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How Well Do All Patient Refined–Diagnosis-Related Groups
Explain Costs of Pediatric Cancer Chemotherapy Admissions in
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QUESTION ASKED: Do All Patient Refined–Diagnosis-Related Group (APR-DRG) groupings,

designed for adult admissions and recently adopted by Medicaid programs for prospective

reimbursement of pediatric admissions, accurately predict costs of pediatric cancer chemotherapy

admissions?

SUMMARY ANSWER: APR-DRGs predicted most, but not all, of the variation in costs of

childhood cancer chemotherapy, with cancer diagnosis, patient age, and type of hospital all

additionally contributing independently.

METHODS: We identified 25,613 chemotherapy admissions in the 2009 Kids’ Inpatient Database

(KID) using procedure codes for chemotherapy or immunotherapy on or before hospital day 2 in

patients with any discharge diagnosis code of cancer. To determine how well APR-DRGs explain

costs we applied a hierarchic linear regression model of hospital costs allowing for a variety of

patient, hospital, and geographic confounders. We examined the effects of each of these groups

of characteristics both separately and combined. The model was tested for robustness under

alternative conditions including excluding admissions where states do not provide all data,

restricting the model by DRG group, and identifying admission with infectious complications.

MAIN RESULTS (OR WHAT WE FOUND): Ninety percent of chemotherapy admissions

were grouped into DRG 693 “chemotherapy” and costs increased by severity within this DRG.

Admissions associated with a diagnosis of acute myelomonocytic leukemia (AML) were 81%

more costly than admissions associated with acute lymphoblastic leukemia but were unevenly

distributed across hospitals. Treating children older than age 10 years was 26% to 34%more costly

than treating infants. Admissions at a freestanding children’s hospital were 46% more costly than

those at other hospital types.

BIAS, CONFOUNDING FACTOR(S), DRAWBACKS: The KID data set lacks patient identifiers,

so we could not account for repeat admissions; it also lacks pharmaceutical information, which

prevented the study of cost drivers.

REAL-LIFE IMPLICATIONS: We found that APR-DRGs reflected many of the differences in

costs of childhood cancer chemotherapy admissions. However, other factors are also important in

predicting costs, most notably diagnosis, age, and hospital type. Diagnosis reflects, in part, the

current practices for treatment that can be further optimized over time. Meanwhile, hospitals that

take care of larger proportions of diagnoses falling outside of APR-DRG groupings may be at

increased fiscal risk (Fig 1A).

The full version of this article
may be viewed online at
DOI: 10.1200/JOP.2015.010330
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FIG 1A. Variation in ratio of combined acute lymphoblastic leukemia (ALL), bone or joint tumor, or soft tissue tumor to acute myelomonocytic leukemia (AML)
chemotherapy admissions by hospital. Admissions limited to APR-DRG 693.2.
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Abstract
Purpose
State-based Medicaid programs have begun using All Patient Refined–Diagnosis-Related

Groups (APR-DRGs) to determine hospital reimbursement rates. Medicaid provides

coverage for 45% of childhood cancer admissions. This study aimed to examine how well

APR-DRGsreflectadmissioncosts for childhoodcancerchemotherapy to informclinicians,

hospitals, and policymakers in the wake of policy changes.

Methods
We identified 25,613 chemotherapy admissions in the 2009 Kids’ Inpatient Database. To

determine how well APR-DRGs explain costs, we applied a hierarchic linear regression

model of hospital costs, allowing for a variety of patient, hospital, and geographic

confounders.

Results
APR-DRGs proved to be themost important predictors of admission costs (P, .001), with

costs increasing by DRG severity code. Diagnosis, age, and hospital characteristics also

predicted costs above and beyond those explained by APR-DRGs. Compared with

admissions forpatientswithacute lymphoblastic leukemia, costsof admissions forpatients

with acute myelomonocytic leukemia were 82% higher; non-Hodgkin lymphoma, 20%

higher; Hodgkin lymphoma, 25% lower; and CNS tumors, 27% lower. Admissions for

children who were 10 years of age or older cost 26% to 35% more than admissions for

infants.Admissions tochildren’shospitals cost46%more thanadmissions tootherhospital

types.

Conclusion
APR-DRGs developed for adults are applicable to childhood cancer chemotherapy but

should be refined to account for cancer diagnosis and patient age. Possible policy and

clinical management changes merit further study to address factors not captured by

APR-DRGs.

INTRODUCTION
Diagnosis-related groups (DRGs) are de-
signed to classify clinically similar groups of

patients with similar resource requirements.1

Since the early 1980s, the Centers for Medi-
care andMedicaid ServiceshasusedDRGsas
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part of a prospective reimbursement system under Medicare.
State-based Medicaid systems historically used combinations of
cost-based and managed care capitation to pay for hospital care.
In 2013, states began shiftingMedicaid inpatient reimbursement
to prospective strategies using All Patient Refined–DRGs (APR-
DRGs).2-7 APR-DRGs further classify admissions within a DRG
into one of four severity codes after considering factors such as
severity of the primary illness, comorbidities and secon-
dary diagnoses, and services used during the admission. A
reimbursement rate is assigned to each DRG plus severity
code. Ofcourse, somepatientswill actuallyhavehighercosts than
expected; costswill be lower for others. Thedifferences cancel one
another out as long as the mix of patients within each DRG is
random, andDRGs accurately reflect clinical resource utilization.

Most DRGs are the same for children and adults, with the
exception of acute leukemia (DRG 690) and groups for neo-
natal conditions. To date, little examination of the adequacy
of APR-DRGs to predict resource utilization in childhood
admissions has occurred. Childhood cancer admissions cost
approximately $1.9 billion nationally in 2009, nearly 11%of all
inpatient costs for non-newborn children younger than age

21years.8,9 Almost half of childhood cancer admissions are for
chemotherapy.8 BecauseMedicaid provides medical coverage
for 45% of pediatric cancer admissions,10 the frequency and
high resource utilization of chemotherapy admissions makes
this an area of potential fiscal risk if APR-DRGs and actual
utilization are not aligned.

Our overall goal is to provide guidance for clinicians,
hospitals, and policymakers in view of policy to reimburse
Medicaid admissions using APR-DRGs. In this report, we
analyze the ability of APR-DRGs to predict inpatient costs
among children with cancer admitted for chemotherapy by
examining national samples of hospital admissions for 2009.
The analysis controlled for diagnosis-, patient-, and hospital-
level factors, andwe estimated the effect each set of factors had
on admission costs.

METHODS

Study Sample
A cancer cohort was identified from the 2009 Kids’ Inpatient
Database (KID), compiled by the Healthcare Cost and Uti-
lization Project, and sponsored by the US Agency for
Healthcare Research and Quality.11 The Institutional Review
Board of Baylor College of Medicine considered this research
exempt from review.

KID samples approximately 80% of pediatric discharges
from community hospitals; the 2009 sampling included 3.4
million deidentified admission records for patients younger
than the age of 21 years from 5,128 hospitals in 44 states. For
each record, the database contains APR-DRGs as assigned by
the 3M grouper version (3MHealth Information Systems, Salt
Lake City, UT) in use at discharge12 and up to 25 discharge
diagnoses and 15 procedures coded according to the Inter-
national Classification of Diseases, Ninth Revision, Clinical
Modification (ICD-9-CM). KID also includes patient age, sex,
health care payer, and ameasure of the patient’s income status
by zip code. States optionally provide race/ethnicity, income
status, and hospital characteristics; any systematically omitted
data were coded as missing.

Cancer-related admissions were identified from KID by an
ICD-9-CM code for cancer in any discharge diagnosis.9 Admis-
sions to deliver chemotherapy were identified as admissions
with a chemotherapy or immunotherapy procedure on or before
hospital day 2 or with chemotherapy as the primary diagnostic
code.9 Each admission was assigned to one of seven cancer
diagnoses by ICD-9-CM codes or categorized as dual if it had

more than one cancer diagnosis: acute lymphoblastic leukemia
(ALL), acute myelomonocytic leukemia (AML), non-Hodgkin
lymphomas, Hodgkin lymphomas, CNS tumors, bone and joint
tumors, and soft tissue tumors. Discharge codes used to assign
diagnoses are listed in Appendix Table A1 (online only). We
excluded chronic forms of leukemia, benign or premalignant
neoplasms, and admissions associatedwith a hematopoietic
stem-cell transplantation procedure.

Hospital Costs and Characteristics
Total admission charges in KID were converted to costs using
cost-to-charge ratios.13 KID contains hospital characteristics
including a hospital’s designation by the Children’s Hospitals
of America, teaching status, location (urban or rural), and
state. For this analysis, admissions at children’s specialty
hospitals were excluded because they accounted for less than
1% of all admissions. KID categorizes hospitals as small,
medium, or large by considering number of beds, urban or
rural location, and state. This hospital-size category caused
unacceptablemulticollinearitywith other hospital descriptors.
Instead, the number of chemotherapy admissions for each
hospital was used as a descriptor of cancer volume, with
categorization into five groups using cut point selection.14

States were grouped into nine divisions defined by the US
Census Bureau.15
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APR-DRGs
The most frequent APR-DRGs were identified from the
chemotherapy admissions. APR-DRGs, including severity
codes that individually represented more than 1% of admis-
sions, were included as individual explanatory variables. APR-
DRGs below this threshold were combined into a single
“other” category.

Statistical Analysis
The analytic purpose was to determine how well APR-DRGs
explain the total cost of an individual admission relative to
other patient or hospital characteristics. We estimated linear
hierarchic regression models, recognizing that admissions
(level one) are clustered within hospitals (level two). Four
linear models with random hospital effects were estimated:
only APR-DRG variables, only patient characteristics, only
hospital characteristics, and all characteristics of interest.16

Postestimation Wald tests were used to compare factors
within categorical variables.

We tested the robustness of our models under alterna-
tive scenarios. Admissions with systematically omitted race/

ethnicity or hospital characteristics were removed from all
four models. The effect of state-level variation was evaluated
by first including an indicator for individual states and then
groupingstates intofourregions.15The sensitivity of themodel
to extreme costs was assessed by excluding admissions costing
more than $85,000 (three standard deviations above themean
cost) or less than $1,200. Another analysis examined the
sensitivity of themodelwhen limited to onlyDRG693. Finally,
the robustness of the model was tested after identifying
admissions associated with an infection,9 a possible quality
indicator.

Weperformedexploratoryanalyseson twodescriptors that
significantly affected costs after controlling for APR-DRGs in
the fullmodel:diagnosisandage.Toexplore thevariation inthe
distributionofdiagnosesandadmissioncostsamonghospitals,
we first identified all hospitals with more than 25 chemo-
therapy admissions, with 65% to 75% of these admissions
classified as APR-DRG 693-2 (n = 60). For each hospital, we
calculated the ratio of combined ALL, bone or joint tumor, or
soft tissue tumor admissions to AML admissions within this
APR-DRG.We then calculated themean and range of costs of
AML admissions within APR-DRG 693-2 from the four
hospitals (of the 60) with more than 10 AML admissions. To
explore the effects of age on costs, we limited the full model to
eachof the threemost commondiagnoses:ALL,boneand joint

tumors, and soft tissue tumors. We tested each limited model
with and without interactions between age and APR-DRG.

RESULTS

Descriptive Results
The characteristics of 23,846 admissions for chemotherapy are
listed in Table 1. APR-DRG 693 (chemotherapy) accounted
for 90% of all admissions, and most of these were considered
level two in severity. The only other APR-DRG accounting for
more than 1% of admissions was 690-2 (acute leukemia),
severity level two. The “other” group included 138 DRGs
(not considering severity level), ranging in frequency from
one to 366 admissions.

The sample included admissions from 369 hospitals. Most
hospitals were identified as not a children’s hospital (n = 207;
56%) or a children’s unit in a general hospital (n = 95; 26%).
The majority of these hospitals (n = 254; 68%) were consid-
ered large hospitals by the KID definition (ie, urban teaching
hospitals with . 325 beds),11 but each accounted for fewer

than 100 childhood chemotherapy admissions. Sixteen (59%)
of the 27 freestanding children’s hospitals accounted formore
than 200 chemotherapy admissions each; however, only five
(19%) were considered large. Characteristics of the remaining
44 hospitals were omitted; 36 (82%) of these included fewer
than 100 chemotherapy admissions each.

Regression Results
Table 2 lists the results of each of the four models. The model
that included only the effects of APR-DRGs explained 16%
(r2 = 0.162) of the variation in costs—more than the variation
explained by patient characteristics only (13%) or by hospital
characteristics only (9%). The full model that combined all of
the variables hadmuchhigher explanatory power (33%).Most
of the coefficients that proved significant (P , .001) in the
three partial models remained so in the full model, although
they were somewhat smaller, as would be expected. This
implies that these significant variables were individually
capturing important information explaining variation in costs
among patients.

Focusing on the full model estimates, the allocated APR-
DRGs were the explanatory variables with the greatest coef-
ficients. Costs for those allocated to DRG 693 increased
by severity code. Compared with those allocated to 693.1,
admissions allocated to 693.2 were 15% more costly; those
allocated to 693.3 were 61% more costly, and those allocated
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Table 1. Characteristics of Chemotherapy Admissions in 2009 Kids Inpatient Database

Characteristic

Admissions Cost (2009 US$)

No. % Mean SD

Admissions
Total 23,846 100 12,895 23,523
APR-DRG severity level

1: 693- 1 1,335 5.6 6,523 4,906
2: 693- 2 16,910 70.9 8,733 8,886
3: 693- 3 2,837 11.9 18,868 23,963
4: 693- 4 352 1.5 66,435 62,623
5: 690- 2 301 1.3 32,957 29,114
6: all others 2,111 8.9 30,456 54,808

Diagnosis
ALL 5,394 22.6 15,107 28,635
AML 1,459 6.1 42,408 53,197
NHL 1,568 6.6 12,984 18,773
Hodgkin lymphoma 1,082 4.5 7,858 9,774
CNS 2,245 9.4 9,244 20,998
Bone or joint tumor 5,800 24.3 10,008 9,916
Soft tissue tumor 6,173 25.9 8,706 10,970
Dual 125 0.5 21,916 36,706

Sex
Male 13,804 57.9 12,714 24,234

Age, years
, 1 758 3.2 15,727 35,989
1-4 5,052 21.1 12,193 22,229
5-9 4,940 20.7 11,437 21,332
10-14 5,837 24.5 13,253 22,687
$ 15 7,259 30.4 13,793 24,737

Race
White 11,393 47.8 11,785 21,849
Black 2,440 10.2 11,630 21,659
Hispanic 5,207 21.8 14,974 25,272
Other 1,949 8.2 15,031 29,403
Missing 2,857 12.0 13,157 23,322

Payer
Public 9,188 38.5 13,241 24,805
Private 12,721 53.3 12,610 22,262
Other 1,937 8.1 13,126 25,267

Zip code income quartile
1 (lowest) 5,880 24.7 12,140 23,597
2 6,075 25.5 12,775 23,886
3 5,707 24.0 12,524 21,109
4 (highest) 5,656 23.7 14,077 25,107
Missing 528 2.2 14,034 25,216

Hospitals
Type of hospital

Not identified as children’s hospital 3,100 13.0 11,373 18,261
Free-standing children’s hospital 6,769 28.4 17,539 27,575
Children’s unit in general hospital 9,888 41.5 10,363 20,524
Missing 4,089 17.2 12,487 25,378

(continued on following page)
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to 693.4were 163%more costly.Admissions allocated toAPR-
DRG 690.2 were 135% more costly than 693.1 admissions.

Costs varied for admissions according to cancer diagnosis,
over and above the APR-DRG allocation of the admission.
Average costs were similar for admissions for ALL, bone or
joint tumors, or soft tissue tumors, each comprising one-
quarter of all admissions. Compared with admission costs
for ALL, costs were higher for AML (81%) and non-Hodgkin
lymphoma (20%) admissions but lower for Hodgkin lym-
phoma (225%) and CNS (227%) admissions. The size and
significance of the estimates for the effects of each diagnosis
changed between the model including patient characteristics
only and the full model, implying that the APR-DRGs were
capturing some, but not all, of the effects of diagnosis on
admission costs.

Age was another important predictor of costs. Admissions
for children 10 to 14 years of age had 25% higher costs than
admissions for infants; those for children older than 15 years
had 35% higher costs. No other patient characteristic sig-
nificantly explained costs.

Of the hospital characteristics, the only significant factor
was whether the admission was to a freestanding children’s

hospital. Such admissions had costs thatwere, on average, 46%
higher than those for other hospital types. The number of
chemotherapy admissions had a modest but significant effect
on admission costs in the full model but not in the model
including hospital characteristics only. Stepwise removal of
patient descriptors demonstrated this variable was affected by
collinearity with both age and diagnosis.

Sensitivity Analyses
Effects ofAPR-DRGson costswere unchanged after removing
admissions with systematically missing race/ethnicity, eco-
nomic status, orhospital informationandwhengeographywas
grouped by state or region. The effects of the severity codes
within DRG 693 were also unchanged when the sample was
restricted to admissions allocated to this DRG.Approximately
3% of all chemotherapy admissions had extremely high or low
costs. Removal of these admissions decreased the effects of
APR-DRG693.4 to 1.378, APR-DRGother to 0.710, andAML
to 0.689, although all three remained significant. These three
admission descriptors were over-represented (25%, 44%, and
48%, respectively) in the extremely high–cost admissions.
We identified 5,824 admissions with one or more discharge

Table 1. Characteristics of Chemotherapy Admissions in 2009 Kids Inpatient Database (continued)

Characteristic

Admissions Cost (2009 US$)

No. % Mean SD

No. of chemotherapy discharges
# 25 1,041 4.4 9,971 13,124
. 25 to # 100 4,330 18.2 9,246 17,073
. 100 to # 200 7,798 32.7 11,711 21,507
. 200 to # 300 4,041 17.0 14,601 25,490
. 300 6,636 27.8 16,089 28,436

Location/teaching status
Rural 126 0.5 6,561 7,691
Urban nonteaching 1,807 7.6 9,632 14,952
Urban teaching 17,995 75.5 13,337 23,747
Missing 3,918 16.4 12,574 25,801

Geographic division
Northeast 921 3.9 14,423 32,386
Middle Atlantic 2,300 9.7 12,320 25,117
East North Central 3,457 14.5 11,190 18,763
West North Central 1,796 7.5 13,096 23,966
South Atlantic 4,152 17.4 10,020 17,502
East South Central 1,749 7.3 7,649 8,928
West South Central 3,437 14.4 14,326 28,268
Mountain 1,168 4.9 13,198 18,998
Pacific 4,866 20.4 17,273 27,793

Abbreviations: ALL, acute lymphoblastic leukemia; AML, acutemyelomonocytic leukemia; APR-DRG, All Patient Refined–Diagnosis-Related Group; NHL, Non-
Hodgkin lymphoma; SD, standard deviation.
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Table 2. Results of Hierarchic Models

Variable

Log of Total Admission Cost

MAPR-DRG MPatient MHospital MFull

Admissions
APR-DRG

693.1 Ref Ref
693.2 0.231* 0.147*
693.3 0.774* 0.608*
693.4 2.092* 1.630*
690.2 1.474* 1.348*
Other 0.977* 0.888*

Cancer diagnosis
ALL Ref Ref
AML 0.966* 0.810*
NHL 0.058 0.200*
Hodgkin lymphoma 20.448* 20.249*
CNS 20.410* 20.268*
Bone or joint tumor 20.155† 0.048
Soft tissue tumor 20.252* 20.047
Dual tumors 0.237† 0.213†

Sex
Male 20.030‡ 20.025

Age, years
, 1 Ref Ref
1 to , 5 20.010 0.018
5 to , 10 0.019‡ 0.078
10 to , 15 0.204* 0.257*
$ 15 0.288* 0.340*

Race
White Ref Ref
Black 0.007 20.001
Hispanic 0.028 0.026
Other 20.024 20.012
Missing 0.022 20.002

Payer
Public Ref Ref
Private 20.004 20.010
Other 0.013 0.013

Zip code income level
Lowest Ref Ref
Low 20.039‡ 20.032
High 20.036 20.031
Highest 20.030 20.025
Missing 20.019 20.014

NACHRI hospitals
Type of hospital

Not identified as children’s hospital Ref Ref
Freestanding children’s hospital 0.423* 0.465*
Children’s unit in general hospital 20.067 20.047
Missing 0.441 0.308

No. of chemotherapy discharges
# 25 Ref Ref
. 25 to # 100 20.070 0.061

(continued on following page)
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diagnosis codes for infection. Infection status was associated
with 32% higher costs, with its inclusion reducing the size of
the coefficients associated with the APR-DRG by 10% to 20%.

Diagnosis and Age
Because AML admissions were infrequent but had a large
effect on admission costs, the burden of the higher costs may

beunevenlydistributed amonghospitals.Of 60hospitalswith
65% to 75% of admissions classified as APR-DRG 693.2, 13
(22%) had no AML admissions. For the remaining hospitals,
ratios ranged from97:1 to3:1ALL,boneor joint tumor,or soft
tissue tumor admissions for every AML admission, sug-
gesting some hospitals admit a larger proportion of patients
with AML than others. Figure 1A demonstrates that this
variation existed irrespective of hospital chemotherapy
volume. Figure 1B depicts the large variation in costs of AML
admissions among four hospitals, suggesting this grouping

may not fully represent variations of resource utilization for
this diagnosis.

Older agewas associatedwith higher-cost admissions. Age
also factors into risk stratification and treatment decisions
in many diagnoses, so we ran the full model limited to each
diagnosis group. When the model included only ALL
admissions, admissions for infants and children age older than

15 years were significantly more costly than those of other age
groups. Costs increased steadily by age for soft tissue tumor
admissions but not significantly for bone or joint tumor admis-
sions. Infants, our reference group, represented less than
1% of bone or joint tumor admissions. When we applied
postestimation Wald testing, each bone or joint tumor age
category differed significantly from one another, with the
exception of those age 1 to younger than 5 compared with
age 5 to younger than 10 years. There were no significant
interactions between APR-DRG and age categories.

Table 2. Results of Hierarchic Models (continued)

Variable

Log of Total Admission Cost

MAPR-DRG MPatient MHospital MFull

.100 to # 200 0.054 0.182‡

.200 to # 300 0.116 0.233‡

. 300 0.120 0.229‡
Location/teaching status

Rural Ref Ref
Urban nonteaching 0.259‡ 0.166
Urban teaching 0.235‡ 0.145
Missing 20.178 20.100

Geographic division
Northeast Ref Ref
Middle Atlantic 20.217 20.150
East North Central 20.217 20.145
West North Central 20.169 20.169
South Atlantic 20.180 20.131
East South Central 20.293 20.223
West South Central 20.101 20.037
Mountain 20.126 20.152
Pacific 0.063 0.100

Intercept 8.427* 8.746* 8.677* 8.101*
No. of admissions 23,846 23,846 23,846 23,846
No. of hospitals 369 369 369 369
r2 0.162 0.126 0.088 0.334

Abbreviations: ALL, acute lymphoblastic leukemia; AML, acutemyelomonocytic leukemia; APR-DRG, All Patient Refined–Diagnosis-Related Group; MAPR-DRG,
model of APR-DRG variables only;MPatient, model of diagnosis and patient characteristics only;MHospital, model of hospital characteristics only; MFull, full model
containing all admission characteristics; NACHRI, National Association of Children’s Hospitals and Related Institutions; NHL, non-Hodgkin lymphoma; Ref,
referent.
*P , .001.
†P , .01.
‡P , .05.
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DISCUSSION
We analyzed the ability of APR-DRGs to predict the costs
of chemotherapy admissions for childhood cancers from
a nationally representative data set. In this model, most
admissions were classified as DRG 693. Increasing APR-DRG
severity codes within this DRG were associated with increas-
ing costs, suggesting that severity codes capture increasing
intensity of chemotherapy admissions. We also identified
factors potentially predictive of the admission costs currently
not adequately captured by DRGs, notably cancer diagnosis
and age. Medicaid systems have adopted prospective reim-
bursement schemes, in part, to drive efficiency. Historically,
such adoptions have also been associated with hospitals or
providers decreasing services because of underpayment.17-19

In light of this policy change, it will be crucial to identify
which hospitals are experiencing themost significant drops in
reimbursement and whether these drops are associated with
reductions in treatment or worst outcomes.

A small but growing body of literature is identifying
limitations of DRG algorithms in capturing important clinical
factors. Parnell et al20 found that congenital cardiac disease
was systematically misclassified by APR-DRGs in the United
States, with potential effects on hospital-level mortality
metrics. In a single-institution study, DRGs underidentified
trauma patients, with resulting financial misappropriation.21

The EuroDRG research group classified 10 encounter types by
11 DRG algorithms and found significant variation across
countries.22-25 Continued analysis of how well DRGs predict
actual patient care is required to ensure that DRGs adequately
reflect patient characteristics and treatments in both pediatric
and adult admissions, particularly in light of recent incor-
poration of ICD-10-CM codes. Although the Centers for
Medicare and Medicaid Services predicts minimal impact on
overall payments as DRG algorithms change from ICD-9-CM
to ICD-10-CM codes, there may be a varying impact at the

hospital level.26

Our model suggests that costs associated with cancer
diagnosis are not completely captured by the APR-DRGs.
Diagnosis determines the chemotherapy regimen and, in
turn, toxicity and supportive measures.27-30 Childhood AML
treatment has been associated with high toxicities31,32 and
prolonged admissions.33 APR-DRG reimbursement schemes
will likely encourage clinicians and researchers to reconsider
some components of AML treatment, but significant changes
require time to ensure that patient outcomes and safety are
maintained. If cancer diagnoses within APR-DRGs are not
adequately accounted for in reimbursement policies, hospitals
with more AML admissions may be at higher fiscal risk.

We performed age and diagnosis subanalyses that dem-
onstrated how difficult it is to make specific policy or prac-
tice recommendations with respect to age. Age affected costs
differently when we limited our samples to a single diagnosis,
suggesting that diagnosis- and risk-specific treatments may
play a role. For example, infants and children older than
10 years of age with ALL are considered at higher risk for
recurrence and treated with more-intense chemotherapy34

than children of other ages. This clinical risk stratificationmay
underlie the higher costs for infants and children with ALL
who are older than 15 years. Alternatively, chemotherapy is
dosed according to weight, which naturally increases with age
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during childhood. For higher-cost pharmaceuticals, the dif-
ference between infants and teenagers for the same agent may
be substantial.27 The drivers of this cost difference could be
studied further in data sets that allow identification of possible
cost drivers.

We found that freestanding children’s hospitals had sig-
nificantly higher costs on average than other types of hospitals.
Previous literature suggests this difference may not be limited
to chemotherapy, because similar effects have been identified
in cardiac transplantation,35 sickle cell disease,36 and sinusitis.37

Direct comparison of our results with these studies is difficult
because they used hospital charges rather than costs in their
analyses. Romley et al38 linked higher costs to better outcomes
for congenital heart disease surgery in this same hospital
cohort. We cannot make such a direct link, because cancer
outcomes are measured at a time quite distant from che-
motherapydelivery and are influenced bymany factors. In this
data set, freestanding children’s hospitals each cared for a large
volume of patients butwere overall small comparedwith other
hospital types. The average freestanding children’s hospital
has approximately 280 beds (range, 78 to 564 beds), with

specialized care focused on a limited population and an
emphasis onmedically complex cases.39 This has the potential
to put freestanding children’s hospitals at a disadvantage in
both economies of scale and economies of scope. Hospitals
treating adults, already subject to DRG reimbursement, might
have found cost-saving measures in cross-hospital services
that lowered the overall cost for pediatric admissions. Only 27
of the 43 freestanding children’s hospitals in the United States
were identified in this model, and this subset may differ from
those excluded because their states do not participate in KID.
The hospital characteristics included in KID are general
descriptors; future studies including more detailed hospital
information will be important for hospital administrators
and policymakers desiring to maintain the critical role these
institutions play in medical care for children.

Several limitations arise from the use of the KID data set.
First, a lack of pharmaceutical data prevented investigation of
the chemotherapy delivered. Second, the data set lacks patient
identification. A child may be admitted multiple times during
thecourseofhisorher cancer treatment,but repeat admissions
could not be tracked. Therefore, the influences of heavier users
of medical care could not be accounted for outside of the
sociodemographic characteristics we included. However,
because reimbursement occurs by admission rather than the
complete course of treatment, this methodologic limitation

actually reflects payment arrangements. We were unable to
determine actual reimbursement arrangements for each
hospital.Eachstatedetermines itsownreimbursementweights
for APR-DRG and severity-level admissions, adjustments for
local wages or participation in medical education, and pro-
visions for admissions with extremely high costs or prolonged
hospitalizations.3-6 These limitations can be addressed in
other smaller data sets andwere offset by the broad geographic
and hospital sampling of KID. Finally, KID only provides a
total charge for the admission, a markup of costs determined
by each hospital.40 We used cost-to-charge ratios that rep-
resented markup practices aggregated across the entire hos-
pital; this may not accurately reflect the costs of individual
departments. However, past studies have suggested that
the difference is generally less than 10%41 and that similar
admissions, such as thosewithin aDRGgroup, are likely to use
similar resources across organizations, further decreasing
between-hospital variation.41,42

In conclusion, APR-DRGs reflected much of the differ-
ences in costs of childhood cancer chemotherapy admissions.
However, this analysis suggests that other factors are also

important in predicting costs, most notably diagnosis and
patient age. These should be considered in future design of
APR-DRGs to make them more resource homogeneous.
As health care resources become increasingly constrained,
understanding where and how care and reimbursement
currentlymisalign can identify target areas for future study
and refinement.
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Appendix

Table A1. Discharge Diagnosis Codes Used to Categorize Admissions

Diagnosis Category Discharge Diagnosis Code

ALL ICD.9-CM 204.X*

AML ICD.9-CM 205.X, 206.X, 207.X*

NHL ICD.9-CM 200.X, 202.X

Hodgkin lymphoma ICD.9-CM 201.X

CNS and brain tumors ICD.9-CM 191.X, 192.X, 194.3, 194.4

Bone and joint tumors ICD.9-CM 170.X

Soft tissue tumors ICD.9-CM 140.X, 150.X, 171.X to 175.X, 179.X to 189.X, 190.X,
193.X,194.0 to194.29,194.5to194.9,195.X,209.0to209.3

Infection CCS† 1 to 4, 7, 8, 76 to 78, 90, 92, 97, 122, 123, 125, 126,
133 to 135, 147, 148, 159, 197, 201, 237, 246 to 249

Abbreviations: ALL, acute lymphoblastic leukemia; AML, Acutemyelomonocytic leukemia; CCS, Clinical Classification Software; ICD, International Classification
of Diseases; NHL, non-Hodgkin lymphoma.
*Excluded chronic leukemias: ICD-9 204.1, 205.1, 206.1, 207.1.
†CCS, developed by the Healthcare Cost and Utilization Project, groups ICD-9 codes from similar diagnoses into 260 mutually exclusive diagnoses groups
(https://www.hcup-us.ahrq.gov/toolssoftware/ccs/CCSUsersGuide.pdf). For thepurposesof this research, anadmissionwasconsidered to involvean infection
if it had an ICD-9 code that fit into any of the CCS groups presented in the table.
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