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Abstract

Manganese oxide (MnO) nanoparticles (NPs) can serve as robust pH-sensitive contrast

agents for magnetic resonance imaging (MRI) due to Mn2+ release at low pH, which gener-

ates a ~30 fold change in T1 relaxivity. Strategies to control NP size, composition, and Mn2+

dissolution rates are essential to improve diagnostic performance of pH-responsive MnO

NPs. We are the first to demonstrate that MnO NP size and composition can be tuned by the

temperature ramping rate and aging time used during thermal decomposition of manganese

(II) acetylacetonate. Two different temperature ramping rates (10˚C/min and 20˚C/min)

were applied to reach 300˚C and NPs were aged at that temperature for 5, 15, or 30 min. A

faster ramping rate and shorter aging time produced the smallest NPs of ~23 nm. Shorter

aging times created a mixture of MnO and Mn3O4 NPs, whereas longer aging times formed

MnO. Our results indicate that a 20˚C/min ramp rate with an aging time of 30 min was the

ideal temperature condition to form the smallest pure MnO NPs of ~32 nm. However, Mn2+

dissolution rates at low pH were unaffected by synthesis conditions. Although Mn2+ produc-

tion was high at pH 5 mimicking endosomes inside cells, minimal Mn2+ was released at pH

6.5 and 7.4, which mimic the tumor extracellular space and blood, respectively. To further

elucidate the effects of NP composition and size on Mn2+ release and MRI contrast, the

ideal MnO NP formulation (~32 nm) was compared with smaller MnO and Mn3O4 NPs.

Small MnO NPs produced the highest amount of Mn2+ at acidic pH with maximum T1 MRI

signal; Mn3O4 NPs generated the lowest MRI signal. MnO NPs encapsulated within poly

(lactide-co-glycolide) (PLGA) retained significantly higher Mn2+ release and MRI signal com-

pared to PLGA Mn3O4 NPs. Therefore, MnO instead of Mn3O4 should be targeted intracellu-

larly to maximize MRI contrast.
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Introduction

The use of metal oxide nanoparticles (NPs) has been increasing over the past decades due to

their magnetic, electric, and catalytic properties. Of particular interest to biomedical applica-

tions is the ability of metal oxide NPs, such as iron oxide and manganese oxide (MnO), to

serve as contrast agents for magnetic resonance imaging (MRI) [1]. Typically, the metal oxide

crystals are encapsulated within a polymer to promote hydrophilicity and biocompatibility.

Iron oxide NPs are superparamagnetic and cause dark contrast on T2 and T2
� MRI. The nega-

tive contrast of iron oxide NPs is so robust that even single cells can be visualized on MRI if

each cell accumulates at least 1 pg of iron [2–4]. However, iron oxide NPs elicit strong MRI

signal in their intact form and therefore constantly generate contrast, or are always in the

“ON” state. Furthermore, naturally occurring iron present inside the liver, spleen, bone mar-

row and blood leads to dark contrast that can be difficult to differentiate from applied iron

oxide NPs. As an alternative, manganese oxide (MnO) NPs provide the advantage over iron

oxide in that they can provide switchable, bright contrast on T1 MRI due to the paramagnetic

properties of the Mn2+ ion. Our group and other studies have shown that intact MnO NPs are

in an “OFF” state and create minimal T1 MRI signal due to the Mn2+ ions being tightly bound

and inaccessible to the surrounding water molecules [5–10]. In acidic media, MnO dissolves

to form Mn2+, which coordinates with water molecules to decrease T1 and produce a positive

MRI signal, thus turning “ON” MRI contrast [5–10].

Compared to gold standard and pH-sensitive gadolinium T1 MRI contrast agents, MnO NPs

have superior MRI properties. Clinically used gadolinium chelates are not pH-sensitive, and are

always in an “ON” state, which highlights any well vascularized structure and can lead to false pos-

itive diagnoses in which a benign tumor can be mistaken for a malignant tumor [11–13]. In addi-

tion, many standard gadolinium agents such as MultiHance have low relaxivities of ~4 mM-1s-1 at

1.5T-4.7T [14]; Mn2+ has a higher relaxivity of ~ 7–8 mM-1s-1 at the same field strengths [5, 15,

16]. Furthermore, when gadolinium agents are altered to be pH sensitive, T1 relaxivity changes

only ~2–4 times [17, 18] over pH 5 to 7.4. Polymeric MnO NPs are more powerful smart contrast

agents, producing a relaxivity change of ~30 times, as intact NPs have very low r1 (0.12–0.21 mM-

1s-1) [5, 19] at pH 7.4 and release Mn2+ at pH 5 to increase relaxivity to 7 mM-1s-1. MnO NPs with

targeting agents can be utilized for enhanced specificity for detection of cancerous tumors through

NP dissolution inside tumor cells within low pH endosomes or lysosomes.

To enhance MRI signal generation, it is necessary to fine-tune synthesis strategies to control

and reduce the size of MnO NPs. It was hypothesized that smaller NP diameters will increase

the surface area to volume ratio to facilitate faster dissolution of MnO to Mn2+ to generate

higher MRI signal under acidic conditions and allow for more efficient packing of MnO NPs

into polymeric or liposomal delivery systems. MnO NPs are commonly synthesized by thermal

decomposition of a manganese-based compound such as manganese acetylacetonate (Mn(II)

ACAC) [20–22], Mn oleate [23], Mn acetate [21, 24–26], Mn carbonate [27] or Mn stearate

[28]. Several different variables can be modified to optimize the physical and chemical proper-

ties of the synthesized MnO NPs including the type of inert gas [20–22], peak reaction temper-

ature [21–23, 26], total reaction time [23, 24, 28], and types/ratios of initial chemical

compounds [20–22, 24, 25] utilized in the reaction. To date, the effects of temperature ramp

rate and aging time on both size and composition have not been explored. Herein, we system-

atically evaluate how two temperature ramping rates (10˚C/min and 20˚C/min) combined

with increasing aging times (5, 15 and 30 min) at 300˚C can be utilized to synthesize smaller

NPs of pure MnO composition. MRI was utilized to evaluate T1 signal enhancement of Mn2+

ions released from NPs with different sizes and compositions to determine which formulation

maximized MRI contrast at pH 5, 6.5 and 7.4.
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Materials and methods

Chemicals

Mn(II) ACAC, oleylamine (70%, technical grade), poly(vinyl alcohol) (PVA), and rhodamine

6G were obtained from Sigma-Aldrich. Dibenzyl ether (�99%, Acros Organics), hexane

(�98.5%, Macron Fine Chemicals), dichloromethane (�99.5% stabilized ACS, BDH Chemi-

cals), Dulbecco’s phosphate buffered saline (PBS), sodium citrate dihydrate (BDH Chemicals),

citric acid (VWR Chemicals, LLC), and manganese(II) chloride tetrahydrate (98–101% ACS,

VWR Chemicals, LLC) were purchased from VWR. Hydrochloric acid (HCl) TraceMetal™
Grade was acquired from Fisher Scientific. Ethanol (Decon Laboratories Inc.) was obtained

internally from West Virginia University’s Environmental Health and Safety Services. Ester-

terminated 50:50 poly(D,L-lactide-co-glycolide) (PLGA) (inherent viscosity: 0.55–0.75 dL/g)

was obtained from Lactel Absorbable Polymers.

Synthesis of MnO NPs

All work for MnO NP synthesis should be performed under a chemical fume hood with proper

PPE including safety glasses, nitrile gloves and a lab coat. MnO NPs were fabricated using a

standard thermal decomposition reaction of Mn(II) ACAC dissolved in oleylamine and diben-

zyl ether based on the synthesis of magnetite (Fe3O4) NPs by Xu et al. [29] Mn(II) ACAC (6

mmol) was dissolved in 40 mL of oleylamine and 20 mL of dibenzyl ether. The solution was

heated with a heating mantle connected to a thermocouple probe immersed into the reaction

mixture and a programmable temperature controller. According to the user defined tempera-

ture profile, the mixture was heated from room temperature to 60˚C over 30 min under a con-

stant flow of inert N2 gas. A constant N2 flow was needed to successfully remove all oxygen

from the reaction and obtain the desired product, MnO NPs. Then, the temperature was

quickly raised to 300˚C under N2 gas using two different ramp rates of 20˚C/min or 10˚C/min

and aged at 300˚C for either 5, 15, or 30 min. To assess variability between synthesized NP

batches, each of the 6 different temperature profiles were independently run 3 times, obtaining

a total of 18 batches of MnO NPs. All of the 18 batches were utilized for further experiments.

Upon completion of the reaction, the heating mantle was removed to allow the solution to

cool down to room temperature. The MnO NPs were pelleted in Nalgene1Oak Ridge centri-

fuge tubes following centrifugation at 17,400 x g for 10 min and washed 4 to 5 times in hexane

and ethanol using the same centrifugation procedure. Resulting MnO NPs were resuspended

in hexane and left in a fume hood to dry overnight. After overnight drying, the MnO NPs were

baked over 24 hr in an oven at 100˚C. The resulting MnO NPs synthesized by thermal decom-

position were hydrophobic and capped with oleylamine.

PLGA encapsulation of MnO NPs

For a separate set of experiments, MnO NPs were encapsulated with PLGA using an oil-in-

water emulsion technique mediated by sonication [5]. Approximately 100 mg of PLGA was

dissolved in 2 mL of dichloromethane (DCM) in a test tube. Once the polymer was fully dis-

solved, 50 mg of MnO NPs and 500 μL of a 2 mg/mL DCM solution of rhodamine 6G were

added to the tube of the polymer/solvent mixture. The organic mixture was bath sonicated

while being added dropwise to 4 mL of an aqueous 5% w/v solution of PVA while vortexing at

high speed. The mixture was vortexed for an additional 10 s and then sonicated 3 X [15 s ON–

5 sec OFF] at 40% amplitude with a Qsonica Sonicator 125 Watts to create the single emulsion.

Immediately after sonication, the emulsion was poured into 60 mL of an aqueous 0.3% w/v

PVA solution, under rapid mixing on a stir plate. The PLGA MnO NPs were stirred for 3 hr to
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evaporate the DCM and were collected by centrifugation at 17,400 x g for 10 min. NPs were

washed 3 times with deionized water, resuspended in deionized water, frozen overnight at

-80˚C, and dried on a lyophilizer for 3 days.

Physical and chemical characterization of MnO NPs

To prepare samples for transmission electron microscopy (TEM), dried MnO NPs and PLGA

MnO NPs were suspended in ethanol and deionized water, respectively, using bath sonication.

After NP resuspension, 15 μL of the MnO NP mixture was dropped and air dried on 300 mesh

copper PELCO1 TEM grid support films of carbon type-B (Ted Pella, Inc.). Images were

taken using a JEOL JEM-2100 transmission electron microscope at 200 kV for the MnO NPs

and 120 kV for the PLGA MnO NPs.

X-ray diffraction patterns (XRD) of MnO NPs were obtained using a Panalytical X’Pert Pro

X-ray diffractometer equipped with a Cu K-Alpha X-ray source operating at 45 kV and 40 mA

in the Bragg-Brentano geometry. The spectra were collected over a 2θ range of 5˚ to 110˚ at a

step size of 0.017˚ with a 1D silicon strip X-ray detector. The obtained XRD patterns were ana-

lyzed using the X’Pert HighScore Plus program. By comparing the XRD spectra of our synthe-

sized MnO NPs with known spectra for MnO and Mn3O4, the program obtained an estimated

composition for our samples.

Scanning electron microscopy (SEM) with energy dispersive x-ray spectroscopy (EDS) was

performed to analyze the elemental composition of the MnO NP samples using a Hitachi Scan-

ning Electron Microscope S4700 operated at 15 kV with the EDAX Team EDS System.

X-ray photoelectron spectroscopy (XPS) measurements were performed using a PHI Ver-

saProbe 5000 Scanning X-Ray Photoelectron Spectrometer (ULVAC-PHI, Inc.) at room tem-

perature and under vacuum greater than 1e-6 Pascal. All measurements were performed using

a focused Al K-Alpha X-ray source at a photon energy of 1486 eV and power of 25 W with an

X-ray spot size of 100 μm. The take-off angle of the photoelectron was set at 45o. Composi-

tional survey scans were obtained using a pass energy of 117.4 eV and an energy step of 0.5 eV.

High-resolution detailed scans of each element were acquired using a pass energy of 23.5 eV

and an energy step of 0.1 eV. All XPS spectra were referenced to the C1s peak at a binding

energy of 284.8 eV.

Fourier-transform infrared spectroscopy (FTIR) measurements on MnO NP samples, oley-

lamine, PLGA MnO NP samples, and PLGA were performed using a DIGILAB FTS 7000

FTIR spectrometer equipped with a GladiATR attenuated total reflectance (ATR) module

from PIKE Technologies.

Size distribution of the PLGA MnO NPs was measured through dynamic light scattering

(DLS) using a Nano Powder Sizer Malvern Instrument Zetasizer Nano ZS. Six milligrams of

the PLGA MnO NPs were suspended in 10 mL of deionized water and bath sonicated prior to

analysis.

Mn2+ controlled release experiments

To evaluate Mn2+ release under different pH conditions, 10 mg of each MnO NP batch was

suspended in 1 mL of PBS pH 7.4, 20 mM citrate buffer pH 6.5, or 20 mM citrate buffer pH 5

to simulate the pH of the blood, the tumor microenvironment, and cellular endosomes/lyso-

somes, respectively. The same three pH conditions were used to evaluate Mn2+ release from

unencapsulated smaller MnO NPs (19 ± 6 nm) and unencapsulated smaller Mn3O4 NPs

(17 ± 5 nm) to further observe the effect of size and chemical composition on release rate. Sim-

ilarly, PLGA MnO NPs were suspended under the same conditions to assess Mn2+ release

from hydrophilic NPs. Citrate buffers were made by adding anhydrous citric acid and sodium
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citrate dihydrate to deionized water. The MnO NP or PLGA MnO NP solutions were incu-

bated in Eppendorf tubes under continuous slow rotation (6 rpm) to ensure gentle mixing

over 24 hr at 37˚C to simulate body temperature. At 1, 2, 4, 8 and 24 hr, the Eppendorf tubes

were centrifuged at 17,400 x g for 10 min and the supernatants were collected and analyzed

for released Mn2+ content by inductively coupled plasma-optical emission spectrometry

(ICP-OES). The remaining pelleted MnO NPs or PLGA MnO NPs were resuspended in 1 mL

of fresh buffer and placed back into the rotating incubator until the next time point was col-

lected. The maximum amount of Mn2+ contained within each NP batch was calculated

through measuring the total Mn2+ content of unencapsulated MnO NPs (10 mg) or PLGA

MnO NPs (10 mg) fully dissolved in 150 μL of HCl trace metal grade using bath sonication.

Mn2+ amounts were analyzed using Agilent 720 ICP-OES (1400 watts) with a plasma flow of

15.0 L/min, auxiliary flow of 1.50 L/min, and nebulizer flow of 0.75 L/min. Each sample was

evaluated 5 times with a replicate and stabilization time of 10 and 15 s, respectively, and results

were averaged. The % Mn2+ released at each time point was calculated using Eq 1 below. The

Mn2+ cumulative release graph was created by adding together the % Mn2+ released from each

of the previous time points.

%Mn2þ released per time point

¼
mg of Mn2þ released per time point

mg of total Mn2þ in 10 mg of MnO NPs or PLGA MnO NPs
� 100 ð1Þ

PLGA MnO NP % loading capacity was calculated using the total Mn2+ content of unen-

capsulated MnO NPs (10 mg) and PLGA MnO NPs (10 mg) with Eq 2 below.

%Loading capacity ¼
mg of total Mn2þ

10 mg PLGA MnO NPs
�

10 mg of MnO NPs
mg of total Mn2þ

� 100 ð2Þ

MRI properties of NPs

Two different MRI experiments were performed. First, the r1 molar relaxivities of Mn2+ at pH

7.4 (PBS), pH 6.5 (20 mM citrate buffer), and pH 5 (20 mM citrate buffer) were determined.

To measure r1, manganese(II) chloride tetrahydrate was dissolved in the three buffers to

achieve Mn2+ concentrations of 0.182, 0.102, 0.058, 0.032, and 0.018 mM. MRI of the Mn2+

solutions was performed at 1.0 T on a Bruker ICON MRI. T1 measurements were generated by

a RARE sequence using an echo time of 10.68 ms. A total of 10 repetition times (25.2, 50, 100,

200, 400, 800, 1,600, 3,200, 6,400, and 12,800 ms) were used to acquire images of the tubes.

Using Matlab and the T1 longitudinal relaxation equation (Eq 3), T1 fitting was accomplished:

Mz ¼ Mo � 1 � e
� t
T1

� �
ð3Þ

where Mz is the longitudinal magnetization aligned along the z-axis at some time, t, and Mo is

the magnetization at equilibrium. The r1 relaxivity for Mn2+ at pH 7.4, pH 6.5 and pH 5 was

calculated using Eq 4:

1

T1

¼
1

T1;0

þ Mn2þ½ � � r1 ð4Þ

where 1/T1 is the measured relaxation rate, 1/T1,0 is the relaxation rate of the solvent only, and

[Mn2+] is the concentration of Mn2+. The relaxivity is the slope of the linear fitted line when 1/

T1−1/T1,0 is plotted versus [Mn2+].

Second, unencapsulated or PLGA encapsulated MnO NPs were suspended in pH 7.4, pH

6.5 and pH 5 as described for Mn2+ controlled release experiments. After 24 hours, the
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supernatant from 8 to 24 hr for the unencapsulated NPs was collected and diluted 100 fold.

For PLGA encapsulated NPs, the supernatant from all time points were combined and diluted

100 fold. Longitudinal MRI properties of the collected supernatants containing released Mn2+

were measured at 1 T using the same MRI parameters as above. T1 values of the supernatants

were measured using Eq 3. Additionally, Mn2+ concentrations were calculated from the mea-

sured T1 values and the r1 values for Mn2+ at each pH using Eq 4. Mn2+ concentrations mea-

sured by MRI were compared with Mn2+ concentrations measured by ICP-OES.

Statistics

Approximately 25 to 35 TEM images and 800 to 900 MnO NPs were quantified per tempera-

ture condition using the line trace tool in ImageJ to measure the NP diameter. Each tempera-

ture condition contained 3 independent batches of synthesized MnO NPs. Statistical

significance of mean NP diameters, Mn2+ controlled release, and MRI T1 values between

groups were evaluated using the 2-tailed unpaired Student’s t-test with Bonferroni correction

to account for multiple comparisons, where �p< 0.05 was defined as significant and
��p< 0.01 was defined as highly significant. The polydispersity index (PDI) of MnO NPs for

each temperature condition was calculated from the TEM images using Eq 5:

PDI ¼
s

d

� �2

ð5Þ

where σ is the standard deviation of the MnO NP diameters, and d is the mean diameter of

MnO NPs.

Results and discussion

MnO NPs were fabricated using a standard thermal decomposition reaction of Mn(II) ACAC

dissolved in oleylamine and dibenzyl ether (Fig 1). Precise control over the temperature rise

was achieved through programming a temperature controller (S1 Fig), which received real-

time feedback through a thermocouple probe placed inside the reaction mixture. Two different

temperature variables were studied, specifically heating rates and aging times, in attempts to

achieve pure MnO NPs of smaller sizes. For simplicity, in the rest of the manuscript, we will

refer to all synthesized manganese oxide NPs as MnO NPs, unless otherwise specified.

Smaller NP diameters result from faster temperature ramp rate and

shorter aging time

TEM was used to assess MnO NP size and a representative image from each temperature con-

dition is shown in Fig 2. Our MnO NPs generally displayed a rounded octagon morphology

similar to MnO NPs obtained by Nolis et al. [21] from heating manganese acetate and

Fig 1. Thermal decomposition of Mn(II) ACAC was performed in oleylamine and dibenzyl ether at two

temperature ramp rates and increasing aging times at 300˚C to form MnO NPs coated with oleylamine.

https://doi.org/10.1371/journal.pone.0239034.g001
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oleylamine to 250 and 300˚C; however, their MnO NP diameters were much larger (100 nm

and 70 nm, respectively, at 250˚C and 300˚C).

As the ramping rate decreased and the aging time at 300˚C increased, the average MnO NP

diameter grew by a maximum of nearly 54%. When the fastest ramp (20˚C/min) and shortest

aging time (5 min) was used, the MnO NPs were the smallest, with an average diameter of

23 ± 9 nm. As the aging time was increased to 15 and 30 min, the average MnO NP size

increased to 32 ± 11 nm and 32 ± 12 nm, respectively. When the ramp rate was decreased to

10˚C/min, the average size of MnO NPs increased to 27 ± 10 nm, 36 ± 12 nm, and 36 ± 13 nm

at 5, 15, and 30 min at 300˚C, respectively. As shown in Fig 3, the average NP diameter was sig-

nificantly different between ramping rates at all aging times. Significance was also achieved

within both ramping rates when comparing aging times of 5 min to 15 min and 5 min to 30

min. Despite the high standard deviation of NP size, significance was achieved due to the large

sample size analyzed (800–900 NPs per temperature condition). PDI values for MnO NPs

from each temperature condition were calculated and found to be� 0.15 (S1 Table). It is

important to note that after 15 min at 300˚C, the MnO NP size stabilized in both ramping

conditions.

The increase in MnO NP size with a slower temperature ramp and an increase in aging

time at 300˚C was likely due to a longer total reaction time, leading to more opportunity for

NP growth and coalescence (S1 Table). Histograms comparing the size distributions at the two

different temperature ramps are shown in S2 Fig. Chen et al. [28] also observed a rise in NP

growth with increasing aging times at 310˚C, which was associated with two distinct growth

patterns: only minimal increases in NP size were observed from 3 to 30 min at 310˚C, whereas

a much larger increase in NP size was achieved from 100 to 285 min at 310˚C.

Fig 2. TEM images of MnO NPs generated from each of the 6 different temperature profiles: 20˚C/min ramp with a) 5 min at

300˚C, b) 15 min at 300˚C, c) 30 min at 300˚C, and 10˚C/min ramp with d) 5 min at 300˚C, e) 15 min at 300˚C, and f) 30 min at

300˚C. The MnO NPs have a rounded octagon shape, but some variation in size. Scale bars are 20 nm.

https://doi.org/10.1371/journal.pone.0239034.g002
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Our MnO NPs tended to exhibit a variation in size, likely due to several factors. First, MnO

NP growth could follow an Ostwald ripening process, whereby smaller NPs begin to dissolve

and add onto larger ones to cause polydispersity [28]. Second, a subset of smaller MnO NPs

could coalesce or join together into larger NPs as the reaction proceeds to also lead to size vari-

ation [30–32]. Third, the concentration of oleylamine has been shown to contribute to NP size

distribution. When a lower stabilizer concentration is used, the NPs do not have enough cap-

ping, which can allow for their aggregation [33].

Mn3O4 is incompletely reduced to MnO by faster temperature ramp rate

and shorter aging time

Remarkably, the MnO NP size was not the only characteristic affected when the temperature

profile was changed. XRD was used to evaluate MnO NP crystal structure and bulk composi-

tion. Fig 4A–4F shows the XRD spectra of each NP for all 6 temperature conditions, while Fig

4G and 4H show the characteristic XRD peaks of Mn3O4 and MnO, respectively. All synthe-

sized NPs (Fig 4A–4F) clearly display the 5 highest characteristic peaks for MnO (Fig 4H),

Fig 3. Average MnO NP diameters achieved with different ramping rates and aging times at 300˚C. A faster

ramping rate and a shorter aging time produced the smallest NPs. A total of 800–900 NPs were analyzed from TEM

images per temperature condition. Error bars are average ± standard deviation. ��p<0.01 was defined as highly

significant.

https://doi.org/10.1371/journal.pone.0239034.g003
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whereas the first three spectra (Fig 4A–4C) also contain the 3 highest characteristic peaks of

Mn3O4 (Fig 4G). Therefore, the top 3 temperature profiles with the shortest total reaction

times resulted in a mixture of Mn3O4 and MnO NPs and the bottom 3 temperature profiles

with longer total reaction times led to a more pure MnO NP formulation. Table 1 displays the

estimated percent NP composition that X’Pert HighScore Plus calculated for each temperature

profile based on its database of known compounds. As the overall temperature reaction times

were increased, the MnO percentage composition increased and Mn3O4 percentage composi-

tion decreased. We hypothesize that when less time was applied into the synthesis, the reaction

did not have enough thermal energy to occur completely, obtaining a mixture of MnO and

Mn3O4.

To our knowledge, our study is the first to show that the ramping rate and aging time at

300˚C impact the composition of the synthesized NPs. Mn3O4 or MnO/Mn3O4 NP mixtures

were previously observed by Nolis et al. [21] and Seo et al. [22], but the aging temperature

used was much lower between 150–200˚C. Our study reveals that MnO NPs still contain some

Mn3O4 composition even at 300˚C when applying faster ramp rates and shorter aging times.

Based on our results and the literature, we hypothesize that the formation of MnO NPs is initi-

ated by first forming Mn3O4 NPs at lower temperatures (150–200˚C) during thermal decom-

position of Mn(II) ACAC. As the reaction time and temperature is increased, the Mn3O4 NPs

begin to be reduced to MnO NPs through an endothermic reaction: Mn3O4! 3MnO + ½O2

[34]. Shorter aging times at 300˚C do not allow for complete conversion of Mn3O4 to MnO,

Fig 4. XRD spectra of Mn3O4/MnO NP mixture or MnO NPs generated with the following temperature profiles: a) 5 min at 300˚C with 20˚C/min ramp, b) 5

min at 300˚C with 10˚C/min ramp, c) 15 min at 300˚C with 20˚C/min ramp, d) 15 min at 300˚C with 10˚C/min ramp, e) 30 min at 300˚C with 20˚C/min

ramp, and f) 30 min at 300˚C with 10˚C/min ramp. The standard diffraction peaks for known g) Mn3O4 and h) MnO are shown from X’Pert HighScore. Upon

comparison with the standard spectra, a-c) shows Mn3O4/MnO NP mixtures, whereas d-f) shows MnO NPs.

https://doi.org/10.1371/journal.pone.0239034.g004
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and lead to a mixed MnO/Mn3O4 composition. Longer aging times provide more thermal

energy needed to obtain a full reduction to a pure MnO composition. Once again, for simplic-

ity, in the rest of the manuscript, we will refer to all synthesized manganese oxide NPs as MnO

NPs.

MnO NP surfaces are coated with Mn3O4 and oleylamine

To complement the bulk analysis of XRD, SEM/EDS, XPS and FTIR were used to assess the

surface chemistry of MnO NPs formed with different temperature profiles. SEM/EDS and XPS

confirmed the elemental composition of our NP samples to be mainly manganese and oxygen

(S3 Fig and Fig 5A, respectively). The magnitude of the Mn3s peak splitting (Fig 5B) can be

used to identify the oxidation state of surface bound manganese. A ΔE of 6.1eV indicates MnO

(Mn2+), while a ΔE of� 5.4 eV indicates Mn2O3 (Mn3+) [35]. Previous literature has shown

that since Mn3O4 is a mixture of Mn2+ and Mn3+ oxidation states, the Mn3s peak splitting has

an intermediate ΔE of 5.6 eV [36]. Fig 5B shows that all NP samples, regardless of the tempera-

ture profile, show the characteristic peak splitting of Mn3O4. XPS results demonstrate that the

surface of the NPs oxidizes after synthesis in the presence of air to form a coating of Mn3O4,

consistent with what others have found [36]. Together, XRD and XPS show that reaction con-

ditions affect the overall bulk composition of the synthesized NPs (Mn3O4/MnO versus

MnO), but that all NPs are oxidized to include a layer of Mn3O4 on the surface.

The NP surface chemistry was further studied with FTIR to corroborate hydrophobic cap-

ping with oleylamine. Fig 6 presents the FTIR spectra of each NP for all 6 temperature condi-

tions. All NP samples show the characteristic modes of oleyl groups: peaks around 2850–2854

and 2918–2926 cm-1 (marked by asterisks) due to the symmetric and asymmetric CH2 stretch-

ing modes, respectively [37]. Additionally, the peaks around 1593 cm-1 and 3300 cm-1 (marked

by squares) are attributed to the NH2 bending vibration, and the symmetric and asymmetric

stretching vibration of the amine group (NH2), respectively [38]. MnO NP FTIR spectra had

Table 1. MnO and Mn3O4 composition (%) for NP trials based on X’Pert HighScore database.

Temperature Condition (aging time, ramp rate) Composition (%)

MnO Mn3O4

5 min, 20˚C/min ramp Trial #1 58 42

5 min, 20˚C/min ramp Trial #2 40 60

5 min, 20˚C/min ramp Trial #3 45 55

5 min, 10˚C/min ramp Trial #1 68 32

5 min, 10˚C/min ramp Trial #2 68 32

5 min, 10˚C/min ramp Trial #3 63 37

15 min, 20˚C/min ramp Trial #1 83 17

15 min, 20˚C/min ramp Trial #2 66 34

15 min, 20˚C/min ramp Trial #3 88 12

15 min, 10˚C/min ramp Trial #1 89 11

15 min, 10˚C/min ramp Trial #2 84 16

15 min, 10˚C/min ramp Trial #3 85 19

30 min, 20˚C/min ramp Trial #1 90 10

30 min, 20˚C/min ramp Trial #2 87 13

30 min, 20˚C/min ramp Trial #3 92 8

30 min, 10˚C/min ramp Trial #1 86 14

30 min, 10˚C/min ramp Trial #2 88 12

30 min, 10˚C/min ramp Trial #3 91 9

https://doi.org/10.1371/journal.pone.0239034.t001
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Fig 5. XPS spectra of MnO NP samples for each temperature profile showing the a) whole spectral region and b) the Mn3s region. The whole spectral region

indicates the presence of manganese, oxygen, and carbon in the NP samples, while the Mn3s region shows peak splitting characteristic of surface oxidation to

Mn3O4 (Mn2+/Mn3+ oxidation states).

https://doi.org/10.1371/journal.pone.0239034.g005

Fig 6. FTIR spectra of the following temperature profiles: 20˚C/min ramp with a) 5 min at 300˚C, b) 15 min at 300˚C, c) 30 min at 300˚C, and 10˚C/min ramp with

d) 5 min at 300˚C, e) 15 min at 300˚C, and f) 30 min at 300˚C. Asterisks represent oleyl groups, squares correspond to amine groups, and triangles show the vibration

of Mn-O and Mn-O-Mn bonds. The oleyl group spectral regions are enlarged in the boxed insets to resolve the two distinct peaks.

https://doi.org/10.1371/journal.pone.0239034.g006
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similar peaks to those present in the oleylamine only spectra (S4 Fig). These peaks consolidate

NP capping formed by oleylamine, which is consistent with the literature when synthesizing

metal oxide NPs [29, 39]. Lastly, peaks around 600 cm-1 (marked by a triangle) correspond to

the vibration of Mn-O and Mn-O-Mn bonds, confirming the chemistry found through XRD,

SEM/EDS and XPS [40].

Mn2+ release rate from MnO NPs is maximum at pH 5 and unaffected by

synthesis conditions

As mentioned before, size reduction of MnO NPs is important to increase the surface area to

volume ratio to generate a higher dissolution rate of MnO to Mn2+ in acidic media to create a

greater T1 MRI signal. The controlled release profile of Mn2+ from MnO NPs was tested over

time in 3 different pH conditions: pH 7.4 to mimic the normal physiological pH of the blood,

pH 6.5 to mimic the slightly acidic extracellular pH in cancerous tumors due to increased lactic

acid production, and pH 5 to mimic the acidic pH of endosomes and lysosomes inside cells. It

is well known that following cell uptake, metallic NPs are shuttled to endosomes inside cells

[41]. Fig 7 shows a representative Mn2+ controlled release curve for MnO NPs formed from

the 20˚C/min ramp aged at 300˚C for 30 min. Similar to what we have shown previously [5],

MnO dissociation into Mn2+ at physiological pH 7.4 was extremely minimal (faint dotted line

in Fig 7), meaning that no MRI signal enhancement would be produced in the blood. At pH

6.5, only ~9% (~0.5 mg) of the total manganese content was released as Mn2+ after 24 hr

(dashed line in Fig 7), which will likely result in a very weak enhancement of MRI signal if the

MnO NPs remain in the extracellular space of cancerous tumors. Consistent with our previous

findings [5], pH 5 showed the most robust release of Mn2+ over 24 hr of ~46% (~2.9 mg) (solid

black line in Fig 7). The other MnO NP formulations (S5 Fig) showed similar controlled

release curves with no significant differences between Mn3O4/MnO NP mixtures and MnO

only. The total Mn2+ amount released at each temperature condition and pH are shown in

S2 Table.

The similarity of Mn2+ release from all NP formulations in acidic media was surprising, as

Godunov et al. [42] have shown that Mn3O4 dissolves incompletely in dilute acidic conditions

Fig 7. Cumulative release of Mn2+ from MnO NPs over 24 hr after incubation in PBS pH 7.4 (dotted line), 20 mM

citrate buffer pH 6.5 (dashed line), and 20 mM citrate buffer pH 5 (solid line). Mn2+ release increased with a

decrease in pH. The controlled release curve is shown for the MnO NPs generated with 30 min at 300˚C and a 20˚C/

min ramp. Time points are shown for 1, 2, 4, 8 and 24 hr. Error bars show mean ± standard deviation.

https://doi.org/10.1371/journal.pone.0239034.g007
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due to the formation of Mn2+ ions as well as MnO2, whereas MnO dissolves completely. Their

study also demonstrated that MnO dissolves at a faster rate than Mn3O4 in concentrated acidic

solutions, but both compounds completely dissociate [42]. The similarity of our Mn2+ con-

trolled release curves between NP formulations could indicate that the slower anticipated

Mn2+ release from MnO/Mn3O4 NP mixtures could be counteracted by their smaller NP

diameter with increased surface area. Similarly, MnO NPs would be expected to exhibit

enhanced Mn2+ production, but had larger diameters, which could slow their release.

Small diameter MnO NPs have maximum Mn2+ release and MRI signal

enhancement

To further understand how NP size and chemical composition affected Mn2+ controlled

release and T1 MRI properties, we compared the synthesized optimal MnO NPs above (32

nm ± 12 nm) with smaller MnO NPs (19 ± 6 nm) and smaller Mn3O4 NPs (17 ± 5 nm). TEM

images and XRD spectra of the small MnO and small Mn3O4 NPs are shown in S6 Fig. When

compared to large MnO NPs, small MnO NPs released ~7% more Mn2+ after 24 hours at pH 5

likely due to their increased surface area to volume ratio; however, the increased Mn2+ produc-

tion from small MnO NPs was not statistically significant (Fig 8). Chemical composition of

NPs had a much larger impact on Mn2+ release. Small Mn3O4 NPs released significantly less

Mn2+ (~20% reduction) than small MnO NPs (Fig 8). Similar trends were observed at pH 6.5.

Fig 8. Average cumulative release of Mn2+ from 17 nm Mn3O4, 19 nm MnO, and 32 nm MnO NPs after 24 hr of

incubation in PBS pH 7.4, 20 mM citrate buffer pH 6.5, and 20 mM citrate buffer pH 5. Mn2+ release was highest

from small MnO NPs and lowest from small Mn3O4 NPs at pH 5 and 6.5. Three different batches of each type of NPs

were analyzed during controlled release. Error bars are average ± standard deviation.� p<0.05 and ��p<0.01 were

defined as significant and highly significant, respectively.

https://doi.org/10.1371/journal.pone.0239034.g008
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Next, the impact of NP size and chemical composition on T1 MRI signal enhancement was

assessed to determine which formulation would be most favorable for MRI applications. The

smallest MnO NPs were the most efficient MRI contrast agents by producing the lowest T1

value at all pH levels (Table 2). This is not surprising, as small MnO NPs released the greatest

amount of Mn2+ after 24 hours at pH 5 and 6.5 (Fig 8). Large MnO NPs were slightly less effi-

cient with a ~20% increase in T1 compared to small MnO NPs. Small Mn3O4 NPs were the least

effective MRI contrast agents, with a ~42% increase in T1 compared to small MnO NPs that was

statistically significant (Table 2). Similar to small MnO NPs, the obtained T1 values for large

MnO NPs and small Mn3O4 NPs also mirrored the trends seen in the Mn2+ controlled release

experiments at pH 6.5 and 5 (Fig 8). Therefore, for MRI applications, it would be favorable to

utilize MnO NPs rather than Mn3O4 due to the generation of a greater concentration of Mn2+

ions which produces a larger signal enhancement on T1 MRI (S7 Fig). Furthermore, the MRI

data confirmed the results from ICP-EOS when using the Mn2+ calibration curves to calculate

the Mn2+ concentration in the solutions (S7 Fig). Since the calibration curves only contained

diluted Mn2+ ions and the calculated Mn concentration from MRI and ICP-OES were similar

at pH 6.5 and 5 (S3 Table), it is likely that Mn3+ ions minimally contributed to the MRI signal

and Mn2+ ions were the dominant species responsible for the MRI signal increase. According to

Gale et al. [43], chelated Mn2+ has a 6.6 fold higher r1 relaxivity compared to chelated Mn3+ at

1.4 T, which supports that our main MRI signal likely originates from Mn2+.

MnO NPs encapsulated in PLGA retain maximum Mn2+ release and MRI

signal enhancement compared to PLGA Mn3O4 NPs

The MnO NPs synthesized herein are hydrophobic initially and capped with oleylamine (Fig

6). The hydrophobicity of MnO NPs in our study may provide a limitation to the assessment

of NP dissolution kinetics. Therefore, hydrophilic NPs were fabricated by encapsulating large

MnO NPs (32 nm), small MnO NPs (19 nm) and small Mn3O4 NPs (17 nm) within PLGA, a

clinically approved biocompatible and biodegradable polymer, to confirm the trend observed

with hydrophobic NPs. TEM showed dark metal oxide nanocrystals trapped within the poly-

meric NPs (S8 Fig) while FTIR confirmed successful surface coating with PLGA through

matching characteristic FTIR spectral peaks of PLGA MnO NPs with PLGA only (circles

shown in S9 and S10 Figs). PLGA MnO NPs had ~30% loading capacity (S4 Table) and an

average diameter between 220 and 255 nm based on DLS analysis (S11 Fig).

To test the effects of polymer coating on Mn2+ generation and MRI signal, the same con-

trolled release experiment was performed on PLGA MnO NPs, and the supernatants were ana-

lyzed with ICP-OES and MRI. PLGA MnO (19 nm) NPs had the highest Mn2+ release after 24

hr at pH 5; approximately 90% of the encapsulated MnO NPs dissociated to Mn2+ compared

to only ~45% of encapsulated Mn3O4 NPs (Fig 9). All three PLGA NPs had ~25% cumulative

release rates at pH 6.5 after 24 hours, with negligible release at PBS pH 7.4 (Fig 9). As can be

seen by comparing Figs 8 and 9, polymer encapsulation did not significantly impact the overall

Table 2. MRI T1 values of supernatants collected between 8 and 24 hours after NP incubation at pH 7.4, 6.5 and 5.

Nanoparticle Type (diameter) T1 (ms)

pH 7.4 pH 6.5 pH 5

Mn3O4 (17 nm) 2,510 ±346 1,973 ±254 915 ±105�

MnO (19 nm) 2,350 ±174 1,647 ±32 646 ±16

MnO (32 nm) 2,449 ±286 1,755 ±202 774 ±89

�p<0.05 for Mn3O4 (17 nm) versus MnO (19 nm) at pH 5

https://doi.org/10.1371/journal.pone.0239034.t002

PLOS ONE Tuning the size and composition of manganese oxide nanoparticles

PLOS ONE | https://doi.org/10.1371/journal.pone.0239034 September 18, 2020 14 / 23

https://doi.org/10.1371/journal.pone.0239034.t002
https://doi.org/10.1371/journal.pone.0239034


trends in Mn2+ controlled release. MnO retained its ability to produce Mn2+ at a much faster

rate compared to Mn3O4 regardless of the surface groups.

PLGA MnO (19 nm) NPs had a significantly lower T1 value compared to PLGA Mn3O4 (17

nm) NPs after 24 hours at pH 5 (Table 3), which is consistent with the enhanced Mn2+ genera-

tion of MnO shown by ICP-OES. Both PLGA MnO NP formulations had comparable T1 val-

ues at all pHs (Table 3 and S12 Fig), which shows that unencapsulated MnO NP size does not

have a significant impact on Mn2+ release or MRI signal once NPs are encapsulated within a

polymer. Since a different number of metal oxide NPs can be encapsulated within each indi-

vidual PLGA NP, variability in loading within each sample could have contributed to a loss of

Fig 9. Average cumulative release of Mn2+ from PLGA Mn3O4 (17 nm), PLGA MnO (19 nm), and PLGA MnO (32

nm) NPs after 24 hr of incubation at pH 7.4, pH 6.5, and pH 5. Mn2+ release was significantly greater from PLGA

MnO NPs compared to PLGA Mn3O4 NPs at pH 5. Three different batches of each type of NPs were analyzed during

controlled release. Error bars are average ± standard deviation. ��p<0.01 was defined as highly significant.

https://doi.org/10.1371/journal.pone.0239034.g009

Table 3. MRI T1 values of supernatants collected 24 hours after PLGA NP incubation at pH 7.4, 6.5 and 5.

Nanoparticle Type (metal oxide diameter) T1 (ms)

pH 7.4 pH 6.5 pH 5

PLGA Mn3O4 (17 nm) 2,340.6 ± 57.9 1,749.8 ± 81.0 1,404.4 ± 220.7��

PLGA MnO (19 nm) 2,263.7 ± 28.9 1,597.3 ± 52.1 854.8 ± 103.6

PLGA MnO (32 nm) 2,043.1 ± 237.2 1,605.2 ± 78.2 830.1 ± 49.1

��p<0.01 for PLGA Mn3O4 (17 nm) versus PLGA MnO (19 nm) at pH 5

https://doi.org/10.1371/journal.pone.0239034.t003
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MRI trends between PLGA MnO (19 nm) NPs and PLGA MnO (32 nm) NPs. Altogether, our

results support the use of MnO over Mn3O4 due to higher Mn2+ generation and MRI signal

with and without PLGA encapsulation.

In addition to utilizing MnO over Mn3O4, another strategy to maximize MRI signal from

MnO NPs in vitro and in vivo would be to employ NP targeting to enhance uptake into tumor

cells to take advantage of the low acidic conditions of endosomes and lysosomes to aid in

increased Mn2+ generation. Several receptors are overexpressed on tumor cells depending on

the cancer type such as the folate receptor, epidermal growth factor receptor (EGFR), human

epidermal growth factor receptor 2 (HER2), the transferrin receptor, and the mucin-1 (MUC-

1) receptor [44], among others. NPs can be conjugated with either antibodies or peptides

designed to bind specifically to these receptors to enable targeting. Small targeting peptides

provide several advantages over antibody targeting including reduced production cost, low

molecular weight and reduced immunogenicity [45].

Besides PLGA encapsulation, NPs can be made hydrophilic through ligand exchange [35]

or lipid capping [46]. Further NP modifications to enhance functionality include adding

stealth polymers to the surface such as polyethylene glycol (PEG) [47] to extend blood circula-

tion times to promote NP accumulation in tumors as well as adding chemotherapeutic drugs

or microRNA to develop theranostic systems to track drug delivery to tumors. If PEG is used,

targeting moieties should be added to the end of the PEG chains, as targeting agents attached

to the NP surface would experience steric hindrance by long PEG chains and be inaccessible to

bind with tumor cell receptors [48]. Although PEG can greatly enhance blood circulation

times and NP accumulation in tumors, it can decrease NP uptake into tumor cells [49]. As an

alternative approach, cleavable PEG chains can be utilized, which can be designed for cleavage

at low tumor pH or by enzymes overexpressed at the cancer site [50]. Phospholipid versus

polymer encapsulation techniques have different advantages. Phospholipid coating will mini-

mally add to the overall NP size and facilitate synthesis of small NPs, as the hydrophobic lipid

tail will associate with the hydrophobic NP surface and the hydrophilic head will point out

towards the aqueous media [46, 51, 52]. Phospholipids conjugated to fluorescent dyes, poly-

mers, and different reactive functional groups (e.g. free acid, amine, alkene, azido, etc.) are

readily available from commercial sources such as Avanti Polar Lipids. When utilizing phos-

pholipids, it is important to use long chain saturated lipids with a phase transition temperature

>37˚C to assure better stability and to purchase reactive functional groups and polymers

attached to the lipid head groups to ensure these moieties are facing out towards the aqueous

media. Polymeric encapsulation typically produces larger NPs, but is very customizable; fluo-

rescent dyes, metal oxide NPs, and drug can all be added during the synthesis phase for simul-

taneous encapsulation [5, 53, 54]. Release rate of the contents can be controlled through

changing the polymer composition.

It will also be important to evaluate potential Mn toxicity in the consideration of adopting

MnO NPs for MRI of tumors. Mn toxicity is thought to arise from the release of free Mn2+

ions, as Mn2+ mimics Ca2+ and can enter neurons and muscles. The ability of Mn2+ to travel

down neurons has been used for manganese enhanced MRI (MEMRI) in animals to visualize

neuronal activity. Bock et al. [55] have shown that MEMRI in rats had no adverse effects using

30 mg/kg of free Mn2+, injected every 2 days for 12 days, totaling 180 mg/kg Mn2+. MnO NPs

should be better tolerated in vivo, as they carry MnO, not free Mn2+ directly. Through incorpo-

rating specific NP targeting to tumor cells and confining Mn2+ release to low pH tumor endo-

somes (Figs 7–9), the systemic dose of free Mn2+ should be minimized. Nonetheless, it will be

necessary to thoroughly evaluate MnO NP hepatic, cardiac, and sensorimotor toxicity in vivo
over time in tumor bearing animals to assess any off-target effects. The key results from our

study are summarized below in Fig 10.
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Conclusions

In conclusion, we are the first to demonstrate that modification of the temperature ramp rate

and aging time at 300˚C can be used to fine-tune both the diameter and composition of MnO

NPs (Fig 10). The fastest ramp and shortest aging time produced the smallest NP size through

limiting the overall reaction time and NP growth; however, a mixture of Mn3O4 and MnO

NPs was obtained with shorter aging times due to the incomplete reduction of Mn3O4 to

MnO. To achieve pure MnO, which is most desirable for MRI applications, longer aging times

at 300˚C were needed, but MnO NP size increased as well. In our study, the 20˚C/min temper-

ature ramp with a 30 minute aging time at 300˚C was the most ideal temperature condition to

form the smallest pure MnO NPs. XPS and FTIR confirmed NP surface oxidation to Mn3O4

and oleylamine capping, respectively. Remarkably, ramping rate and aging time had a negligi-

ble effect on the Mn2+ release rate, indicating that NP size and composition characteristics

could be counteracting each other, as MnO/Mn3O4 NPs tended to be smaller than MnO NPs.

To further explore the impact of NP size and chemical composition on Mn2+ release rate and

MRI signal, the ideal MnO NPs synthesized in this study (32 nm) were compared with smaller

MnO NPs (19 nm) and smaller Mn3O4 NPs (17 nm), with and without PLGA encapsulation.

As predicted, the smallest unencapsulated MnO NPs released the most Mn2+ ions at pH 5 and

6.5 and led to the greatest reduction in T1 longitudinal relaxation time, with the highest MRI

signal. PLGA encapsulation of large and small MnO NPs reduced the trends observed with

unencapsulated MnO NPs possibly due to variability of metal oxide loading within individual

NPs. With and without PLGA coating, Mn3O4 NPs were consistently the least effective MRI

contrast agents; therefore, it is recommended to utilize MnO over Mn3O4 for MRI applications

to expedite Mn2+ release and the resulting MRI signal produced. Future studies will explore

varying the chemical reactant ratios to further decrease NP size and polydispersity, and using

novel surface functionalization to enhance MnO NP endocytosis into cancer cells to maximize

MRI contrast through Mn2+ generation.

Fig 10. Schematic presentation illustrating how size and composition of MnO NPs can be fine-tuned by altering

temperature ramping rate and aging time. A shorter aging time and faster ramp rate produced smaller NPs with a

mixed composition of MnO/Mn3O4. Larger NPs comprised of MnO only were synthesized by extending the aging

time and using a slower temperature ramp. Mn2+ production was highest at pH 5, mimicking cell endosomes.

Unencapsulated small MnO NPs released the greatest amount of Mn2+ and had the highest MRI signal enhancement

(yellow) compared to unencapsulated large MnO NPs and small Mn3O4 NPs. Although there was no significant

difference between large and small MnO NPs after PLGA encapsulation, both PLGA MnO NP formulations released

significantly more Mn2+ compared to PLGA Mn3O4 NPs and generated much higher T1 signal enhancement (not

shown).

https://doi.org/10.1371/journal.pone.0239034.g010
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Supporting information

S1 Fig. Temperature profiles of MnO NP synthesis. Reactant mixtures were heated from

room temperature to 60˚C over 30 minutes and then to 300˚C using two different temperature

ramps of a) 20˚C/min or b) 10˚C/min. Both temperature profiles show an aging temperature

at 300˚C for 30 minutes prior to cooling. Note how the temperatures measured during the

experiments (red circles) closely match the theoretical programmed settings for the tempera-

ture controller (black lines), indicating precise control of MnO NP fabrication conditions.

(TIF)

S2 Fig. Size distributions of the diameter of MnO NPs produced using the following tempera-

ture profiles: a) 5 min at 300˚C with a 20˚C/min vs. 10˚C/min ramp, b) 15 min at 300˚C with a

20˚C/min vs. 10˚C/min ramp, and c) 30 min at 300˚C with a 20˚C/min vs. 10˚C/min ramp.

MnO NP diameter increases as the ramping rate decreases and aging time at 300˚C increases.

The average size for each distribution is shown in S1 Table.

(TIF)

S3 Fig. EDS spectra of the MnO NP samples with the following temperature profiles: a) 5 min

at 300˚C with 20˚C/min ramp, b) 5 min at 300˚C with 10˚C/min ramp, c) 15 min at 300˚C

with 20˚C/min ramp, d) 15 min at 300˚C with 10˚C/min ramp, e) 30 min at 300 oC with 20˚C/

min ramp, and f) 30 min at 300˚C with 10˚C/min ramp. EDS confirmed the presence of Mn

and O elements in NP samples.

(TIF)

S4 Fig. FTIR spectrum of oleylamine. Asterisks represent oleyl groups, while squares repre-

sent amine groups.

(TIF)

S5 Fig. Cumulative release of Mn2+ from MnO NPs over 24 hr after incubation in PBS pH

7.4 (dotted line), 20 mM citrate buffer pH 6.5 (dashed line), and 20 mM citrate buffer pH 5

(solid line). Controlled release curves are shown for MnO NPs generated with the following

temperature profiles: a) 5 min at 300˚C with 20˚C/min ramp, b) 5 min at 300˚C with 10˚C/

min ramp, c) 15 min at 300˚C with 20˚C/min ramp, d) 15 min at 300˚C with 10˚C/min ramp,

and e) 30 min at 300˚C with 10˚C/min ramp. Mn2+ release increased with a decrease in pH.

Time points are shown for 1, 2, 4, 8 and 24 hr. Error bars show mean ± standard deviation.

(TIF)

S6 Fig. XRD and TEM of small Mn3O4 NPs and small MnO NPs. XRD spectra of a) 17 nm

Mn3O4 NPs and b) 19 nm MnO NPs. The standard diffraction peaks for known c) Mn3O4 and

d) MnO are shown from X’Pert HighScore. Through comparing with the standard diffraction

peaks, Mn3O4 NPs are 73–100% Mn3O4 composition and MnO NPs are 67–73% MnO com-

position. TEM images of e) 17 nm Mn3O4 and f) 19 nm MnO NPs. NPs are smaller in size

compared to Fig 2 and have a lower size variation. Scale bar is 50 nm.

(TIF)

S7 Fig. MRI properties of Mn2+ standard curve solutions and Mn2+ supernatants collected

from dissolving MnO and Mn3O4 NPs. a) r1 values for free Mn2+ in 20 mM citrate buffer pH

5 (black), 20 mM citrate buffer pH 6.5 (blue), and PBS pH 7.4 (red). T1-weighted MRI images

shown in b-e) were acquired at 1 T with a 400 ms repetition time. T1 MRI of increasing Mn2+

concentrations in b) 20 mM citrate buffer pH 5, c) 20 mM citrate buffer pH 6.5, d) PBS pH 7.4.

e) shows T1 MRI images of supernatants collected from small Mn3O4 (17 nm), small MnO (19

nm) and large MnO (32 nm) NPs suspended in pH 5 citrate buffer for 24 hours. MRI signal
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enhancement is greatest from small MnO NPs and least from small Mn3O4 NPs.

(TIF)

S8 Fig. TEM images of PLGA encapsulated NPs formed by single emulsion. Three different

types of metal oxide NPs were coated with PLGA including a) 17 nm Mn3O4, b) 19 nm MnO,

and c) 32 nm MnO. Metal oxide NPs can be visualized as dark circles inside of the PLGA. NP

loading capacity was ~30%. Scale bars are 100 nm.

(TIF)

S9 Fig. FTIR spectra of PLGA encapsulated NPs: a) PLGA Mn3O4 (17 nm), b) PLGA MnO

(19 nm), and c) PLGA MnO (32 nm). All NPs possess the characteristic peaks of PLGA, repre-

sented by circles, as shown in S10 Fig.

(TIF)

S10 Fig. FTIR spectrum of PLGA. Circles represent characteristic peaks of PLGA. The peaks

at 2993 cm−1 and 2989 cm−1 show the C–H stretch of CH2, and C–H stretch of–C–H–, respec-

tively. The peak at 1751 cm−1 is assigned to the C = O stretching vibration of the ester bond

and 1165–1087 cm−1 corresponds to the C–O stretching.

(DOCX)

S11 Fig. Size distributions of PLGA NP diameters by DLS analysis: a) PLGA Mn3O4 (17 nm),

b) PLGA MnO (19 nm), and c) PLGA MnO (32 nm). Highest peak for NP diameters is in the

220 to 255 nm bin size range.

(TIF)

S12 Fig. MRI properties of Mn2+ supernatants collected from dissolving PLGA MnO and

PLGA Mn3O4 NPs. T1 MRI images of supernatants collected from PLGA Mn3O4 (17 nm),

PLGA MnO (19 nm) and PLGA MnO (32 nm) NPs suspended in pH 5 citrate buffer, pH 6.5

citrate buffer, and pH 7.4 PBS for 24 hours. MRI signal enhancement is significantly greater

from PLGA MnO NPs compared to PLGA Mn3O4 NPs.

(TIF)

S1 Table. Total reaction time, average diameter and PDI of MnO NPs for each tempera-

ture condition.

(TIF)

S2 Table. Total amount of Mn2+ released (ave ± stdev) from MnO NPs over 24 hr at differ-

ent pH.

(TIF)

S3 Table. Concentration of Mn2+ obtained from controlled release of NPs at 24 hr analyzed

by ICP-OES and MRI.

(TIF)

S4 Table. Loading capacity of PLGA NPs (mg MnxOy/mg NP) by ICP-OES.

(TIF)
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20. Salazar-Alvarez G, Sort J, Suriñach S, Baró MD, Nogués J. Synthesis and Size-Dependent Exchange

Bias in Inverted Core−Shell MnO|Mn 3 O 4 Nanoparticles. J Am Chem Soc. 2007 Jul; 129(29):9102–8.

https://doi.org/10.1021/ja0714282 PMID: 17595081

21. Nolis GM, Bolotnikov JM, Cabana J. Control of Size and Composition of Colloidal Nanocrystals of Man-

ganese Oxide. Inorg Chem. 2018 Oct 15; 57(20):12900–7. https://doi.org/10.1021/acs.inorgchem.

8b02124 PMID: 30277388

22. Seo WS, Jo HH, Lee K, Kim B, Oh SJ, Park JT. Size-Dependent Magnetic Properties of Colloidal

Mn3O4 and MnO Nanoparticles. Angew Chem Int Ed. 2004; 43(9):1115–7.

23. Schladt TD, Graf T, Tremel W. Synthesis and Characterization of Monodisperse Manganese Oxide

Nanoparticles−Evaluation of the Nucleation and Growth Mechanism. Chem Mater. 2009 Jul 28; 21

(14):3183–90.

24. Yin M O’Brien S. Synthesis of Monodisperse Nanocrystals of Manganese Oxides. J Am Chem Soc.

2003 Aug 1; 125(34):10180–1. https://doi.org/10.1021/ja0362656 PMID: 12926934

25. Zhang H, Jing L, Zeng J, Hou Y, Li Z, Gao M. Revisiting the coordination chemistry for preparing man-

ganese oxide nanocrystals in the presence of oleylamine and oleic acid. Nanoscale. 2014; 6(11):5918.

https://doi.org/10.1039/c4nr00761a PMID: 24760344

26. Douglas FJ, MacLaren DA, Tuna F, Holmes WM, Berry CC, Murrie M. Formation of octapod MnO nano-

particles with enhanced magnetic properties through kinetically-controlled thermal decomposition of

polynuclear manganese complexes. Nanoscale. 2013 Dec 9; 6(1):172–6. https://doi.org/10.1039/

c3nr04832b PMID: 24220037
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