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Cold exposure induces lipid dynamics 
and thermogenesis in brown adipose tissue 
of goats
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Abstract 

Background:  Adaptive thermogenesis by brown adipose tissue (BAT) is important to the maintenance of tempera-
ture in newborn mammals. Cold exposure activates gene expression and lipid metabolism to provide energy for BAT 
thermogenesis. However, knowledge of BAT metabolism in large animals after cold exposure is still limited.

Results:  In this study, we found that cold exposure induced expression of BAT thermogenesis genes and increased 
the protein levels of UCP1 and PGC1α. Pathway analysis showed that cold exposure activated BAT metabolism, which 
involved in cGMP-PKG, TCA cycle, fatty acid elongation, and degradation pathways. These were accompanied by 
decreased triglyceride (TG) content and increased phosphatidylcholine (PC) and phosphatidylethanolamine (PE) 
content in BAT.

Conclusion:  These results demonstrate that cold exposure induces metabolites involved in glycerolipids and glycer-
ophospholipids metabolism in BAT. The present study provides evidence for lipid composition associated with adap-
tive thermogenesis in goat BAT and metabolism pathways regulated by cold exposure.
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Introduction
Tremendous progress has been made in the study of adi-
pose tissue thermogenesis. Unlike shivering thermogen-
esis of muscles, brown adipose tissue (BAT) can generate 
large amounts of heat through non-shivering thermogen-
esis, which is mainly performed by UCP1 uncoupled res-
piration [1]. In rodents, BAT is formed during embryonic 
development and persists in adulthood to maintain body 
temperature [2, 3]. Interscapular BAT is the largest brown 

fat depot of adult mice and contributes to its adaptive 
thermogenesis [4]. However, the developmental regula-
tion of brown fat in rodents is different from that in large 
mammals. In sheep and goats, BAT is present in clavicu-
lar/cervical, pericardial, perirenal regions and the largest 
brown fat depot was the perirenal fat at birth. Then, it is 
converted from BAT to white adipose tissue (WAT) at 
30 days after birth [5–7]. Perirenal BAT is recruited only 
at birth to help newborn mammals adapt to changes in 
ambient temperature [8].

When exposed to cold, BAT is recruited for adaptive 
thermogenesis, which is important for newborn mam-
mals to maintain body temperature in the extrauterine 
environment [9]. Additionally, genes involved in lipolysis 
are upregulated upon clod exposure, where cold activates 
HSL and ATGL via β-adrenergic receptors to supply huge 
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energy for brown fat thermogenesis [10]. Meanwhile, 
Lipid metabolism is essential for BAT thermogenesis in 
response to cold exposure [11]. BAT generates energy as 
heat and mobilizes fatty acids from the TG in lipid drop-
lets to mitochondria for thermogenesis to increase body 
temperature [12]. Previous studies have been proved that 
cold exposure causes huge changes in the expression of 
genes involved in glycerophospholipid metabolism of 
interscapular BAT of mice [13]. There are huge changes 
in the species composition of glycerophospholipids as 
well as TG. Cold induced fatty acyl chain elongation of 
glycerolipids, while glycerophospholipid species are gen-
erally upregulated [13]. Meanwhile, phosphatidylglycerol 
(PG) is upregulated in cold conditions and may serve as 
a marker of BAT activity [14]. However, as the largest 
brown fat depot in the postnatal period, cold-induced 
lipid metabolism in perirenal BAT remains largely 
unknown in large mammals.

In this study, we performed acute cold exposure (24 h 
at 6 °C) on newborn goats by contrasting the room tem-
perature group (24 h at 25 °C). We found that cold expo-
sure altered the transcription pattern of perirenal BAT 
from newborn goats. The genes involved in cGMP-PKG 
signaling, TCA cycle, and PPAR signaling pathway were 
widely upregulated, suggesting that those pathways were 
activated after cold exposure. Furthermore, lipidomic 
analysis of perirenal BAT indicated that cold elicited 
pathways of glycerolipid and glycerophospholipid metab-
olism. This study provides comprehensive data on gene 
expression and lipid composition of goat perirenal BAT 
after cold exposure. These datasets will be useful for fur-
ther research on BAT lipid metabolism in large mammals 
after cold exposure.

Result
Cold exposure promotes BAT thermogenesis and induces 
the transcriptional programs of perirenal BAT in newborn 
goats
In this study, we first carried out HE staining to charac-
terize the tissue morphology of perirenal BAT. The indi-
vidual cell compartment of perirenal BAT was reduced 
after cold exposure (Fig.  1A). Besides, cold exposure 
significantly increased the protein levels of UCP1 and 
PGC1α (Fig.  1B and Fig. S1). Next, we determined 
changes of gene transcriptomic profile induced by cold 
exposure in perirenal BAT through RNA-seq (Table 
S1). A total of 1,689 differentially expressed genes were 
obtained, of which 939 and 750 genes were upregu-
lated and downregulated by cold exposure (Fig.  1C and 
Table S2). Unsupervised hierarchical clustering of dif-
ferentially expressed genes generated two main clus-
ters between room temperature (RT) and cold exposure 
(Cold) group (Fig.  1D), indicate that the samples had 

good uniformity among the replicates. In addition, we 
observed that the BAT thermogenesis related genes were 
significantly upregulated after cold exposure, including 
UCP1, PGC1α, PGC1β, ND1, ATP5G3, ACSL5, and DPF1 
(P < 0.05, Fig. 1E).

KEGG pathway analysis revealed that the upregulated 
genes after cold exposure were enriched in BAT metab-
olism and thermogenesis-related pathways, including 
cGMP-PKG signaling, TCA cycle, PPAR, and regula-
tion of lipolysis in adipocytes (Fig. 2A and Table S3). We 
next characterized these pathways related differentially 
expressed genes using heatmaps. Gene set enrichment 
analysis (GSEA) of RNA-seq data showed that the cGMP-
PKG signaling pathway was highly enriched in perire-
nal BAT after cold exposure, but absent in the cAMP 
signaling pathway (Fig.  2B). These genes involved in 
cGMP signaling were significantly upregulated (P < 0.05, 
Fig.  2C), such as ADRA1A, ADRB1, NOS3, GUCY1B2, 
PRKG1, PDE3B, and VASP genes. Norepinephrine (NE) 
is known to activate β adrenergic receptors (ADRA1A 
and ADRB1), which then activate endothelial nitric 
oxide synthase (NOS3). The endothelial nitric oxide syn-
thase catalyzes the production of nitric oxide, which fur-
ther potentiates activation of soluble guanylate cyclase 
(GUCY1B2). Then GUCY1B2 catalyzes the synthe-
sis of cGMP, and PKG (PRKG1) plays a regulatory role 
through binding cGMP [15]. These results suggest that 
cGMP-PKG signaling pathway, but not cAMP signal-
ing pathway, was activated by NE-β adrenergic receptors 
signaling in perirenal BAT upon cold exposure. Further-
more, cold exposure induced the expression levels of the 
genes encoding the rate-limiting enzymes for TCA cycle, 
including aconitate hydratase (ACO2), isocitrate dehy-
drogenase (IDH2), pyruvate dehydrogenase complex 
(PDHA1 and PDHB), and the ketoglutarate dehydroge-
nase complex (OGDH and DLST) (Fig.  2D). The above 
finding mirrored at the transcriptional level that cGMP-
PKG signaling pathway and TCA cycle was elicited in 
perirenal BAT upon cold exposure.

Cold exposure changes the overall lipid composition 
of perirenal BAT
LS-MS-based lipidomics was used to quantify the levels 
of lipid in perirenal BAT from cold exposure and room 
temperature group. A totally of 1469 different lipid spe-
cies were detected in BAT (Table S4). There was an obvi-
ous separation of cold exposure and room temperature 
group by the orthogonal projections to latent struc-
tures discriminant analysis (Fig.  3A). For sphingolip-
ids, only ceramides phosphate (CerP) was significantly 
increased (P < 0.05, Fig. 3B). Cholesterol esters (CE) were 
unchanged under cold exposure (Fig. 3C). Then, we used 
bubble plots to visualize all significantly different lipid 
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species. A total of 68 lipid species were significantly 
changed, of which 25 and 43 lipid species were upregu-
lated and downregulated by cold exposure, respectively 
(P < 0.05, Fig. 3D and Table S5).

Cold exposure changes fatty acyl levels of TG in perirenal 
BAT
Our lipidomic results show that TG and diglyceride 
(DG) were not significantly changed by cold exposure 
in perirenal BAT, but there was a tendency of lower TG 
and DG contents in the Cold group (Fig.  4A). We next 

investigated the composition of individual fatty acyl 
chain after cold exposure (Table S6). For odd-numbered 
fatty-acyl chains (ODD), C17:2 significantly reduced by 
cold exposure (P < 0.05, Fig.  4B). Analysis of saturated 
fatty-acyl chains (SFA) and monounsaturated fatty-acyl 
chains (MUFA) exhibited an increasing trend of C20:0, 
C22:0, C22:1 (Fig. 4C and Fig. 4D). The levels of polyun-
saturated fatty-acyl chains (PUFA) were reduced, with a 
significantly decreased of C18:4 (P < 0.05, Fig. 4E).

Then, we used a heatmap to visualize the genes 
with significant changes in the lipolysis, fatty acid 

Fig. 1  Cold exposure promotes BAT thermogenesis of perirenal BAT in newborn goats. (A) Representative images are shown for perirenal fat and 
histological sections were stained with hematoxylin and eosin of room temperature (RT, 25 °C) or cold exposure (Cold, 6 °C) group, scale bar: 50 μm; 
(B) Western blotting of UCP1 and PGC1α between RT and Cold group in BAT; (C) Volcano plot showed differential gene expression profiles of RT and 
Cold group; (D) Unsupervised hierarchical clustering showed that the RT and Cold groups clustered into two classes; (E) Heatmaps of the fragments 
per kilobase million (FPKM) values of upregulated genes in BAT thermogenesis pathway after cold exposure
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degradation and elongation pathway (Fig.  4F and 
Fig. 4G). The expression of ADRB1, encoding the β1 adr-
energic receptor, was significantly upregulated by cold 
exposure (Fig.  4F, P < 0.05). We noticed that expres-
sion levels of genes encoding both PKA (PRKACB) 
and PKG (PRKG1) were upregulated (Fig. 4F, P < 0.05). 
The expression of PLIN1 significantly decreased by 
cold exposure, which functions to protect TG from 
lipase degradation (Fig.  4F, P < 0.05). We found that 
the expression of ELOVL6 and HSD17B12, which were 
involved in fatty acid chain elongation, were signifi-
cantly upregulated by clod exposure (P < 0.05, Fig. 4G). 
Additionally, the CPT1A and CPT2 genes, which are 
involved in the transport of fatty acids to β-oxidation 
[17], were significantly upregulated after clod expo-
sure (P < 0.05, Fig. 4G). The ACSL5 gene encodes long-
chain acyl CoA synthetase, which is a key enzyme for 
β-oxidation [18]. In this study, ACSL5 was upregulated 
in BAT after cold exposure (P < 0.05, Fig.  4G). These 
results indicated that fatty acid degradation and fatty 
acid elongation pathways were activated in perirenal 
BAT after cold exposure (Fig. 5).

Cold exposure changes glycerophospholipid metabolism 
in perirenal BAT
GSEA analysis revealed that the upregulated genes were 
enriched in the glycerophospholipid metabolism path-
way after cold exposure (P < 0.05, Fig.  6A). As shown 
in Fig.  6B, phosphatidic acid (PA) and phosphatidyl-
serine (PS) have a decreasing trend, although  the  dif-
ference  was  not  significant (P = 0.06). The two most 
abundant glycerophospholipids (PC and PE) had an 
upward trend. We next investigated how the composi-
tion of the different glycerophospholipid species was 
affected by cold exposure in perirenal BAT and exam-
ined the top 30 differential species according to the 
intensity (P < 0.05, Fig.  6C). The result showed that 
the content of PE species with C18:0 was significantly 
decreased (P < 0.05), suggesting that these PE species 
were selected for degradation.

We then used heatmap to show the significantly dif-
ferentially expressed genes in the glycerophospholipid 
metabolic pathway from the KEGG analysis (Fig.  6D) 
and further mapped the pathway between genes and 
glycerophospholipid species (Fig. 7). The results showed 

Fig. 2  KEGG pathway analysis of upregulated genes of BAT upon cold exposure. (A) Enrichment of Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways of cold-induced upregulated genes using KEGG database [16]; (B) cGMP-PKG (ko04022) and cAMP signaling pathway (ko04024) 
analysis was used by gene set enrichment analysis (GSEA) on RNA-seq data from RT and Cold group. The green line represented the enrichment of 
pathway in the Cold or RT group according to gene expression levels, with genes enriched in the Cold group shown on the left and genes enriched 
in the RT group shown on the right; (C-D) Heatmaps of the FPKM expression values of differentially expressed genes in cGMP-PKG signaling 
pathway and Citrate cycle (TCA cycle) after cold exposure. IRS1_x1 represented IRS1 isoform 1, and PRKG1_x2 represented PRKG1 isoform 2
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that differentially expressed genes were changed in 
glycerophospholipid metabolism, which included genes 
of phosphatidylcholine metabolism-related pathway 
(PCYT1B, PLA2G12A, LCLAT1, LCLAT3, and PTX3), 
cardiolipin synthesis pathway (LPGAT1 and CRLS1), 
and phosphatidylethanolamine metabolism-related 
pathway (SELENOI, PCYT2, and ETNK1) (P < 0.05, 
Fig.  6D and Fig.  7). We found that the expression of 
genes in the PC synthesis was significantly upregu-
lated. Meanwhile, the expression of PLD2 gene, which 
encodes the key enzyme for PC degradation, was signif-
icantly decreased (P < 0.05). In addition, the expression 
of genes (SELENOI, PCYT2, and ETNK1), which were 
involved in the PE synthesis, were upregulated, whereas 
genes involved in the PE degradation were downregu-
lated (P < 0.05, Fig. 6D and Fig. 7). These results explain 
the increased content of PC and PE in BAT after cold 
exposure.

Discussion
Previous studies have demonstrated that 22  °C is used 
as thermoneutral condition of control group for mice 
cold exposure experiments [13, 19, 20]. In addition, 
30  °C causes whitening of brown adipose tissue in mice 
and decreases the expression of thermogenic genes [21]. 
Normal mouse body temperature is 37 °C, whereas nor-
mal goat body temperature is 39  °C [22]. In addition, a 
housing condition of 25 °C could significantly reduce the 
impact of cold stress on goat kids [23]. Therefore, we set 
25  °C as thermoneutral condition of control group. In 
this study, compared with the room temperature group 
(25  °C), cold exposure (4  °C) significantly increased the 
protein levels of UCP1 and PGC1α. The individual cell 
compartment of perirenal BAT was reduced after cold 
exposure. These results suggest that room tempera-
ture (25  °C) can be considered a thermoneutral condi-
tion for the goats. Previous studies demonstrated that 

Fig. 3  Cold exposure changes the overall lipid composition of perirenal BAT. (A) The orthogonal partial least squares-discriminant analysis 
(OPLS-DA) showed that RT and Cold group were separated into two clusters; (B-C) The intensity fold change of sphingolipids and cholesterol esters; 
(D) Log2 fold changes in lipid species in Cold vs. RT group. Each dot represents a lipid species and the dot size indicates the significance. Only lipids 
with P < 0.05 are displayed. Error bars represent standard error of mean (SEM), n = 5, * P < 0.05
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sympathetic nerves secrete catecholamines to stimulate 
β adrenergic receptors when mice are upon cold expo-
sure, which will initiate the cAMP-PKA signaling path-
way [24]. Then, phosphorylated PKA elicits the p38/
MAPK signaling pathway and regulates the expression 
of BAT thermogenic genes [25]. In the present study, the 
cGMP-PKG but not cAMP signaling pathway was signifi-
cantly enriched by KEGG analysis, suggesting that cold 
exposure may regulate goat BAT thermogenesis via the 
cGMP signaling pathway. The cGMP signaling pathway 
is characterized by activation of brown adipocytes differ-
entiation and mitogenesis via p38/MAPK signaling path-
way [26, 27]. Activation of the cGMP signaling pathway 
increases lipid uptake in BAT and increases the expres-
sion level of the LPL gene [28]. HSL directly catalyzes 
lipolysis after it is phosphorylated, and PLIN1 protects 
lipids from lipolysis but when phosphorylated uncou-
ples protection from it. In addition, cGMP increases the 
phosphorylation levels of HSL and PLIN1, which then 
mediate lipolysis in adipocytes [29].

Fatty acid degradation can provide generous energy for 
BAT adaptive thermogenesis. In this study, we observed 
upregulated expression of CPT1A, CPT2 as well as TCA 
cycle-related genes (IDH2, OGDH, and DLST) after 

cold exposure. FABP3, a key protein for lipid transport, 
is induced in BAT after cold exposure [30]. FABP3 also 
increases the uptake of free fatty acids from BAT in UCP1 
knockout mice and promotes adaptive thermogenesis 
in BAT [31]. In addition, CPT1A and CPT2 genes, which 
function to transport fatty acids into the inner mitochon-
drial membrane, are also significantly upregulated after 
cold exposure [32, 33]. Previous studies have reported 
that lipolytic products increase the expression of fatty acid 
oxidation-related genes through the PPAR signaling path-
way [10]. Pyruvate dehydrogenase (PDH) can catalyze the 
reaction of catabolized pyruvate into acetyl CoA, thus pro-
moting pyruvate into the TCA cycle [34]. Furthermore, 
previous studies proved that the insulin signaling path-
way could activate the PDH of BAT [35]. Intermediates of 
the TCA cycle are significantly increased upon acute cold 
exposure, suggesting that the TCA cycle plays a critical role 
in energy metabolism for BAT thermogenesis [36]. Long-
chain fatty acids, through β oxidation generated acetyl 
CoA, can enter the TCA cycle for oxidative degradation 
[37]. Our results demonstrate that fatty acid degradation 
and the TCA cycle pathways were activated after cold expo-
sure, suggesting that perirenal BAT may provide energy for 
thermogenesis through these two metabolic pathways.

Fig. 4  Cold exposure changes fatty acyl levels of TG in perirenal BAT. (A) The intensity fold change of glycerolipids; (B-E) The total intensity fold 
change of TG individual fatty-acyls chains, (B), odd-numbered fatty-acyl chains (ODD), (C), saturated fatty-acyl chains (SFA), (D), monounsaturated 
fatty-acyl chains (MUFA), (E), polyunsaturated fatty-acyl chains (PUFA); (F-G) Heatmaps of the FPKM values of differentially expressed genes in 
regulation of lipolysis, and fatty acid degradation and elongation pathway after cold exposure. Error bars represent standard error of mean (SEM), 
n = 5, * P < 0.05
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Cold exposure has previously been reported to remodel 
the lipid composition of interscapular BAT and increase 
the contents of very long-chain fatty acyls in SFA and 
MUFA [13]. Cold exposure increases the expression 
of the ELOVL3 gene in interscapular BAT of mice [13, 
20]. Our previous study also revealed that ELOVL3 and 
ELOVL5 genes are enriched in perirenal BAT compared 
to WAT [7]. However, there is no significant change for 
ELOVL3 and ELOVL5 genes after cold exposure in the 
present study. ElOVL6 plays a regulatory role in the elon-
gation of the chain length of fatty acids in interscapular 
BAT [38]. In this study, levels of fatty acetyl chains C20:0, 
C22:0, and C22:1 were increased in perirenal BAT after 
cold exposure. In addition, ELOVL6 was significantly 
upregulated after cold exposure in perirenal BAT, indi-
cating that ELOVL6 may be necessary to prolong the fatty 
acid chain length under cold exposure.

Cold exposure can cause significant changes in mito-
chondrial phospholipid acyl chains composition in 
interscapular BAT via stimulation of β adrenergic recep-
tors by sympathetic nerves [39]. The importance of car-
diolipin for mitogenesis and BAT thermogenesis has 
been reported [14]. In this study, the expression of genes 
(LPGAT1 and CRSL1) for cardiolipin synthesis were 

robustly activated. Cardiolipin was not detected in this 
study, and we speculate that there was a low content of 
cardiolipin in the brown fat of newborn goats. However, 
cardiolipin is enriched in interscapular BAT of adult mice 
[14]. Cardiolipin may be enriched in fat depots in adult 
goats, or this is a difference between goat and mouse 
brown fat. Moreover, the metabolism of glycerophos-
pholipids is induced upon cold exposure in interscapu-
lar BAT and inguinal WAT [13, 40]. Mitochondria have 
a double membrane structure, in which PC and PE are 
the major components of membrane phospholipids [41]. 
Phospholipids on the mitochondrial membrane play an 
important role in maintaining mitochondrial metabolic 
function as well as UCP1 uncoupled respiration [42, 
43]. Meanwhile, the increased amounts of PC and PE 
in mitochondria regulate the activity of mitochondrial 
enzymes and promote thermogenesis in BAT [43]. In the 
present study, we found that expression of genes of PC 
and PE synthesis were upregulated, and levels of PC and 
PE were increased in perirenal BAT after cold exposure. 
These results demonstrate that the level of PC and PE 
are increased upon cold exposure, which suggests their 
important role in adaptive thermogenesis in perirenal 
BAT. Finally, there were some limitations to our research. 

Fig. 5  The lipolysis and fatty acid metabolism are induced in perirenal BAT after cold exposure. Pathway analysis of TG lipolysis and fatty acid 
metabolism, with indications of quantified lipid classes (circles), genes, and pathway (rectangles) regulated in perirenal BAT by acute cold exposure. 
Colors indicate significantly upregulated (red) or downregulated (blue) genes after cold exposure. For lipids, colors indicate the increasing (yellow) 
and decreasing (green) trend of the lipid classes, and only * represent significant different lipid classes
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Metabolites and hormones in plasma are important for 
BAT thermogenesis [44, 45]. Although we identified 
some differentially expressed genes and lipid metabolites 
in BAT after cold exposure, the change of metabolites 
and hormones in plasma still need to be investigated. 
We will focus on plasma metabolites and hormones after 
cold exposure in the future research.

Conclusion
We determined the changes of genes and lipid compo-
sition in goat BAT after acute cold exposure by RNA-
seq and lipidomic analysis. These results revealed that 
cold exposure increased expression of genes involved in 
cGMP-PKG, TCA cycle, fatty acid elongation, and deg-
radation pathways. We also found that cold exposure 
changes in lipid composition with a decrease in TG lev-
els and an increase in PC and PE levels. These results 
indicate that the glycerolipids and glycerophospholipids 

pathways were activated in goat BAT after cold exposure. 
The data provides a reference to BAT thermogenesis reg-
ulation in large animals after cold exposure.

Methods
Animal and sampling
All animals were raised at the breeding center of Sichuan 
Agricultural University, Ya’an, China. A total of 10 female 
Chuanzhong black goats were artificially inseminated 
with the semen of a ram. The ewes delivered a total of 
17 goat kids, including 11 males and 6 females. A total of 
10 males were selected and randomized into room tem-
perature (n = 5) and cold exposure groups (n = 5). After 
birth, the newborn goats were wiped and fed colostrum 
(30  mL/kg BW) in a 25  °C environment for 2  h. Then, 
kids from the room temperature group (RT) were kept at 
25 °C and cold exposure (Cold) groups were placed into 
a cold room (6 °C) for 24 h. Warmed colostrum was fed 

Fig. 6  Cold exposure changes glycerophospholipid metabolism in perirenal BAT. (A) Glycerophospholipid metabolism (ko00564) pathway analysis 
using GSEA on RNA-seq data from RT and Cold group. The green line represented the enrichment of pathway in the Cold or RT group according to 
gene expression levels, with genes enriched in the cold group shown on the left and genes enriched in the RT group shown on the right; (B) The 
intensity fold change of glycerophospholipid; (C) All phospholipid species were significantly changed as shown in this figure. Log2 fold changes in 
significantly different glycerophospholipid species in RT vs. Cold group, and top 30 species are listed according to intensity; (D) Heatmaps of the 
FPKM expression values of upregulated genes in glycerophospholipid metabolism pathway after cold exposure. Error bars represent standard error 
of mean (SEM), n = 5, * P < 0.05
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three times at 8, 14, and 20 h of ages. After 24 h, all goats 
were sacrificed by arterial bleeding under full anesthesia. 
Perirenal adipose tissues were sampled and subsequently 
stored at -80 °C.

Histology analysis
Perirenal fat were fixed with 4% paraformaldehyde and 
embedded in paraffin. For HE staining, sections were 
stained with hematoxylin (Solarbio, Beijing, China). 
Then, sections were photographed by the BX-50F light 
microscope (Olympus, Tokyo, Japan).

Western blotting
Tissue lysate was obtained by the total protein extrac-
tion kit (Solarbio, Beijing, China). After protein samples 
transferring to PVDF membranes, we cut off the extra 
PVDF membrane according to the molecular weight 
of the target protein. Then, the remaining PVDF mem-
brane was incubated with a primary antibody. Antibodies 
were diluted 1:500 for rabbit anti-UCP1 (Cat: 72,298; Cell 
Signaling Technology, MA, USA), 1:500 for rabbit anti-
PGC1α (Cat: A12348; ABclonal, Wuhan, China), 1:1000 
for rabbit anti-β-Tubulin (Cat: AC008; Abclonal, Wuhan, 

China), and 1:1000 for HPR-labeled goat anti-rabbit IgG 
(Beyotime, Shanghai, China). Finally, a ChemiDoc Imag-
ing Systems (Bio-Rad, CA, USA) was used to detect 
immunoreactive proteins.

RNA extraction and cDNA library construction
Total RNA was purified from adipose tissue with RNAi-
soPlus reagent (Takara, Tokyo, Japan). RNA integrity was 
assessed by the Agilent Bioanalyzer 2100 system (Agilent, 
CA, USA). Then, a total amount of 1 μg RNA per sample 
was enriched with magnetic beads with oligo (DT), after 
which the first cDNA strand was synthesized with ran-
dom hexamers. The purified double-stranded cDNA was 
ligated for sequencing adaptors and finally sequenced by 
the novaseq 6000 (Illumina, CA, USA).

RNA‑seq analysis
FastQC was used to assess the quality of the sequenc-
ing data, after which clean reads were obtained [46]. 
The clean reads were mapped onto the goat reference 
genome by HISAT2 [47]. Reads on the alignment were 
assembled and quantified using StringTie [48]. Addi-
tionally, differential genes expression analysis was 

Fig. 7  The glycerophospholipid metabolism is induced in perirenal BAT after cold exposure. Pathway analysis of glycerophospholipid metabolism, 
with indications of quantified lipid classes (circles), genes (rectangles) regulated in perirenal BAT by cold exposure. Colors indicate significantly 
upregulated (red) or downregulated (blue) genes after cold exposure. For lipids, colors indicate the increasing (yellow) and decreasing (green) 
trend of the lipid classes. LPA: Lysophosphatidic acid; LPC: Lysophosphatidylcholine; PC: Phosphatidylcholine; PE: Phosphatidylethanolamine; LPG: 
Lysophosphatidylglycerol; PG: Phosphatidylglycerol; CL: cardiolipin; G3P: Glycerol-3-phosphate
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performed using edgeR and the significance of differen-
tial genes was set at P < 0.05 [49]. Finally, the GO and 
KEGG database were used for gene functional annota-
tion and pathway enrichment analysis [16, 50]. KEGG 
pathway glycerophospholipid metabolism (ko00564), 
cGMP-PKG signaling pathway (ko04022), and cAMP 
signaling pathway (ko04024) were set as gene sets for 
gene set enrichment analysis (GSEA) [51].

Lipidomics analyses
LC–MS analysis of perirenal fat was performed by 
the Agilent 1290 Infinity II liquid chromatography 
(UHPLC) system (Agilent, CA, USA) coupled with 
the triplet of 6600 mass spectrometer (AB SCIEX, 
Ma, USA). In brief, samples were extracted with chlo-
roform–methanol mixed solution (70:30, v/v). Chro-
matographic separation was used with a Phenomenex 
Kinetex C18 column (Phenomenex, CA, USA). Eluent 
A was consisted of acetonitrile and water (40:60, v/v). 
Eluent B was consisted of isopropanol and acetoni-
trile (90:10, v/v), and then the procedure was carried 
as previous study [52]. The mass spectrometry param-
eters were used as follows: ion source gas 1 (60 psi), 
ion source gas 2 (60 psi), curtain gas (30 psi), and tem-
perature of 600  °C; ion spray voltage floating (ISVF), 
5000  V or -4500  V in positive or negative modes, 
respectively.

Using R package Lipidview (https://​github.​com/​luech​
tian/​Lipid​View_​analy​sis) for lipid identification and 
annotation, a data matrix of peak response values (inten-
sity) was obtained. The data were normalized by raw 
peak area values/total peak area values. The acyl chain 
content was calculated by summing the content of that 
acyl chain in all individual TG species. The orthogonal 
partial least squares-discriminant analysis (OPLS-DA) 
was used to analyzed lipids data by R package ropls (ver-
sion 1.3.16). Differences in the lipid between the control 
group and the L-carnitine treatment group were deter-
mined using the Mann–Whitney U test. Lipids with 
P < 0.05 were set as significantly changed.
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