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In spite of the presence of powered wheelchairs, some of the users still experience steering challenges and manoeuvring difficulties
that limit their capacity of navigating effectively. For such users, steering support and assistive systems may be very necessary. To
appreciate the assistance, there is need that the assistive control is adaptable to the user’s steering behaviour.This paper contributes to
wheelchair steering improvement bymodelling the steering behaviour of powered wheelchair users, for integration into the control
system.More precisely, the modelling is based on the improved Directed Potential Field (DPF)method for trajectory planning.The
method has facilitated the formulation of a simple behaviour model that is also linear in parameters. To obtain the steering data
for parameter identification, seven individuals participated in driving the wheelchair in different virtual worlds on the augmented
platform.The obtained data facilitated the estimation of user parameters, using the ordinary least square method, with satisfactory
regression analysis results.

1. Introduction

(1) Motivation. The manoeuvring difficulty experienced by
wheelchair users with Parkinson’s disease, multiple sclero-
sis, and related handicaps is the main motivation for this
study. Such handicaps complicate the ability to effectively
manipulate the conventional joystick, even within fairly
simple environments [1]. According to Fehr et al. [2], about
40% of the users struggle to steer the standard powered
wheelchair with ordinary user interfaces. Fehr et al. observe
that close to 50% of the affected user group can be assisted
if better control methods, with supplemented user interfaces
and/or support systems capable of accommodating their
needs and preferences, were employed. Huge research on
joysticks and related interfaces including haptic systems
has emerged [3–7], and new control models [8, 9] are
continuing to develop. The available driver models however
suffer lack of individuality [10], focusing mostly on the
common user attributes, and assume that all users respond to
particular navigational situations by similar general patterns.
Such driver models employ general parameters that barely
correspond to measurements obtained from extreme users
and hardly take into consideration the contextual nature of

human response to stimuli. Besides, the available control and
assistive techniques rarely consider the fact that the steering
capability of users with degenerative conditions, like ageing,
deteriorates progressively over time. Adapting the wheelchair
to the user’s best steering behaviour may simplify the general
steering task and limit the steering troubles attributable to the
worsening disability condition of the user. This necessitates
modelling and a priori identification of the driver’s steering
behaviour.

(2) Background. Although extensive information regarding
modelling and control of powered wheelchairs exists [11–
17], behaviour modelling for assistance and rehabilitation is
still limited. In fact, apart from [18–23], the authors failed to
locate more behaviour models related to wheelchair drivers.
Studies in the vast area of behaviour modelling have been
approached mainly from the field of automotives, aviation
simulators, and robotic intelligence [24, 25]. The existing
formulations in these areas have been modified progressively
from linear to empirical models, with the hope of finding
general models that represent the operators’ behaviour [26–
28]. According to [29–32],most of the available drivermodels
are qualitative, with elaborate explanations of the drivers’
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perception and vehicle handling techniques, while others
entail detailed reports of the drivers’ actions during normal
driving situations.The commonquantitativemodels available
in the literature represent specific driving tasks [33–36]. The
adaptive and comprehensive control models of the driving
behaviour are, however, very few [37, 38].

According to Michon [39], the entire driving task has
three demand levels, consisting of the strategic level, the
tactical level, and the control level. Each level encompasses
the driver, the wheelchair, and the environment. The three
elements interact continuously, and every state of the vehicle
can be linked to this interaction [18]. The driving tasks
like risk avoidance and steering velocity determination are
therefore entirely dependent upon the three elements. How-
ever, the adaptive behaviours executed within the driving
environment are greatly controlled by preferences of the
driver, which makes the driver a very important element in
the driving task.

In the literature, hierarchical structures of car driving
models have been presented in terms of skill based, rule
based, and knowledge based behaviours [40]. However, it is
hard to verify the contributions of such qualitative models
of perceptual processes and neural activities, in the actual
execution of the driving task. Pilutti and Galip Ulsoy [41]
therefore considered the system identification approachusing
the back-box model with autoregressive exogenous structure
(ARX) to identify the driver model’s parameters. Chen and
Ulsoy [42] also presented the same formulation approach for
both driver model and model uncertainties, using the actual
driving data captured from a fixed-base driving simulator.
The model however employed the autoregression moving
average with exogenous inputs (ARMAX) to improve on
accuracy, based on the consideration that ARMAX can yield
residuals closer to white noise with fewer parameters given
the same model order. The system identification approach is
also considered in [10]; nevertheless the authors do not take
into account exogenous inputs in their affine autoregressive
system, but instead derive a multistep model output error
criterion and present an algorithm to identify the parameters
of the subsystemusingmeasurablemotion data. Although the
consideration of black-box method of system identification
is straight forward and common with availability of data,
authors believe that sufficient information can be found
to relate the driver’s actions to the perceivable contextual
environment.

The study contributes to wheelchair driver behaviour
modelling by formulating a simple steering model that is
also linear in parameters. The complexity of the steering
model is very instrumental in determining whether the
model is applicable on-line, for real-time adaptation, or off-
line, for periodic or permanent adaptation. Derivation of
the presented model is based on deductive reasoning from
the known steering operations and systematic relationships
between the observable behaviours, taking into consideration
the environmental situation. It however shuns the consider-
ation of social events occurring within the driver’s mind. In
order to capture the adaptable demands of the driver at the
control and tactical levels, the driver-specific parameters are
identified. The steering data obtained from the augmented

virtual-reality wheelchair platform, known as Virtual-Space
1 (VS-1) at FSATI (FSATI is an acronym for French South-
African Institute of Technology) in TUT (TUT is an acronym
for Tshwane University of Technology.) [43], is utilised in
the identification of the model parameters. The identified
parameters are then used to curve-fit and compare the model
against the observed data.

The presented steering model can be used to adapt the
wheelchair to the user’s steering behaviour according to
Figure 1. Due to its simplicity and linearity, the proposed
model is applicable to wheelchair self-tuning adaptive con-
trol, to observe the preceding behaviour and self-tune the
parameters to fit the observation.

This paper is organised as follows. Section 1 has presented
the introduction in terms of the motivation and background
of behaviour modelling, taking into consideration the inter-
active elements involved in the accomplishment of steering
tasks. Section 2 presents some of the approaches that have
previously been considered in the derivation of specific
driver control models including the available wheelchair
driver behaviour models. In Section 3, simulator evaluation
and summary of the experiments conducted to obtain the
necessary steering data for driver identification are presented.
The driver behaviour model is presented in Section 4, while
the statistical analysis of the model and its comparison to
observed data are discussed in Section 5. Finally, conclusions
and future recommendation are presented in Sections 6 and
7, respectively.

2. Related Path Planning Models and
Driver Adaptation Literature

Driving begins when an optimal path to the destination
is conceived. This involves careful consideration of the
entire workspace. Based on the associated constraints, the
conception is accomplished either fully in advance before
setting out the journey or in parts within conceptually
subdivided sections of the workspace, during the driving
process. Path planning for robotic automation has been
achieved by deliberate and reactive planners. Deliberate
planners including cell decomposition, road-maps, and evo-
lutionary algorithms ensure prior plan of the whole journey.
However, they entail expensive computations that limit their
practical application in higher dimensional configurations.
Deliberate planners are, therefore, commonly applied to
unmanned ground vehicle in confined environments. On the
contrary, local planners provide cheap trajectory planning
algorithms, based on sensor information captured from the
local surrounding. Local planners ensure both faster and real-
time update of the environmental information, as well as
reactive response to stimuli. As a result, they are commonly
aimed at ensuring safety and stability of both the driver
and the vehicle. Nonetheless, the paths obtained from these
approaches may not be optimal, and the vehicle could be
trapped into localminima.Thismakes the application of local
planners to unmanned mobile systems inefficient without
deliberate planners. Both deliberate and reactive planners still
command significant influence in the literature. However, the
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Figure 1: The control diagram of a wheelchair with integrated driver behaviour model and intention detection model.

current focus is aimed mainly at integrating deliberate and
reactive planners into unified structures, to overcome the
drawback of individual planners. This explains the current
increase in hybrid planners [44].

Although wheelchair steering also involves both delib-
erate and local planning, the actual control or steering
behaviour of the users can be considered local. This is
characterised by reactive adaptations that the user performs
in response to perceived risks and undesired situations. Local
planners can, therefore, be considered in the formulation of
wheelchair drivers’ steering behaviour. Besides, the driver’s
presence eliminates the common limitations of local plan-
ners, as he/she is personally available to solve the nonop-
timality and the global (local minima and trap situations)
problems. The common local planners in literature include
nearness diagram, dynamic window, velocity obstacle, and
potential field methods. The strength of nearness diagrams
is based on the situation analysis performed by the system to
select the new direction ofmotion that reduces the local min-
ima. Both dynamic window and velocity obstacle approaches
operate in the system’s velocity space, by admitting all
velocities that allow stopping without collision. However,
they are computationally intensive, and only up to 1.0m/s has
been achieved with dynamic window approach according to
[45]. The velocity obstacle approach also requires complete
knowledge of other agents in the environment, including
their future dynamics. Besides, the implementation of their
analytical solutions is more difficult with environmental
uncertainties and noisy data from the agents [46]. On the
other hand, the potential field method is known to be
“elegant” and compatible to most real-time problem solving
tools with minimal computational demands.

2.1. The Potential Field Method. The Artificial Potential Field
(APF)method is, therefore, considered in this study.TheAPF
methods allocate the potential function in (1) in the config-
uration space, by representing the goal as an attractor and
obstacles as repellers. The potential field function denoted
as Uart is defined as sum of the attractive potential Uatt and
repulsive potential Urep. The force function can be obtained
by computing the negative integral of Uart:

Uart = Uatt + Urep. (1)

2.1.1. Attractive Potential. The attractive force is, commonly,
simply represented to attain itsminimumat the intended goal
[47–49]. However, because the driver is always available, in
wheelchair steering, to provide the motivating force to the

goal, the conventional Khatib’s [47] attractive potential may
be unnecessary in the wheelchair steering behaviour model.

2.1.2. Repulsive Potential. The repulsive potential is often
considered to have an inverse relationship with the square
of obstacles distance 𝜌2obst. In the literature, the following
representations are commonly used to express the repulsive
potential.

MinimumDistance Representation.Here, the repulsive force is
computed out of the minimum distance between the obstacle
and the vehicle at time instant 𝑘:

Frep𝑘 = 𝑘𝑜
1

min (𝜌2obst𝑘)
, (2)

where 𝑘
𝑜
is a positive constant that scales the repulsive

potential, while 𝜌obst(q, qobst) is the distance between the
vehicle at position q and the obstacle at position qobst.

Multiple Distance Representation. Here, several 𝑖 equidistant
points on the obstacle are selected, and the repulsive force
directed to the vehicle is computed at every time instant 𝑘,
according to the following expression:

Frep𝑘 =
𝑁

∑

𝑖=1
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. (3)

Representation with Restricted Radius of Influence. Latombe
[50] proposed an adjustment to the conventional repulsive
potential by limiting the radius of influence 𝜌

0obst
of the

obstacle. This eliminates unnecessary obstacle effects on the
vehicle when 𝜌obst𝑖 is large enough to allow safe passage:
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(4)

Directed Potential Field (DPF). The approach proposed by
Taychouri et al. [51] is of special interest. Apart from using
distance representation and taking into account the position
of the obstacle and its direction of motion, it also allocates
maximal repulsive potential whenever the vehicle is moving
directly towards the obstacle and negligible potential when-
ever the obstacle is at right angle to the direction of motion.
Due to its strength and ingenious simplicity, this formulation
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is considered to represent the subjective risk function of the
driver’s behaviour during steering:

Frep𝑘 =
𝑁

∑

𝑖

𝑘
𝑜

(cos𝛼
𝑖
)

𝑚

𝜌

2

obst𝑖𝑘

. (5)

In (5), 𝛼
𝑖
is the angle between point 𝑖 of the obstacle and the

direction of motion of the vehicle, while𝑚 is a gain constant.
The main causes of discontents that have seen several

modifications in the potential field approach [52, 53] include
the availability of local minima and trap situations [54],
the nonoptimality problem, and the goals nonreachable
with obstacles nearby (GNRON). Some of the recent APF
modifications that have been proposed include the Evo-
lutionary Artificial Potential Field (EAPF) method [55],
which integrates the APF method with genetic algorithms,
to derive an optimal potential field function that ensures
global planning without local minima. The EAPF model
uses both Multiobjective Evolutionary Algorithm (MOEA)
to identify the most optimal potential field function and
the escape force algorithm to avoid the local minima. In
[53], the concept of Parallel Evolutionary Artificial Potential
Field (PEAPF) is introduced as a new path planning method
in mobile robot navigation. PEAPF improves the earlier
EAPF method by making the controllability of the vehicle
in real-world scenarios with dynamic obstacles possible.
The recent Bacterial Evolutionary Algorithm (BEA) [56]
also compares closely with PEAPF, introducing an enhanced
flexible planner to improve the EAPF method. While these
always solve the APF drawbacks, the logical consideration of
these modifications with regard to real-time applications, in
most cases, turns out to be unrealistic, because the resulting
models involve expensive computational steps [57].

The important considerations in the approach of choice,
for wheelchair drivers, include the features that enhance their
adaptational behaviours within the local environment. This
is because, unlike in robotics, the driver is always available
in wheelchair steering to solve the globality problems. The
authors therefore believe that global planning at the expense
of computational simplicity may constitute a worthless trade-
off especially for real-time applications. The features of
consideration regarded in this study include computational
complexity, path smoothness, context scalability, directional-
ity, and handling capability in complex environments.

Computational Complexity. The implementation of a control
model in a real-time application is strongly influenced by
the amount time it takes to compute the control signal that
generates both feasible path and desired speed. According
to [57] it is more suitable to have a very fast path planner
for real-time applications than to perceive a vehicle that only
learns its workspace to memorise a variety of standard paths.
A finite control behaviour encompassing only the perceivable
workspace can be considered to increase planner’s computa-
tional speed.

Path Smoothness.This regards the capability of the planner to
interpret the dynamic and static behaviours of other agents
within the workspace in order to execute the adaptive control

Table 1: Comparison of the potential field modifications based on
their applicability in the formulation steering behaviour of wheel-
chair users.

APF EAPF PEAPF BPF DPF
Smooth planning ✓ ✓ ✓ ✓ ✓

Local planning ✓ ✓ ✓ ✓ ✓

Global planning ✓ ✓ ✓

Complex environments ✓ ✓ ✓

Highly scalable ✓ ✓ ✓

Directionality ✓

Min. computational time ✓

without jerks. The response speed of the planner and the
computedmagnitude of the steering signal are very crucial in
determining the quality of the resulting path. A driver model
with smooth planning capability could be instrumental in
the assistance of wheelchair users with disabilities like hand
tremors and cognitive disorders.

Context Scalability. It is important that only behaviours of
the agents that influence the driver’s subjective risk are taken
into consideration. Scaling down the entire workspace, for
instance, to the area enclosed by the look-ahead radius and
further to a smaller area encompassing the driver’s field of
view, may reduce the complexity of analysis and enhance the
quality of control.

Directivity. This concerns the amount of influence imposed
on the driver by virtue of the agent’s position and the direction
of motion of the vehicle. Directed models enhance smoother
variations in the sensor signals and therefore influence the
quality of the generated path.

Handling Capability in Complex Environments. The handling
capability regards the computational speed of the planner and
its ability to take into consideration the dynamic behaviour of
other agents in the configuration space.

Table 1 compares the features of some recent potential
field methods with the proposed DPF.

2.2. The Available Wheelchair Driver Models in Literature.
Most of the wheelchair driver models in the literature are
concerned with detection of the user’s intention in terms
of the direction of travel rather than adaptation of the
wheelchair to the user’s steering behaviour. In [58, 59], for
instance, an intelligent decisionmaking agent is presented for
driver’s intention detection in uncertain local environments
based on the Partially Observable Markov Decision Process
(POMDP). Using the same methodology, a global intention
recognition model is also presented in [60] for autonomous
wheelchair navigation. Besides, a multihypothesis approach
is considered in [61, 62] to predict the driver’s intention
and provide collaborative control, by adjusting the steering
signal to avoid observable risks during navigation. The
use of Bayesian networks for user intention recognition
and estimation of uncertainty on the user’s intent has also
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Figure 2:The roller system on the motion platform that enables both rotational motion of the wheels and the mapping of the wheel’s motion
into the virtual world.

been considered [19, 20, 63, 64]. These Bayesian network
approaches formulate the intended direction of the user on-
line during navigation. Although the uncertainty involved is
taken into consideration, suchmodels do not incorporate the
adaptable demand of the driver into the wheelchair.

Apart from the intention detection models, a filtering
approach that presumes an experienced reference driver to
eliminate the user handicap is considered in [22], while the
task oriented models that generate autonomous behaviours
at different levels are proposed in [65–70]. The task ori-
ented models may allocate the driver more or less control
depending on the contextual need at one level and enable the
wheelchair to perform autonomous tasks without the driver’s
input at another level. In both cases, however, the resulting
behaviour may not represent the actual steering preference of
the user.

The reactive model of wheelchair driver behaviour that
can be used to adapt wheelchair steering to the user’s
behaviour is proposed by [18]. The model is derived in terms
of two force components: the driving force F

𝑑
(6) and the

environmental or obstacle force F
𝑘
(7):

F
𝑑
=

𝐾

𝜏

[𝑉max (1 −
𝑋saf
𝑋act

) e − 𝑉act] , (6)

F
𝑘
= 𝑘
𝑜
exp(−

𝜌obst
𝐵

)n𝐷V, (7)

where 𝐾 is the weight constant, 𝜏 is the driver’s relaxation
or reaction time, 𝑉max is the maximum limit of wheelchair
velocity, 𝑋saf is the safe distance, e is a unit vector in the
direction of motion, and 𝑋act is the current wheelchair
position. Additionally, 𝐵 is a constant that represents the
range of the repulsive force, n is a unit vector in the direction
of the moving obstacle, and𝐷V is the directivity factor.

Although this model is good, it is nonlinear and does not
represent in a simple way the diminishing influence of the
risks positioned behind or perpendicular to the direction of
the wheelchair’s motion. In addition, it is not tested to real
data.

3. Experiments and Acquisition of
Steering Data

3.1. Evaluation of the VS-1 Simulator. The experiments to
obtain the required steering data have been conducted on
the VS-1 simulator [71] depicted in Figure 3. The platform’s
basic components include the visual interface, the motion
platform, and the controller. The virtual interface presents
to the user the synchronised virtual world either through
stereoscopic Head Mounted Display (HMD) or through the
four-connected screens display. The motion platform that
consists of a user ramp and a stage can either host an
electrical or a manual wheelchair, whereas the controller
interlinks the motion platform and the display unit. The
roller system in Figure 2 on the motion platform enables
both rotational motion of the wheels and the mapping of the
wheels’ motion into the virtual world. This is facilitated by
the force exerted on the rollers as a result of the wheelchair’s
and the user’s weight. The pulse generating rotary encoders
mounted on the rollers enable determination of position,
velocity, and acceleration of the wheelchair in the virtual
space and facilitate themeasuring of differential drivemotion
as the driving wheels in direct contact with the rollers rotate.
This generates forward or backward translations in the virtual
world with equal angular velocities 𝜔

𝑅
and 𝜔

𝐿
for the right

and left rear wheels, respectively, and rotational translations
with 𝜔

𝑅
̸= 𝜔
𝐿
.

In Figure 2, the actuated force feedback roller (𝑟𝑥)
rotates at a velocity of ±𝜔. 𝐹

𝑥
represents the frictional force

between one single roller and the wheel, while the variables
𝜔
𝑚

and 𝜏
𝑚

represent the actuator’s angular velocity and
transferred torque, respectively. Slip dynamics at the point
of contact between the driving wheels and the rollers could
be the major source of simulator error that may contribute
to inaccurate representation of the wheelchair’s dynamics
in the simulator. According to [72], slip is defined as the
difference between the rotational velocity of the wheels and
the actual or absolute velocity of the wheelchair. However,
since the actual linear velocity of the wheelchair on the
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Figure 3: Virtual-Reality System 1 (VS-1): the augmented virtual and motion simulator at FSATI for wheelchair simulations.

motion platform is zero, the theoretical difference between
the rotational velocity of the driving wheel and the rollers
is used to account for the possible wheel slip errors in the
simulator. A comparison between the wheel’s velocity and the
motor’s current in relation to the torque 𝜏

𝑤
of the driving

wheel is also made to determine the wheelchair’s instability.
This involves examining the basic properties of the dc motor
required in the theoretical determination of the output torque
𝜏
𝑚
. Instability is considered if 𝜏

𝑚
̸= 𝜏
𝑤
. In this case, a

method for automobile traction control [73] is used in the
stabilisation. However, to avoid the tipping-over instability of
the wheelchair on the simulator, fastening straps have been
used to hold the wheelchair in position.

Regarding the data collection experiments, an electrical
wheelchair is used, with the original embedded joystick as the
main interface. To effectively evaluate the steering behaviours
of the participants in relation to the general environment,
the virtual worlds attempted as much as possible to represent
the areas encountered frequently by the participants. Seven
individuals participated in the data collection. A few of the
data collection experiments are elaborated in Sections 3.3–
3.5. The seven participants include a female and six males,
aged between 26 and 74. Although none of the participants
had a degenerative disability condition or tremors, three were
regular wheelchair users while the rest had not used the
wheelchair before. The first time users had to familiarise
themselves with the steering of wheelchair in both virtual and
real environments before the capturing of their steering data
could start. Table 2 presents the participants’ information.

Five desirable characteristics of the VS-1 platform regard-
ing this study are noted: (1) it guarantees safety of the
participant; (2) it eliminates the need for sensor installation;
(3) it enables the user to feel the synchronised pitch and
roll rotational driving motions on flat and inclined surfaces,

Table 2: Information about the seven participants who took part in
the steering task for data collection.

Age Sex Usage
Participant 1 50 Male Never
Participant 2 26 Male Never
Participant 3 52 Male Regular
Participant 4 60 Male Never
Participant 5 74 Male Regular
Participant 6 30 Female Regular
Participant 7 46 Male Never

reducing the possibility of simulator sickness; (4) experi-
ments can be performed using real manual or electrical
wheelchairs; the electrical wheelchair can be steered using
the standard embedded joystick or any other available user
interface; and finally (5) the virtual world (examples in
Figures 4 and 8) provides the user with a close representation
of a real environment and a feeling of collision sound.

Notwithstanding the above advantages, the potential
usefulness of the motion platform in user evaluation can
only be acceptable if the virtual world and the impression
of motion in the simulated environment conform to the real
world to a certain extent. A study evaluating participants’
perception of degree of presence and comparing the usability
of the simulated world of VS-1 with the reality world is
conducted in [71]. The degree of presence compared to the
real world is evaluated in terms of spatial presence, involve-
ment, realism, and system value; a portion of evaluation
outcome is presented in Figure 5. Spatial presence indicates
the extent to which participants acknowledge their existence
in the environment in the actual sense, while involvement
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Figure 4: A user steering the wheelchair in a living room setup in
both virtual and reality environments.

concerns system response to user inputs and the resulting
motion feedback. Realism is expressed by the use of a real
wheelchair and the rotational motion of VS-1 platform,
while system value represents the degree to which users
recognise the motion platform in general as an evaluation
aid. According to the study, the participants experienced 75%
disorientation with regard to steering tasks and platform
usage at the beginning of evaluation in both reality and
simulated world. However, adaptation was much faster in
both cases, with 81% adaptation rate in the reality world and
69% in the virtual world. Considering the presented tasks, the
participants observed 73% and 75% challenges/uncertainties
in the reality and simulated worlds, respectively. The study,
thus, demonstrates a fair similarity between the steering
experience observed within the virtual world and within the
reality world. Figure 4 for instance, shows the user captured
while steering the wheelchair in a living room environment
in both virtual and reality worlds during the evaluation.

As in most simulators, the existence of cue conflicts
between the motion platform and the virtual world due
to lack of the platform’s linear motion and the sensory
simulation artefacts (such as reduced field of view in the
virtual world)must be acknowledged.Moreover in theminds
of participants, however important it is, a simulation task will
always be perceived as a simulation exercise, with few risks
for careless actions and few rewards for desired behaviours.
Nevertheless, studies have demonstrated the feasibility of
simulation techniques and have shown that simulation results
approximate those obtained by other methods [74]. Authors
therefore trust the relative validity of VS-1 as sufficient for
driver behaviour assessment.

3.2. Experimental Data Captured for Behaviour Modelling.
While it is apparent that complete success inmodelling driver
behaviour requires vast information that may not be fully
captured by experiments alone, the platform provides the
following sensor information for utilisation.

(1) Range or distance between the wheelchair and other
objects (𝜌obst).

(2) Range rate or velocity of the wheelchair relative to
other objects (]obst).

(3) Direction of an object from the position of wheelchair
(𝜙obst).

(4) Absolute velocity of the wheelchair (]
𝑘
).

(5) Yaw angle of the wheelchair (𝜙
𝑘
).

Besides, VS-1 also avails yaw rate, pitch angle, and roll angle.

3.3. Experiment 1. Experiment 1 is conducted in a “risk”
free environment. The word “risk” is used in this study
to represent the objects or agents that the driver would
not wish to steer over or closer to or collide onto. Goal
positions 𝐺

1
to 𝐺
5
are set 4m away from the starting point

𝑆 at angles 90∘, 60∘, 30∘, 0∘, and −30∘, respectively. In each
trip, the participant is directed to drive five times from
position 𝑆 (with wheelchair initially oriented towards 𝐺

1
) to

all the goals. Trajectories and speeds observed during the
experiment are shown in Figure 6. It is noticeable that steering
towards 𝐺

1
involved a steeper rise in steering speed as

compared to the rest.More skewed directions of the goal from
the initial wheelchair orientation at position 𝑆 result in slower
initial accelerations. Explanation regarding this behaviour
is considered common knowledge; that drivers constantly
perceive an instantaneous or look-ahead goal whose position
from the vehicle is a function of the available steering space
and path curvature. According to Figure 6, highly skewed
global goals involve highly curved paths at the beginning
of the journey, implying closer initial instantaneous goals
and slower initial accelerations. Desired steering velocity
is therefore related to position of the instantaneous goal.
Besides, participants prefer aligning themselves to the global
goal (if possible) at the initial phases of the journey. Once
aligned, the position of the instantaneous goal rapidly shifts
towards the global goal and steeper rise in speeds is realised.
This is the observable pattern; however the amount of shift
with regard to the environmental situation is subjective. It
may be concluded, therefore, that the local driving velocity in
a risk free environment is related directly to the position of the
instantaneous goal and is influencedmajorly by the curvature
of the path.

3.4. Experiment 2. The second experiment is conducted in
a configuration with an object placed 4m, 8m, and 12m
away from the starting point in the first, second, and third
trip, respectively. In each trip, the participant is advised to
drive from the starting point, close to (0, 0) in Figure 7,
to the goal approximately 15m away. Figure 7 depicts the
trajectories and the speeds captured fromone participant. It is
observable that although the participants deviate away from
the observed risk, the availability of sufficient space within
the configuration enables them to choose the paths with little
effect on the desired steering speed.

3.5. Experiment 3. The third experiment observes the steer-
ing behaviour of the participants in the living room envi-
ronment depicted in Figures 4 and 8. In this experiment,
participants are advised to drive five times to the goals 𝐺

1
,

𝐺
2
, and 𝐺

3
from the starting point 𝑆, without speed or path

restrictions. Interestingly most participants considered the
paths and speeds depicted in Figure 9, allocating additional
local priority to the local risk compared to the global goal.
It may be important, also, to note that participants preferred
longer safer paths as opposed to shorter risky paths; the
“magnitude of risk” in this case is determined by the amount
steering accuracy required to avoid collision. At positions
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Figure 5: Virtual-Reality System 1 (VS-1): the augmented virtual and motion platform at FSATI for wheelchair simulations.
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Figure 6: Wheelchair trajectories and speeds observed during experiment 1.

A, B, C, and D, the apparent possibility of collision with
furniture and reduction in the immediate forward space
along the perceived curved path compels participants to
observe closer instantaneous goals; this accordingly resulted
in the reduction of the steering speed at the respective points
as depicted in Figure 10.

4. Driver Behaviour Modelling

According to the intentional stance strategy, Dennett [75]
treats an entity (an organism or artefact) as a rational agent
having the ability to regulate its choice of action by its
desires and beliefs. Dennett then defines “behaviour” as a
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Figure 7: Trajectories and speeds of wheelchair observed during experiment 2.

Figure 8: The virtual living room environment considered for
experiment for experiment 3, perimeter wall not shown for clarity
reason.

goal oriented activity of an agent that can only be understood
by assigning intentions or goals to the agent. Modelling the
driving behaviour of an individual, thus, involves defining
one of the numerous goals that a driver may be required
to reach. Generally, different drivers demonstrate different
steering actions and reactions within the same environment
to achieve the same objective. These subjective behaviours
are commonly related to the driver’s capability in terms
of decision making (choice) and risk taking (desires) and
are affected by personality, experience, state of driver, task
demand, and environment. Adapting an artefact to exhibit
the desired characteristics of an individual and to take into
account the evolving and dynamic behaviour of users may
thus be approached in two ways, namely:

(1) System Training.Here, the model learns by observing
over time the way human drivers execute particular
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Figure 9: Wheelchair trajectories observed during experiment 3.
The rectangular shapes in the configuration space represent the
living room furniture.

tasks. Once a task is perfectly learned, the model
can proceed to learn other tasks. This approach
could be applicable to motor-vehicle driving tasks
because of the regular nature of the motor-vehicle
driving and the fact that most vehicle-driving tasks
are well defined and easily representable by heuristics.
In the wheelchair, however, the workspace is very
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Figure 10: Wheelchair speeds observed during experiment 3 in the living room experiment.

complex andundefined,with various tasks lacking the
chronological rules of execution.

(2) Representing the Entire Driving Behaviour Theoreti-
cally.This approach has been considered in this paper.
All local tasks performed by the driver are considered
together to realise the driving behaviour. Theoretical
driver behaviour models of this nature are initially
limited in scope and may not perfectly represent
the behaviours considered specific or specialised in
nature. However, they can be advanced over time to
closely predict the actual driving behaviour. These
theoretical driving models may be validated by com-
paring their outputs against some real data from
human drivers.

4.1. Dynamic Representation of Driving Behaviour. Four
major factors are, therefore, considered to influence
wheelchair driving as follows. The first prompts the user to
exert some force to begin or continue in motion pertains to
the difference between the actual wheelchair position and
the target position (in this case the instantaneous goal). This
factor is the primary motivational element that instigates
the driver to move; as long as it exists, the wheelchair driver
is understood to apply and continue applying the driving
force. The second factor influences the amount of force
exerted in “attempt” to minimise the positional difference.
This factor, the desired velocity, is related to the urgency or
average time required by the user to accomplish the driving
task at hand; and it is usually a function of disposition and

the prevailing personal desire and priority of the driver. The
third factor concerns risk assessment and involves both the
driving capability of the user and the driver’s safety opinion
of the environment. All these factors contribute concurrently
leading to variations in wheelchair velocity while in motion
towards the goal. Besides, there exists an interrelationship
between the three factors in that the users establish a
subjective constant risk level and when this is exceeded, a
compensation mechanism is activated. For instance, this
may involve altering the position of the instantaneous goal,
which then alters the direction and speed of driving. Finally,
it is important to observe that the amount of force exerted
is constrained by physical limits of the wheelchair. The local
driving velocity ], limited by maximum wheelchair velocity
]max, is therefore considered to be a function of goal ]des(𝑔𝑖)
and environmental situation ]env(env) as presented in

] = 󵄨󵄨󵄨
󵄨

]des (𝑔𝑖) + ]env (env)
󵄨
󵄨
󵄨
󵄨

≤ ]max. (8)

4.2. Desired Steering Velocity. Drivers are generally believed
to prefer some constant driving speeds in environments with
minimal risk factors. Desired speed is a personality factor
that varies from one individual to the other. It is affected not
only by composition of the workspace but also by the implied
steering complexity and user experience. The composition of
the workspace introduces an aspect of risk and safety which
compels a driver to take on some adaptation mechanisms in
order to limit the perceived risk to an acceptable subjective
threshold. Such mechanisms generally confine the local
driving speed to a safe minimum. A discussion in this regard
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is presented in Section 4.3. The steering complexity on the
other hand pertains to influence of complex orientational
manoeuvres involved in the steering task, including effects
path curvature. Disassociating the influence of risks resulting
from environmental configuration, from the desired speed,
and considering desired speed as a function of the steering
complexity alone result in (9), where the desired velocity is
considered to be a function of path curvature in the direction
of the instantaneous goal. As presented in (9), desired velocity
only takes the observable variables having a systematic
relationship with the steering behaviour into consideration
and avoids the effects of nonquantifiable subjective factors
including user experience and task urgencies:

]des = 𝑠descos
𝑝
(𝜙
𝑘
− 𝜙
𝑘−1
) e, (9)

where 𝑝 is a constant, 𝑠des is the desired driving speed, 𝜙
𝑘
is

the direction of thewheelchair at time instant 𝑘, and cos𝑝(𝜙
𝑘
−

𝜙
𝑘−1
) is the influence of path curvature on desired velocity. e

as expressed by (10) is the direction of desired velocity:

e =
q
𝐿𝑘
− q
𝑘

󵄨
󵄨
󵄨
󵄨
󵄨

q
𝐿𝑘
− q
𝑘

󵄨
󵄨
󵄨
󵄨
󵄨

. (10)

In (10), q
𝐿𝑘

is the position of the instantaneous goal, while q
𝑘

is the instantaneous position of the wheelchair.

4.3. Influence of Risk and User Adaptation Mechanism. Colli-
sion or threat avoidance and goal-seeking reactions constitute
the driver’s fundamental behaviours. In fact, in most cases,
the capability of a wheelchair driver is evaluated based on the
ability to avoid threats and collisions during steering. Besides,
common wheelchair accidents that have resulted in severe
wheelchair damages and injuries to the driver can be related
to collision. Collision avoidance is, therefore, elemental to the
safety of both the wheelchair and the user. Drivers generally
presume some constant risk thresholds and safety margins
that they seek to observe in the vicinity of danger during
steering. When such thresholds are exceeded, certain risk-
compensating mechanisms are initiated to minimise the risk
level. In the Taylor’s risk-speed compensation model [76],
it is observed that drivers regulate their driving speeds in
accordance with the magnitude of the perceived risk in such
a way that larger magnitudes result in slower speeds. In order
to adapt the wheelchair to such behaviours and eliminate the
common variations in the drivers’ level of attention, proper
risk detection systems need to be instituted on thewheelchair.
The following two hypotheses are proposed in this paper as
the main adaptation references commonly presumed by the
drivers to confine wheelchair within the limits of safety:

(1) Time-to-risk (TTR).
(2) Distance-to-risk (DTR).

The time-to-contact with a risk is a function of both the
wheelchair’s distance from the risk and speed of travel
towards the risk. The consideration of TTR naturally implies
that the wheelchair can reach or get very close to risky objects
at very low velocities. On the other hand, DTR means that
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Figure 11: Influence of risky situations on wheelchair steering with
𝑚 and 𝑛 = 2 and with distance-to-risk 𝑑risk considered as the main
user adaptation reference.

the driver will maintain a comfortable distance from the
risk. Expression (11) is considered to represent the drivers’
avoidance behaviour in the vicinity of risks:

]env𝑘 = −𝑘env
𝑁

∑

𝑖=1

cos𝑚 (𝜙obst𝑖 − 𝜙𝑘)
𝐴

𝑛

𝑖

, (11)

where 𝑘env, 𝑚, 𝑛, and 𝑁 are constants, 𝜙obst𝑖 is the instan-
taneous direction of point 𝑖 of the risk from the position
of wheelchair, 𝜙

𝑘
is wheelchair direction at time instant 𝑘,

and 𝐴 is the adaptation mechanism presumed by the user.
Figure 11 depicts the variation of (11) with respect to different
positions and directions of risks in the workspace, with DTR
presumed as the main adaptation reference. The strength of
(11) is based on the aspect that only risks within the field
of view affect steering behaviour. Risks considered closer
and directed to the viewer have greater influence compared
to those viewed as skewed and further away. It, therefore,
scales down the workspace to a smaller workable field of
consideration. Taking both (9) and (11) into account, the
model considered to represent the driver’s behaviour in the
local context is represented by

]
𝑘+1

= ]
𝑘
+ 𝑘] (]des − ]

𝑘
) − 𝑘env

𝑁

∑

𝑖=1

cos𝑚 (𝜙obst𝑖 − 𝜙𝑘)
𝐴

𝑛

𝑖

. (12)

5. Simulation, Results, and Discussion

5.1. Parameter Identification and AdaptationMechanism. The
linearity in parameters of the proposed driver behaviour
model enabled the consideration of ordinary least squares
method in the identification of parameters. In addition, the
moving average filter with a span of 20 is used in smoothing
the captured data. The result of regression analysis of the
model is presented first in Table 3, where the DTR criteria
presented in (13) are considered as the primary adaptation
mechanism adopted by the participants to avoid collision
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Table 3: Statistical analysis of the model with DTR being the adaptation mechanism. Indicated constants represent a pair that resulted in the
highest coefficient of determination.

𝑝 Parameters Std. error 1/𝑡stat Max. Dev. 𝑅

2

Participant 1

2
𝑘] 0.0023296 0.0000493 2.12% 0.021145

0.0066778 0.9998727𝑘env 0.0000607 0.0000042 6.92% 0.069456
]des 2.1620485 0.0000664 0.003% 0.000031

Participant 2

1
𝑘] 0.0013058 0.0000457 3.50% 0.034998

0.0044821 0.9998751𝑘env 0.0000168 0.0000050 29.8% 0.297619
]des 3.1936471 0.0000572 0.002% 1.791e − 5

Participant 3

2
𝑘] 0.0016111 0.0000638 3.96% 0.039600

0.0282700 0.9998215𝑘env 0.0001812 0.0000042 2.32% 0.023179
]des 2.9748170 0.0000809 0.003% 2.720e − 5

Participant 4

1
𝑘] 0.0022988 0.0000481 2.10% 0.020924

0.0096421 0.9998336𝑘env 0.0001566 0.0000041 2.62% 0.026181
]des 1.5590495 0.0000483 0.003% 3.098e − 5

Participant 5

1
𝑘] 0.0011705 0.0000330 2.82% 0.028193

0.0048858 0.9999171𝑘env 0.0000525 0.0000024 4.57% 0.045714
]des 2.3263703 0.0000322 0.001% 1.384e − 5

Participant 6

2
𝑘] 0.0033319 0.0003469 10.4% 0.104115

0.0288915 0.9992932𝑘env 0.0002114 0.0000097 4.59% 0.045885
]des 2.0650043 0.0003439 0.017% 1.665e − 4

Participant 7

2
𝑘] 0.0007837 0.0000496 6.33% 0.063290

0.0108345 0.9998355𝑘env 0.0001583 0.0000048 3.03% 0.030322
]des 5.5191529 0.0000688 0.001% 1.247e − 5

risks, and also in Table 4, where TTR in (14) is the primary
adaptation mechanism:

DTR
𝑘
= 𝜌obst𝑘𝑖

q̂
𝑖
+ 𝜌obst𝑘𝑗

q̂
𝑗
, (13)

TTR
𝑘
=

𝜌obst𝑘𝑖
]
𝑘𝑖

q̂
𝑖
+

𝜌obst𝑘𝑗

]
𝑘𝑗

q̂
𝑗
. (14)

In (13) and (14), 𝜌obst𝑘 = qobst − q
𝑘
is the instantaneous

distance between the risk at position qobst and the wheelchair
at position q

𝑘
, while ]

𝑘
is the instantaneous velocity of the

wheelchair.
Table 3 contains the model constant 𝑝, the identified

parameter values, standard error in value and percentage,
𝑡-statistics, maximum deviation between the fitted and the
observed data, and coefficients of determination of the anal-
ysis for each of the seven participants. The optimised values
of constants 𝑚 and 𝑛 used in the identification process are 4
and 2, respectively.These values represent a pair that resulted
in the highest coefficient of determination with regards to
most participants. In Figure 11, the value of constant𝑚 defines
the shape of the contours along which risks possess the same
magnitude of influence; a higher value indicates that the

driver is less bothered about skewed risks as compared to risks
perceived along or closer to the direction of the wheelchair.
Referring to (11), 𝑚 = 1 results in a circular contour, while
higher values (𝑚 > 1) produce oval contour shapes. The
high value of constant 𝑚 considered in the identification
process thus represents the reduced influence of side risks
on the participant’s steering behaviour. Constant 𝑛 on the
other hand determines the magnitude of risk influence
based on the presumed adaptationmechanism.Higher values
imply that the magnitude of influence of the observed risk
is considerably high within the close neighbourhood but
negligible outside the neighbourhood.

In parameter identification, navigation data exceeding
80,000 data sets per participant, obtained from the previous
steering experiments, were collected and utilised. Out of
the captured data, 85% are used in parameter identification,
to ensure that the observed parameters represent well the
natural behaviour of the participant, while only 15% are
used in curve fitting validation. The observed values of 𝑅2
in Table 3 demonstrate how well the model replicates the
collected data. Besides, the resulting large absolute values
of 𝑡-statistics established the significance of the identified
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Table 4: Statistical analysis of the model with TTR being the adaptation mechanism and for the same constants as those in Table 3.

𝑝 Parameters Std. error 1/𝑡stat Max. Dev. 𝑅

2

Participant 1

2
𝑘] 0.0022305 0.0000508 2.28% 0.022775

0.0051076 0.9998726
𝑘env 0.0000116 0.0000024 20.7% 0.206897
]des 2.1419324 0.0000642 0.003% 2.997e − 5

Participant 2

1
𝑘] 0.0012839 0.0000472 3.68% 0.036763

0.0042400 0.9998751
𝑘env 0.0000059 0.0000018 30.51% 0.305085
]des 3.2207044 0.0000570 0.002% 1.770e − 5

Participant 3

2
𝑘] 0.0011325 0.0000646 5.70% 0.057042

0.0077142 0.9998197
𝑘env 0.0000370 0.0000027 7.30% 0.072973
]des 3.3136044 0.0000776 0.002% 2.342e − 5

Participant 4

1
𝑘] 0.0017910 0.0000473 2.64% 0.026410

0.0053594 0.9998327
𝑘env 0.0000718 0.0000043 5.99% 0.059889
]des 1.5635212 0.0000435 0.003% 2.782e − 5

Participant 5

1
𝑘] 0.0010542 0.0000339 3.22% 0.032157

0.0042527 0.9999171
𝑘env 0.0000403 0.0000018 4.47% 0.044665
]des 2.4670341 0.0000319 0.001% 1.293e − 05

Participant 6

2
𝑘] −0.001482 0.0004203 −28.4% −0.28360

0.0274354 0.9992838
𝑘env 0.0002261 0.0000146 6.46% 0.064573
]des −1.513273 0.0002957 −0.02% −1.95e − 4

Participant 7

2
𝑘] −0.000199 0.0000442 −22.2% −0.22211

0.0059510 0.9998381
𝑘env 0.0000659 0.0000031 4.70% 0.047041
]des −13.54669 0.0000522 −0.00% −3.85e − 6
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Figure 12: Captured linear velocity and model response for participants 1 and 7.

coefficients in the behaviour model. It is noticeable that
higher values of 𝑡-statistics corresponding to 𝑘] as compared
to 𝑘env are obtained, which indicates the stronger impact
of desired velocity as compared to risks avoidance, which
could be influenced by the drivers’ subjective goal reaching
urgencies during the steering experiments. The variability of

]des from one participant to the other also demonstrates the
importance of identifying the individual driver’s behaviour,
because different drivers prefer particular driving speeds.

Similar results are presented in Table 4. The same con-
stants in Table 3 are also considered in comparing the rele-
vance of the two hypothesised risk adaptation mechanisms.
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Figure 13: Captured linear velocity and model response for participants 1 and 7.
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Figure 14: Observed trajectories and linear velocities of participant 1.

TTR is adopted and the observed results are found to be
very close to those in Table 3. Nonetheless, one can quickly
realise the slightly lower coefficient of determination and 𝑡-
statistics obtained with the consideration of TTR. Besides,
the parameters obtained with respect to participants 6 and

7 may not represent the actual behaviour, because ]des and
𝑘] are negative. Moreover, the desired velocity obtained for
participant 7 seems unreasonable. These may have resulted
from the drivers’ preference and their choice of adaptation
criteria. Because of the slow wheelchair speed, driver with
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Figure 15: Observed trajectories and linear velocities of participant 7.

confidence on the braking system may for instance only
observe the distance to the risk and apply an instant brake at
sufficient distance just before collision. It may be considered
that TTR is not observed if there is no progressive reduction
in the speed as the driver approaches the threat, the use of
TTR in this case may produce the observed invalid results. It
may therefore be concluded that the consideration of DTR as
the principal adaptation criteria that wheelchair drivers adopt
in the vicinity of risks corresponds well with most wheelchair
drivers.

5.2. Trajectory Fitting. Because of the space limitation, only
two randomly chosen participants’ results are presented in
this section to validate the behaviour model. The presented
curves include a comparison between the model and cap-
tured data, observed error between the model and captured

data, and wheelchair trajectory and steering velocity for the
two participants. Figure 12 depicts the relationship between
the observed data and model response; it shows the large
amount of data used in the least squares estimation of the
model parameters presented in Table 3 for each participant.
With these constants and parameters, it is interesting to
observe how the model closely represents captured data.
The observed difference between the model and captured
data as presented in Figure 13 basically represents white
noise. The observed and generated trajectories and linear
velocities of participant 1 and participant 7 are depicted in
Figures 14 and 15, respectively. The depicted comparison of
the “model generated” trajectories and linear velocities with
the corresponding trajectories and linear velocities observed
from real data in Figures 14 and 15 demonstrate the good
correspondence between themodel and the actual behaviour.
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Figure 16: The curve fitting comparison between the presented model and Emam et al. [18]’s model.

5.3. A Comparison with Emam et al. [18]’s Driver Behaviour
Model. A curve fitting comparison between the presented
model and Emam et al.’s model [18] is also presented in
Figure 16. The second trajectory of participant 1 (presented
in Figure 14) is used in the comparison, with DTR as
the adaptation criteria. It is noticeable that the presented
model performs better, with a very close fitting compared
to Emam et al.’s model. In addition, Table 5 also presents
the estimated parameter values, standard error, 𝑡-statistics,
maximum deviation, and 𝑟-squared for Emam et al.’s model
with respect to the seven participants. Comparing the regres-
sion analysis in Table 3 with the analysis in Table 5, it
is apparent with comparatively higher standard errors and
maximum deviation that the presented linear model still
performs better. Besides, some negative parameters value
were obtained during the identification.

6. Conclusion

The primary objective of this study was to develop a model
that represents the local steering behaviour of a wheelchair
driver. This paper has presented a good driver behaviour
model that is also linear in parameters. The model assumes
explicit knowledge of subsequent intentions of the driver, in
order to generate the adaptation signals that may be required
to adapt the wheelchair to the driver’s steering behaviour. It
is observable from the identified parameters that although
participants exhibited similar driving behaviours, there is
always an implied uniqueness with each participant, which
validates the need for modelling and identification of the
driver’s behaviour. This is more important, especially, for the
ageing users whose steering capabilities deterioratewith time.
Due to simplicity and linearity of the model, the ordinary
least square method has been used in the determination of
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Table 5: The regression parameters obtained with Emam et al.’s model.

Param. value Std. error 1/𝑡stat Max. Dev. 𝑅

2

Participant 1
𝐾(1) −0.00097 0.00033 −34.184% −0.3418

0.39777 0.99258𝐾(2) −0.99680 0.00074 −0.0744% −7.44e − 4
𝐾(3) 0.002372 0.00132 55.4434% 0.55443
𝐾(4) 2.666837 0.47865 17.9482% 0.17948

Participant 2
𝐾(1) 0.000822 0.00169 2.062e2% 2.06227

0.55602 0.99266𝐾(2) −0.99650 0.00075 −0.0756% −7.56e − 4
𝐾(3) 0.002030 0.00117 57.8637% 0.57864
𝐾(4) 2.914947 0.51880 17.7981% 0.17798

Participant 3
𝐾(1) 0.007529 0.00099 13.1842% 0.13184

0.36037 0.99245𝐾(2) −0.99562 0.00063 −0.0629% −6.29e − 4
𝐾(3) 0.001935 0.00106 54.7612% 0.54761
𝐾(4) 2.720196 0.51956 19.1000% 0.19100

Participant 4
𝐾(1) 5.4794e − 5 2.577e − 5 47.0383% 0.47038

0.58585 0.99193𝐾(2) −0.99611 0.00053 −0.0528% −5.28e − 4
𝐾(3) 0.000754 0.00028 37.4431% 0.37443
𝐾(4) 3.414773 0.31000 9.07842% 0.09078

Participant 5
𝐾(1) 0.001279 0.00086 67.1672% 0.67167

0.29464 0.99237𝐾(2) −0.99631 0.00069 −0.0693% −6.93e − 4
𝐾(3) 0.001302 0.00093 71.2194% 0.71219
𝐾(4) 2.802759 0.61846 22.0662% 0.22066

Participant 6
𝐾(1) 0.003097 0.00096 30.9182% 0.30918

0.01506 0.99205𝐾(2) −0.99582 0.00063 −0.0633% −6.33e − 4
𝐾(3) −0.00016 0.00123 −7.82e2% −7.8198
𝐾(4) 0.645253 11.9476 1.851e3% 18.5161

Participant 7
𝐾(1) 0.002894 0.00192 66.2751% 0.66275

0.66898 0.99254𝐾(2) −0.99636 0.00071 −0.0708% −7.08e − 4
𝐾(3) 0.001286 0.00064 49.5301% 2.01897
𝐾(4) 3.589096 0.46016 12.8211% 0.12821

model parameters. The regression analysis of the model with
identified parameter values have demonstrated acceptable
performance results for all participants.

7. Recommendation for Future Works

In this study, explicit driver intention is assumed to be
known. However not all wheelchair users have the capability
of communicating properly all the navigational commands
required to make the wheelchair move, stop, or turn with
the available user interface. Complete assistance demands a
model that can utilise the available information to predict
the driver’s intention, to assist a disadvantaged driver to steer
in the right direction. Incorporating an intention detection
model in the driver behaviour model may therefore be

considered if the model is to be used as a codriver to provide
real-time assistance to the driver.
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