-L2 distances. The other distance-based methods are shown in blue, including k-means and k-NN

with Euclidean and Manhattan distances and NSC. Machine learning methods are shown in green, including random forest (RF), gradient boosting

(GB), LASSO, ridge regression (RR), support vector machine (SVM). The dashed red line gives the average accuracy of the best method in each

scenario.

https://doi.org/10.1371/journal.pcbi.1008799.g004
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Hochberg (BH) method [31] and retain OTUs with q-values less than 0.05 in each training set.

The mean number of OTUs selected from each training set is 42 (range: 13–57). For the

machine learning approaches, we include all 149 OTUs. For the CD dataset, 31 OTUs are

included for all methods.

Applied results

The predictive performance of each classifier for the colorectal cancer and CD studies are pre-

sented in Tables 4 and 5, respectively. The accuracy of k-means with D-L2 norm is 0.67 for

colorectal cancer and 0.73 for CD, which is the best method for colorectal cancer and the sec-

ond-best for CD. The F1 scores are also among the highest for both datasets, indicating that

DCMD has consistently optimal performance and an improvement over the other classifiers.

Predictive accuracy of k-means with CC-L2 norm is slightly worse, likely due to high zero pro-

portions in the predictors, which is consistent with the simulation results. Similarly, DCMD

Table 4. Dataset 1—Colorectal Cancer: the predictive performance of the 14 classifiers.

Method Accuracy Precision Recall F1 score

k-means-D-L2 0.67 0.66 0.69 0.67

k-means-CC-L2 0.63 0.62 0.67 0.65

k-means-Euclidean 0.62 0.62 0.60 0.61

k-means-Manhattan 0.65 0.66 0.60 0.63

k-NN-D-L2 0.65 0.77 0.43 0.55

k-NN-CC-L2 0.63 0.65 0.57 0.61

k-NN-Euclidean 0.63 0.66 0.55 0.60

k-NN-Manhattan 0.61 0.69 0.40 0.50

NSC 0.67 0.72 0.56 0.63

RF 0.60 0.61 0.59 0.60

GB 0.63 0.63 0.64 0.64

LASSO 0.59 0.59 0.59 0.59

RR 0.64 0.63 0.69 0.66

SVM 0.66 0.67 0.63 0.65

https://doi.org/10.1371/journal.pcbi.1008799.t004

Table 5. Dataset 2—Crohn’s Disease: the predictive performance of the 14 classifiers.

Method Accuracy Precision Recall F1 score

k-means-D-L2 0.73 0.75 0.78 0.76

k-means-CC-L2 0.72 0.75 0.74 0.75

k-means-Euclidean 0.68 0.69 0.76 0.72

k-means-Manhattan 0.66 0.67 0.76 0.71

k-NN-D-L2 0.62 0.62 0.85 0.71

k-NN-CC-L2 0.61 0.61 0.83 0.71

k-NN-Euclidean 0.65 0.66 0.78 0.71

k-NN-Manhattan 0.61 0.62 0.77 0.69

NSC 0.66 0.64 0.90 0.74

RF 0.69 0.71 0.76 0.73

GB 0.68 0.69 0.76 0.72

LASSO 0.74 0.76 0.78 0.73

RR 0.69 0.69 0.78 0.73

SVM 0.74 0.74 0.81 0.77

https://doi.org/10.1371/journal.pcbi.1008799.t005
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outperforms Euclidean and Manhattan distances within k-means, and k-means outperforms

k-NN overall. Within k-NN, accuracy and F1 score indicate that DCMD has predictive perfor-

mance comparable to Euclidean or Manhattan distances. The NSC approach has an accuracy

of 0.67 and a precision of 0.72 for colorectal cancer, with a recall of 0.56 and an F1 score of

0.63, notably lower than that of the k-means classifiers. The performance is unstable in the CD

data.

Compared to the machine learning methods, DCMD with k-means is superior to RF, GB,

LASSO, RR, and SVM in the first dataset. When results are replicated controlling for distance-

based classifier variable selection (S3 Table), machine learning methods has improved perfor-

mance, except for GB. In the second dataset, LASSO and SVM are the best methods with accu-

racies of 0.74, slightly outperforming the accuracy of 0.73 for k-means with D-L2 norm.

Otherwise, DCMD k-means with D-L2 and CC-L2 norms either equivalent or outperform the

machine learning approaches.

Discussion

The results of our simulation studies and microbiome applications indicate that the proposed

DCMD method performs well over a range of scenarios, achieving good classification perfor-

mance when using sparse data as predictors. The predictive accuracy is consistently improved

compared to other distances within distance-based classifiers. It is either advantageous or

competitive compared to a number of machine learning methods under a wide range of sce-

narios. The improved performance of DCMD on sparse data results from the use of mixture

distributions to represent the observed count data because the mixture distributions can not

only model the underlying uncertainty in the observed sample counts but also account for

zero inflation. The improvement is particularly significant in comparison to other distances

within the regular k-means and k-NN classifiers.

The performance differences between the D-L2 and CC-L2 norms can be attributed to the

data structure. In less sparse scenarios, the data structure is better modelled by a continuous

rate structure, resulting in a slight advantage for the CC-L2 metric. While in the higher ZP and

low-count scenarios, the D-L2 norm allows us to use specific differentiation of zeros into struc-

tural and non-structural and modelling expected counts directly, which can further capture

the general structure of predictors used for differentiation better.

As the DCMD method derives its major improvement from a focus on modelling lower

count data and the associated uncertainty, it is necessary to accurately specify an underlying

set of mixture components for the low rates. The mixture also has to model low- and high-

count data on the same scale, where the density of the latter is often sparse due to sparse obser-

vation intervals. Moreover, it is not feasible to apply a transformation to make the data denser

due to abundant zeros and the discrete nature of the low counts. However, the weighing of

nested candidate models and the suggested heuristic of specifying higher count distributions

on a log-linear scale has worked well in our simulations, as it partially mimics the log-transfor-

mation commonly applied to such data.

The proposed DCMD method is formulated in a distance-based framework, so it does not

include specific mechanisms for variable selection. While different predictors can alternatively

be included in the distance sum, the process is not automated. In our case, we used a simple

nonparametric Mann-Whitney U test for feature selection, which worked well in the study

data. However, more advanced and specialized methods for feature selection can be applied

separately for other applications. Additionally, we note that the model is specified to use

microbiome site counts, and continuous covariates need to be modelled separately using con-

tinuous distributions, while categorical covariates can only be included as dummy variables.
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These variables will also be treated on the same scale in the distance metric unless specified

otherwise.

Despite these drawbacks, we believe that our core contribution, the representation of obser-

vations as distributions to reflect uncertainty and the use of distributional distance metrics,

will be valuable to anyone analyzing sparse data. This formulation can compensate for some of

the disadvantages inherent in distance-based methods to such an extent that it achieved com-

petitive performance with more sophisticated classifiers, as well as specially designed

approaches like NSC. The techniques that made DCMD advantageous for classification when

data is expected to be sparse, particularly within a distance-based framework, should be con-

sidered for improving model performance.

Conclusion

In this paper, we present a distance-based classification method for microbiome count data.

The DCMD approach models the observed data using mixture distributions and calculates L2-

norms for distance-based classification algorithms. The method is specifically designed to

accurately model low-count structures, addressing the inherent sparsity by representing each

observed count as a distribution, and is demonstrated to have improved performance by simu-

lation studies and two microbiome applications. The importance of accounting for uncertainty

in sparse data is emphasized, and the resulting improvements in classification accuracy when

using distributions are demonstrated. The performance of the proposed DCMD is competitive

to a number of machine learning methods and significantly outperforms other common met-

rics in distance-based classification models. The consistent and improved performances across

a variety of different data structures make this approach a viable alternative for modelling and

classification of microbiome count data, particularly within a distance-based framework.
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