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Abstract

A long-standing paradigm assumes that the chemical and isotopic composition of many elements
in the bulk silicate Earth are the same as in chondrites1-4. However, the accessible Earth has a
greater 142N d/144Nd than chondrites. Because 142Nd is the decay product of now-extinct 146Sm
(t1/2= 103 million years5), this 142Nd difference seems to require a higher-than-chondritic Sm/Nd
of the accessible Earth. This must have been acquired during global silicate differentiation within
the first 30 million years of Solar System formation6 and implies the formation of a
complementary 142Nd-depleted reservoir that either is hidden in the deep Earth6, or was lost to
space by impact erosion3,7. Whether this complementary reservoir existed, and whether or not it
has been lost from Earth is a matter of debate3,8,9, but has tremendous implications for
determining the bulk composition of Earth, its heat content and structure, and for constraining the
modes and timescales of its geodynamical evolution3,7,9,10. Here, we show that compared to
chondrites, Earth’s precursor bodies were enriched in Nd produced by the slow neutron capture
process (s-process) of nucleosynthesis. This s-process excess leads to higher 142Nd/244Nd, and,
after correction for this effect, the 142Nd/144Nd of chondrites and the accessible Earth are
indistinguishable within 5 parts per million. The 142Nd offset between the accessible silicate Earth
and chondrites, therefore, reflects a higher proportion of s-process Nd in the Earth, and not early
differentiation processes. As such, our results obviate the need for hidden reservoir or super-
chondritic Earth models, and imply a chondritic Sm/Nd for bulk Earth. Thus, although chondrites
formed at greater heliocentric distance and contain a different mix of presolar components than
Earth, they nevertheless are suitable proxies for Earth’s bulk chemical composition.
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Coupled 146.147gm.142.143N( systematics are a powerful tool to constrain the timescales and
processes involved in the early differentiation of Earth, the Moon and Mars6,7,11-14.
However, the interpretation of 142Nd signatures is complicated by the presence of
nucleosynthetic isotope variations between the terrestrial planets and meteorites. Such
isotope anomalies arise from the heterogeneous distribution of presolar matter at the
planetary scale, and have been documented for several elements15-18. Because different Nd
isotopes have varying contributions from the g, s and r~processes of stellar nucleosynthesis
(Extended Data Fig.1), the observed 142Nd deficits in chondrites, relative to the accessible
Earth, could in principle be nucleosynthetic in origin and, hence, unrelated to 146Sm-
decay8,16,19. Prior studies have identified nucleosynthetic Nd (and Sm) isotope anomalies
in chondrites15,17 and their components20-23, but these effects do not seem to fully
account for the observed 142Nd deficits in chondrites. For instance, while the 142Nd
composition of carbonaceous chondrites can partly be attributed to an s-process deficit or a
p-process deficit15,17, correction for these effects still leaves a ~20 ppm 142Nd deficit
compared to the accessible silicate Earth. This would be consistent with Nd isotope data for
bulk ordinary chondrites, which also exhibit a ~20 ppm 142Nd deficit, but do not seem to
show resolvable nucleosynthetic Nd isotope anomalies15,17,24. Likewise, enstatite
chondrites have 142Nd deficit of ~10 ppm and also do not show clearly resolved
nucleosynthetic Nd isotope anomalies24. Thus, prior studies concluded that the 142Nd
difference between chondrites and the accessible Earth largely reflects 146Sm-decay and
early Sm/Nd fractionation in the silicate Earth15,17,24. However, this interpretation remains
uncertain because the available bulk chondrite data are of insufficient precision to detect
collateral effects of nucleosynthetic heterogeneities on non-radiogenic Nd isotopes and,
therefore, do not permit the reliable quantification of nucleosynthetic 142Nd variations (Fig.
1).

Here we use high-precision Nd and Sm isotope measurements to better quantify
nucleosynthetic Nd isotope variations between chondrites and the Earth, with the ultimate
goal of determining the magnitude of any radiogenic 1*2Nd difference between the
accessible Earth and chondrites. We digested larger sample sizes (~2 g) than in most
previous studies, allowing us to obtain higher precision Nd and Sm isotope data for a
comprehensive set of meteorites including 18 chondrites, the ungrouped brachinite-like
achondrite NWA 5363 and the Ca-Al-rich inclusion (CAI) A-ZH-5 from the Allende
chondrite (Table 1). To evaluate the accuracy of our data, we processed the JNdi-1 standard
and the terrestrial basalts BHVO-2 and BIR-1 through our full analytical procedures. Within
uncertainty, the Nd and Sm isotope compositions of the processed and unprocessed
standards (JNdi-1, AMES) are indistinguishable (Table 1; Fig. 2,3).

Most of the investigated chondrites tightly cluster around a 4.568 Ga 147Sm-143Nd isochron
(Extended Data Fig. 2a). Only the EL6 chondrites Atlanta and Blithfield plot off the
isochron, probably reflecting disturbance by late-stage impact events25; the 142Nd data of
these samples are, therefore, excluded from the following discussion. After correction of
measured pL42Nd (for definition of piNd and p'Sm see Table 1) values for 146Sm-decay to
the average chondritic 147Sm/144Nd = 0.1960 (ref. 1; Extended Data Table 1), the p142Nd
values are tightly clustered for each chondrite group, where the enstatite chondrites define a
mean pl42Nd = -9+5 (95% conf.), the ordinary chondrites a mean p142Nd = -17+2, and the
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Allende CV3 chondrite a mean p142Nd = -31+1. NWA 5363 exhibits a decay-corrected
pl42Nd of -16+7, similar to ordinary chondrites, while CAl A-ZH-5 has a decay-corrected
pl42Nd = -15+8, consistent with data for other Allende CAIs22.

In addition to variations in p142Nd, we find resolved systematic variations in non-radiogenic
Sm and Nd isotopes (Table 1, Figures 1-3). Compared to previous studies we observe less
scatter for each chondrite group, reflecting the long duration and high beam intensity of our
measurements, resulting in more precisely defined average values for each group (Fig. 1).
Plots of p14°Nd and p°Nd versus pl48Nd reveal positively correlated anomalies, with the
enstatite chondrites being closest to the terrestrial value, followed by carbonaceous and
ordinary chondrites, and then NWA 5363 (Fig. 2a,b). The meteorite samples plot along
mixing lines between terrestrial Nd (/.e., p/Nd=0) and pure s-process Nd, regardless of
whether the s-process composition is derived from presolar SiC grains26, nucleosynthesis
models27, or data for acid leachates of primitive chondrites20,21. Thus, the variability in
non-radiogenic Nd isotopes among the meteorites reflects variable s-deficits relative to the
Earth, consistent with inferences from other elements16,28,29.

The p45Nd, p48Nd and p5°Nd anomalies of Allende are similar to those of ordinary and
enstatite chondrites, although for most other elements nucleosynthetic anomalies are
typically largest in carbonaceous chondrites16,18,28-30. The reason for the subdued Nd
isotopic anomalies in Allende is the presence of CAls, which host about half of the Nd and
Sm in Allende31, and which, for these elements, are characterized by an s-excess and a p-
deficit (Fig. 2,3). Mass balance calculations (Methods, Extended Data Table 2) indicate that
a CAl-free carbonaceous chondrite composition would have pu45Nd, pl48Nd and pl59Nd
values of 27+14, 39+28, and 56+41; these anomalies are larger than those of ordinary and
enstatite chondrites and thus imply that prior to addition of CAls, carbonaceous chondrites
had a significant s-deficit (Fig. 2a,b). This interpretation is consistent with Sm isotope data
for Allende and other carbonaceous chondrites, because the calculated CAl-free composition
of these chondrites also shows an s-deficit (Fig. 2c, Extended Data Fig. 3). Thus, the
displacement of the carbonaceous chondrites from the s-deficit line defined by ordinary and
enstatite chondrites reflects the admixture of CAls to carbonaceous chondrites. Note that, for
ordinary and enstatite chondrites, the effects of admixing CAls are probably insignificant at
the ~2 ppm level (Extended Data Table 2), and that the expected s-process Sm isotope
anomalies (<10 p144Sm and > —20 p148sm) for these two groups of chondrites are too small
to be resolvable with the analytical precision of our Sm isotope measurements.

Using the information gained from the non-radiogenic isotopes, we can now assess the effect
of nucleosynthetic anomalies on pl42Nd. The bulk meteorite data show inverse correlations
between pl42Nd and pl4°Nd, p148Nd, p10Nd and p44sm (Fig. 3), which are consistent with
the co-variations expected from a heterogeneous distribution of s-process isotopes. Enstatite
and ordinary chondrites, as well as NWA 5363, plot on mixing lines between terrestrial and
s-process Nd. The Allende CV3 chondrite is displaced from these correlations due to the
admixture of CAls, and a calculated CAl-free carbonaceous chondrite composition plots on
the s-mixing line defined by the other meteorites (Fig. 3).
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The slopes obtained from linear regressions of the bulk meteorites (excluding Allende) are in
good agreement with those calculated for mixing lines between terrestrial and s-process Nd,
regardless of which estimate for the s-process composition is used20,21,26,27 and whether
or not the calculated CAl-free carbonaceous chondrite composition and the processed
standards are included in the regressions (Extended Data Figure 4). The intercept values
obtained from the regressions can thus be used to determine pl42Nd values corrected for s-
process heterogeneity. For all regressions the intercept values are indistinguishable from
each other and average at a value of ca. -5 ppm relative to the JNdi-1 standard (Extended
Data Table 3). Alternatively, p142Nd values corrected for nucleosynthetic anomalies can be
calculated for each meteorite group separately, using their measured u4°Nd, pl48Nd and
pu150Nd values combined with the slopes of the s-mixing lines. Regardless of which s-
process mixing relationships are applied, the calculated p142Nd.correcteq Values are all
mutually consistent and indistinguishable from each other (Extended Data Table 3), resulting
in an average p42Nd g corrected= —5+2 ppm. Although this value is slightly negative, it is
within the long-term ~+5 ppm reproducibility of the JNdi-1 standard. When the regressions
and corrections are calculated relative to the mean Nd isotope composition measured for the
processed terrestrial standards, p142Nd.corrected reduces to —2+2 ppm (Extended Data Table
3). We conclude that after correction for nucleosynthetic Nd isotope heterogeneity,

the 142Nd compositions of chondrites and the accessible silicate Earth are indistinguishable
at the current level of analytical precision of ~5 ppm.

The lack of a resolved radiogenic 142Nd difference between chondrites and the accessible
silicate Earth supports the long-standing paradigm of a chondritic Sm/Nd for the bulk Earth
and requires revision of conclusions from several prior studies about the early
differentiation, composition, structure, and heat budget of the Earth. These prior studies
interpreted the 142Nd offset between chondrites and terrestrial samples to result from 146Sm-
decay and an early global Sm/Nd fractionation in the Earth’s mantle3,6,7,9,10. However, our
results demonstrate that chondrites and the accessible Earth have indistinguishable
radiogenic 142Nd compositions and, therefore, remove the evidence for an early global
silicate differentiation of the Earth. This revision indicates that the hidden, enriched
reservoir hypothesized in earlier studies3,6,9,10 does not exist. Moreover, our results rule
out the extensive loss of early-formed crust by collisional erosion3,7,9, because otherwise
the bulk silicate Earth would not have a chondritic Sm/Nd. Finally, the evidence for
chondritic Sm/Nd in the bulk Earth implies chondritic abundances of other refractory
elements, including the heat-producing elements U and Th. Thus, the total radiogenic heat
generated over Earth’s history is almost a factor of two higher than estimated recently for a
non-chondritic composition of the Earth9.

Our results demonstrate that chondrites are the most appropriate proxy for the elemental
composition of the Earth. However, they also highlight that chondrites cannot be the actual
building blocks of the Earth, because they are deficient in a presolar component containing
s-process matter. The s-process deficit becomes larger in the order enstatite < ordinary <
carbonaceous chondrites, indicating that the distribution of presolar matter in the solar
protoplanetary disk varied as a function of heliocentric distance, or changed over time. For
instance, the nucleosynthetic isotope heterogeneity within the disk may reflect a different
magnitude in the thermal processing of stellar-derived dust, imparting isotopic heterogeneity
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on an initially homogeneous disk, but could also reflect distinct compositions of infalling
molecular cloud material added to the disk at different times18,28-30. Either way, the
increasing deficit in s-process matter with increasing heliocentric distance provides a new
means for identifying genetic relationships among planetary bodies. For instance, Mars
formed at a greater heliocentric distance than Earth and should, therefore, be characterized
by an s-process deficit, possibly similar to those observed for enstatite and ordinary
chondrites. Thus, high-precision Nd isotopic data for martian meteorites will make it
possible to determine the distinct sources of the building materials of Earth and Mars. This
information is not only critical for dating the differentiation of Mars13, but also for testing
models of terrestrial planet formation.

To avoid potential artifacts associated with incomplete dissolution of refractory presolar
components and to minimize potential disturbances through terrestrial alteration, only
equilibrated chondrites (petrologic classes 4-6; except the CVV3 Allende) from observed falls
were selected for this study. Equilibrated chondrites are devoid of presolar grains, because
these components were destroyed during thermal metamorphism on the meteorite parent
body32; for Allende (3.2 to >3.6 metamorphic grade), which may contain trace amounts of
presolar grains32, no difference in Nd isotopic composition was observed between table-top
acid-digested, bomb digested and alkali-fused samples6,17, indicating that for this meteorite
all Nd carriers are accessed by standard acid digestion. Our sample set includes eleven
ordinary chondrites (six H, two L and three LL), six enstatite chondrites (three EL and three
EH), the carbonaceous chondrite Allende, and the brachinite-like achondrite NWA 5363,
which is a melt-depleted ultramafic sample from a partially differentiated asteroid33. This
brachinite-like sample was added to the study because of its unique isotope anomalies: while
the O and Ni isotopic compositions of NWA 5363 are indistinguishable from the terrestrial
composition, it exhibits nucleosynthetic isotope anomalies in Ti, Ca, Mo and Ru that are
more akin to ordinary chondrites34. In addition to bulk meteorites, we analyzed the Ca-Al-
rich inclusion (CAI) A-ZH-5 from the Allende chondrite and, to evaluate the accuracy of our
analytical methods, we also processed the JNdi-1 standard, as well as the terrestrial basalt
standards BHVO-2 and BIR-1 through our full analytical procedures.

Sample preparation and chemical separation of Nd and Sm

Meteorite pieces were cleaned with abrasive paper, ultrasonicated in methanol, and
subsequently crushed to a fine powder in an acid-cleaned agate mortar exclusively used for
meteorite work at the Origins Lab, Chicago. For each analysis about 2 g of meteorite powder
was digested in a HF-HNO3-HCIO4 mixture and agua regiain 90 ml Savillex teflon vials for
about 10 days on a hotplate at 170 °C. After several dry-downs, ultrasonication and
redissolution steps in agua regiaand HCI, the samples were redissolved in HCI and, once a
clear solution was obtained, a ~5% aliquot was taken for Sm and Nd concentration
measurements by isotope dilution.
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Chemical procedures for Sm and Nd concentration measurements—The 5%
aliquots were sent from the Origins Lab to LLNL, where they were equilibrated with

a 199sm-150Nd mixed isotopic tracer. Rare earth elements (REE) were purified from the
matrix of these aliquots using 2 mL BioRad columns filled with AG50-X8 (200-400 mesh)
resin and 2 N and 6 N HCI. The REE were further purified using 150ul Teflon columns with
RE-Spec resin and 1N and 0.05N HNO3. Samarium and Nd were purified from other REE
using 15 cm glass columns, Ln-Spec resin, and 0.25 N and 0.60 N HCI. Total blanks of the
isotope dilution procedures were 25 pg of Nd and 8 pg of Sm, resulting in Nd and Sm
sample-to-blank ratios greater 1500 for all but one sample. The blank corrections resulted in
shifts in the 147Sm/144Nd ratios that were less than 0.003% and thus significantly smaller
than the typical uncertainty of 0.1% associated with the isotope dilution measurements. For
NWA 5363, the Nd and Sm sample-to-blank ratios were 751 and 760, respectively, and thus
required a blank correction of 0.13% on the Nd and Sm concentrations (e.g. the reported
0.112 ppm Nd abundance was corrected by 0.00015 ppm). The blank correction is reflected
in the larger uncertainty of 0.2% on the 147Sm/144Nd of NWA 5363.

Chemical procedures for Sm and Nd isotope composition measurements—
After aliquoting, the remaining ~95% of the sample solution was reduced and HNO3 was
added. The REE cut of CAl A-ZH-5 that was obtained in a previous study35 (where the
digested sample was processed through an anion exchange chromatography to separate Ti,
Zr, Hf, W and Mo from the matrix; for details see ref. 35) was added to the project at this
point. After additional dry-downs in aqua regia and HNO3, samples were redissolved in ~35
ml of 3 M HNO3 and 350 mg of H3BO3 was added before the solutions were centrifuged. A
fine-grained black low-density residue, probably carbon-based, was present for some of the
chondrites at this point and was discarded; note that since we analyzed equilibrated
chondrites, this C-bearing phase does not contain presolar material and therefore does not
influence the Nd isotopic composition of the non-radiogenic isotopes. Furthermore,
significant alteration of the Sm/Nd ratios or the radiogenic Nd isotopic signatures of the
samples by this material is also excluded, given the very good agreement of our decay-
corrected 142Nd and 143Nd data with previous studies (Fig. 1; Extended Data Fig. 2). After
centrifugation, the solutions were loaded onto two 2 ml Eichrom TODGA ion exchange
columns stacked on each other, on which the REE were separated from the matrix
elements36. To further purify the REE cut, the separation was repeated using a 1x2 ml
TODGA column. Separation of Sm and Nd from interfering REEs was accomplished with
0.2x25 cm long quartz columns with AG50W-X8 (NH,* form, pH~7) as stationary phase
and 0.2 M alpha-hydroxyisobutyric acid (pH adjusted to 4.6) as the fluid phase. The Sm and
Nd cuts were passed twice over this column at the University of Chicago and were then sent
to LLNL. Neodymium was further purified at LLNL using 0.2 M alpha-hydroxyisobutyric
acid adjusted to a pH of 4.40 on pressurized quartz glass columns loaded with AG50W-X8
(NH4* form) resin. Neodymium was separated from the alpha-hydroxyisobutyric acid using
2 ml columns loaded with AG50W-X8 (200-400 mesh) resin using water, 2 N HCI, and 6 N
HCI. The yields of the chemical procedure were determined by ICP-MS on small aliquots of
the processed Nd and Sm cuts and ranged between 62 and 95 % for Nd (with a mean yield
of 80%) and 56 and 98 % for Sm (with a mean yield of 75%). The variable yields do not
have any noticeable influence on the measured Nd and Sm isotopic compositions. This is
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indicated by the fact that (i) several samples processed multiple times displayed variable
yields, but had very homogeneous isotopic compositions, and (ii) the terrestrial rock
standards passed through the chemistry have indistinguishable compositions from the
unprocessed standard. These observations further suggest that either the exponential law is
well-suited to correct any yield-related induced mass-dependent isotope variations, or, that
the sample loss is associated with processes that do not induce mass-dependent fractionation
effects, e.g., pipetting of the samples on the columns or loss of dry sample material from the
beakers by static effects. The latter erratic losses seem to be the most likely explanation for
the variable yields, which vary in a non-systematic way within a chemical campaign and
among multiple digestions of the same meteorites. The procedural blanks associated with Nd
and Sm isotope composition measurements were 50 and 12 pg respectively, and thus
contributed negligibly (<0.03 % of total analyte) to the isotope compositions of the samples,
requiring no corrections to be made.

Procedures of Nd and Sm isotope measurement by TIMS

The Nd isotope compositions were analyzed using a ThermoScientific Triton thermal
ionization mass spectrometer at LLNL. Neodymium was loaded on zone-refined Re
filaments in 2 N HCI and analyzed as Nd* using a second Re ionization filament. Isotope
ratios were measured using a two mass-step procedure that calculates 142Nd/244Nd

and 148Nd/144Nd dynamically, while measuring the other Nd isotopes statically following a
modified version of previously established procedures17. The cup configuration of line 1
and 2 are: L3=142Nd, L2=143Nd, L1=144Nd, C=145Nd, H1=146Nd, H2=148Nd, H3=149Sm,
H4=10Nd and L3=140Ce, L2=141Pr, L1=142Nd, C=143Nd, H1=144Nd, H2=146Nd,
H3=147Sm, H4=148Nd, respectively. Individual mass spectrometer runs consisted of 540
ratios of 8 second integrations. The dynamic 142Nd/244Nd ratio is calculated

from 142Nd/144Nd measured in cycle 2 normalized to 146Nd/244Nd measured in cycle 1,
whereas the dynamic 148Nd/244Nd ratio is calculated from the 148Nd/146Nd ratio measured
ratio in cycle 1 normalized to 145Nd/144Nd measured in cycle 2. The 143Nd/144Nd ratio is
calculated from the average of the 1080 ratios of data collected in cycles 1 and 2.

The 145Nd/244Nd ratio represents the average of 540 ratios collected in cycle 1. Most
samples were run at least twice from the same filaments. Signal sizes varied from 144Nd =
3.2x10"11 t0 5.4x10"11 A, with most averaging in excess of 4.3x10"11 A. Fractionation was
corrected assuming 146Nd/244Nd = 0.7219 using the exponential law. The Nd isotope data
were acquired in three measurement campaigns that were separated by a cup exchange and
maintenance work on the Triton. To avoid any bias which might have been introduced by
these events, the data obtained in each of the campaigns were normalized to the mean JNdi-1
composition measured in the respective campaign (Supplementary Information). The
external reproducibility of the standard (2 s.d.) for 142Nd/144Nd, 145Nd/144Nd, 148Nd/144Nd,
and 159Nd/244Nd in campaign 1, 2 and 3 are 5, 9, 3, and 24 ppm, 6, 6, 7 and 24 ppm and 8,
13, 15 and 31 ppm, respectively. Table 1 presents average values of multiple measurements
from the same filament. The associated uncertainties represent the external reproducibility (2
s.d.) of the standard during that campaign, or the uncertainty of the sample measurements
(20mean), Which were larger than the external reproducibility of the standard (3 ppm) for
some of the 148Nd/144Nd sample runs in campaign 1. Interferences from Ce and Sm are
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monitored at 140Ce and 149Sm and are presented in Table 1 of the Supplementary
Information.

Samarium was loaded in 2 N HCI onto a zone-refined Re filament and analyzed as Sm™*
using double Re filaments. All Sm isotopes, along with interferences from Nd (measured

as 146Nd) were measured statically for 200 ratios of 8 seconds integration each. Instrument
fractionation was corrected assuming 147Sm/152Sm = 0.56803 using the exponential law.
The cup configuration for Sm isotope composition measurements is: L4=144Sm, L.3=146Nd,
L2=147Sm, L1=148sm, C=149Sm, H1=150Sm, H2=1525m, H3=154Sm, H4=1%5Gd. Sample
measurements consisted of one to three static runs from the same filament, depending on the
amount of Sm available, and were obtained at 1-2x10"11 A 1495m, The data were acquired in
three campaigns and are given in the Supplementary Information. Samarium isotope
anomalies were calculated relative to the mean composition of the AMES Sm standard
analyzed in each campaign (Supplementary Information). The external reproducibility of the
standard for 144Sm/1525m, 1485m/1525m, 1495m/1525m, 1505m/1525m and 154Sm/152Sm in
campaign 1, 2 and 3 are 22, 12, 14, 12 and 18 ppm, 43, 10, 10, 18 and 13 ppm, and 38, 10,
12, 13 and 11 ppm, respectively. Table 1 presents average values of the multiple
measurements run from the same filament, and the reported uncertainties are 2 s.d. of the
standard.

The Nd and Sm concentrations were determined using a ThermoScientific TIMS in static
mode. Measurements consisted of 200 cycles with 8 second integration time each.
Concentration data and 147Sm/144Nd ratios are given in Table 3 of the Supplementary
Information. Note that the nucleosynthetic anomalies measured here have no significant
effect on the accuracy and precision of the Sm and Nd concentration measurement (the
minimum variation in the Sm and Nd isotopic compositions that would be required to shift
the 147Sm/144Nd ratios beyond uncertainty are 270 piSm and 560 piNd units, respectively;
and thus significantly larger than the deviations we observed).

Isotopic mass-balance between CAls and Allende

Calcium-aluminume-rich inclusions found in carbonaceous chondrites are considered the
oldest surviving objects to have formed in the solar nebula, presumably by condensation
from nebular gas. They often exhibit isotopic anomalies significantly different than their
chondrite host rocks16,18,22,23,37, strongly suggesting that they are not genetically related
to the reservoir from which the other chondrite components (namely chondrules and matrix)
originated. The Nd and Sm isotopic composition of bulk carbonaceous chondrites is thus
most likely influenced by CAls, especially since the (light) rare earth elements in these
objects are enriched relative to the host rocks (e.g., up to ~20x for the CV chondrites, up to
~100x in CM chondrites).

Indeed, our measurements imply a strong control of CAIl material on the Nd and Sm isotope
composition of bulk carbonaceous chondrites, because our Allende data as well as literature
data of carbonaceous chondrites are displaced towards the CAl composition in pXNd vs.
WNd, uXNd vs. WySm and p*Sm vs. pYSm diagrams (Fig. 2,3; Extended Data Fig. 3).
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In order to quantify the effect of CAls on the Allende composition and characterize the
composition of the CAl-free carbonaceous chondrite source reservoir we performed an
isotopic mass balance calculation. For Nd this has the form

Nd yyenae =X Ndsource+(1 = X)Nd g, (1)

where Ndajiende IS the concentration of Nd in Allende, which is given by the sum of Nd in
the carbonaceous chondrite source reservoir (Ndsoyrce) and the Nd contributed by the CAls
(Ndcay) and X is the fraction of non-CAIl material in Allende.

For the isotopic composition we can likewise write

lu/mNdAllende NdAllende :XMINdsourceNdsource+(1 - X):u’szcAINdCAI (2)

Using the isotopic compositions measured for Allende (this study) and Allende CAls (mean
value of 11 CAls reported in ref. 22) and 3% CAls in Allende38, and a mean Nd
concentrations of 0.967 and 14 ppm for Allende and Allende CAIs31, we can solve for the
unknown concentration and isotopic composition of the CAl-free material according to:

Nd :NdAllende — (1 7X)NdCAI
®)
and
ﬂINd :MdeAllendeNdAllends _ (1 — X)/l’deCAI NdCAI
NdAllende - (1 - X)NchI (4)

The uncertainty on pPXNdsoyrce is mainly determined by the uncertainties on the measured
isotopic compositions of Allende and the CAls and was calculated by propagating them
according to:

2 2
0_2 — aF(#IJVd.anl,rr:e) 0.2 4 aF(#INd.som‘ce) 0,2
1% Ndsource 9= Nd HENd 4y 0*Nd HENdG o

Allende CAI

®)

Equivalent equations can be written for Sm. The mass-balance was performed using mean
Sm concentrations of 0.313 and 4.54 for Allende and the CAlSs, respectively (/.e., with
chondritic Sm/Nd ratios for both objects). All input parameters and the resulting
composition of the carbonaceous chondrite source reservoir are also given in the Extended
Data Table 2.

The Nd and Sm mass-balance calculations indicate that the CAl-free carbonaceous chondrite
source reservoir is characterized by a significant s-deficit relative to the Earth and the other
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chondrites, in both, Nd and Sm isotopes. This is consistent with information derived from
other isotope systems (e.g., Sr, Zr, Mo, Ru) where carbonaceous chondrites are characterized
by the largest s-deficits relative to the Earth, followed by ordinary and enstatite
chondrites16,28,29,39. We note that carbonaceous chondrite data obtained in previous
studies15,17 also plot along the mass-balance mixing relation between CAls and a CAl-free
carbonaceous chondrite source. This implies that (i) the isotopic composition of the other
carbonaceous chondrites are also influenced by CAl-like material, and (ii) that they derive
from a common s-depleted reservoir. The fact that some of the other carbonaceous
chondrites also plot on the mixing line close to the bulk Allende values, despite containing
fewer CAls than CV chondrites, might be due to the higher REE enrichments in these non-
CV CAils (e.g., hibonites in CM chondrites) or the fact that CAl-like material is not present
in the form of well-defined inclusions but could be dispersed in the matrix in the form of
small dust grains partially altered by parent-body metamorphism. Since no Sm and Nd
isotope data of non-CV carbonaceous chondrite CAls are available, one can only speculate
whether or not these CAls also might carry larger nucleosynthetic Sm and Nd anomalies
than Allende CAls.

In principle, the Nd and Sm isotope compositions observed in ordinary and enstatite
chondrites could also be influenced by CAls. However, petrographic and chemical
investigations imply that CAl-like material in these chondrite types is extremely rare38,40—
42; and no Sm and Nd isotope data of these objects are available. Nevertheless, the effect of
CAls on the measured bulk Nd and Sm isotope composition of enstatite and ordinary
chondrites is estimated to be no larger than 2 ppm for Nd and 5 ppm for Sm, respectively
(Extended Data Table 2). This calculation assumes that the CAl-like material in ordinary and
enstatite chondrites has a maximum REE enrichment of 50xCI chondritic and an isotopic
composition like normal Allende CAls, and that the maximum CAI abundance in these
chondrites is 0.05%. Given the small effects, we have omitted any correction of our
measured data. However, we note that any such correction would result in slightly larger
anomalies in non-radiogenic Nd isotopes and thus a higher p142Nd.corrected, /€., @n even
better agreement between the nucleosynthetic anomaly-corrected p42Nd of meteorites and
the accessible Earth.

CAls do not only exhibit isotope anomalies in Nd and Sm, but also for many other
elements16,18,22,30,37. In order to explore the collateral effects of the mass-balance
between CAls and Allende defined above for Nd and Sm on other isotope systems, we also
applied it to Ca, Ti, Cr, Ni, Sr, Zr, Mo and Ba. The input parameters and results are given in
the Extended Data Table 4. Compared to the results from Nd and Sm, the isotopic
compositions calculated for the CAl-free carbonaceous chondrite source reservoir for Ca, Ti,
Cr, Ni, Sr, Zr, Mo and Ba are not very different from the bulk Allende values (the most
significant change is the reduction of the p>°Ti anomaly from 36534 for bulk Allende to
221+46 for the CAl-free component, consistent with the measured value (189+6) of a CAIl-
free Allende samplel8). This is explained by the fact that the chemical enrichment of these
elements in the CAls relative to the host-rock are not as strong as for Nd and Sm, and that
the anomalies in the CAls and bulk Allende are less disparate than for Nd and Sm. In other
words, the CAls have a less significant influence on the bulk Allende isotopic composition
for Ca, Ti, Cr, Ni, Sr, Zr, Mo and Ba, than they have for Nd and Sm. We note, however, that
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the calculated CAl-free Allende compositions for Sr, Zr, and Mo isotope anomalies are fully
consistent with the inferences made above from Nd and Sm, /.e, the formation of the
carbonaceous chondrites from a nebular reservoir depleted in s-process material relative to

Earth.

Extended Data
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Extended Data Fig. 1. Chart of the nuclides in the Ce-Nd-Sm-Gd mass-region (upper panel) and
plots illustrating the effect of nucleosynthetic anomalies on the measured Nd and Sm isotope
compositions (lower panels).

Stable isotopes and their solar abundances are in black boxes on the chart, short-lived
isotopes and their half-lives in colored boxes; blue (8- unstable), orange (electron capture)
and yellow (a-decay). Solid red arrows mark the main path of s-process, dashed red arrows
mark minor s-process branches, and green arrows indicate the decay path of r~process
nucleosynthesis. 148Sm and 159Sm are produced only by the s-process, °°Nd and 154Sm
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only by the r~process, and 144Sm and 146Sm are p-process only isotopes. Lower panels show
expected u'Nd and p'Sm anomaly patterns for a p-process deficit (purple), a s-process deficit
(red) and a r-process excess (green) for internal normalization to 146Nd/244Nd

and 152Sm/147Sm, respectively calculated using stellar model abundances?27.
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Extended Data Fig. 2. Sm/Nd isochron diagrams of measured meteorite samples.
a, For 143Nd/144Nd all but the disturbed Atlanta and Blithfield chondrites cluster in a narrow

range around a 4.568 Gyr chondrite isochron, consistent with literature data (grey). b,
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For 142Nd/244Nd, the meteorite data mostly fall below a 4.568 Ga isochron constructed

through the accessible Earth value and only poorly correlate with Sm/Nd, indicating that
besides Sm/Nd fractionation and 146Sm-decay, other processes are responsible for setting
the 142Nd/144Nd of meteorites.

ul45Nd
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Extended Data Fig. 3. Comparison of Nd and Sm isotope data obtained here and literature

values.

The new data agrees with literature data (in grey), but show less scatter, facilitating the
calculation of precise group averages. Of note, uncertainties shown for our measurements
represent external reproducibility (2s.d. of the standards), while uncertainties for the
literature values are internal 2s.e. of the measurements. Solid line denotes mixing of ss-model
prediction27 with the terrestrial composition. Dashed line is mixing line between CAls and
CAl-free carbonaceous chondrite source reservoir as calculated by isotopic mass balance.
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Extended Data Fig. 4. Comparison of slopes obtained from bulk meteorite anomaly data
regressions and slopes obtained from s-process modeling27, SiC grain data26 and chondrite

leachate data20,21.

a, Slopes from regression of EC, OC, NWA 5363 data; b, same as before but including the
processed standard data in the regression. ¢, Slopes from regression of EC, OC, NWA 5363
values and calculated CAl-free Allende point (CV w/o CAl); d, same as before but including
the processed standard data in the regression. Within uncertainties, the slopes from the bulk
meteorite regressions are indistinguishable from the slopes from the literature data, no
matter which samples are used in the regressions. This implies that the Nd isotope variations
in ECs, OCs, NWA 5363 and the CAl-free carbonaceous chondrite source are due to s
process heterogeneities. All regressions were performed using ISOPLOT. The slopes and
ul42Nd intercepts of the regressions are also given in Extended Data Table 3.
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Extended Data Fig. 5. Effects of meteoroid exposure to galactic cosmic rays (GCR) on the Sm
and Nd isotope compositions.

a, Meteorites of this study show correlated p14°Sm and p°°Sm anomalies consistent with
GCR exposure. Such reactions can also alter the Nd isotope signatures of planetary
materials43. However, given the much smaller neutron capture cross sections of the Nd
isotopes relative to 149Sm, any effect of GCR on ul42Nd is <1ppm. b-e, Within a given
meteorite group no obvious correlations are seen in piNd versus pt49Sm, indicating the
absence of significant GCR effects on the Nd isotope data.
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Extended Data Table 4
Collateral effects of the isotopic mass-balance between

Allende and CAls for Ca, Ti, Cr, Ni, Sr, Zr, Mo, Ba.

Uncertainties represent two-sided Student-t 95% confidence intervals and were propagated
throughout the mass balance calculation according to equation (5) in the Methods section.

Data sources are refs. 15-18,22,28-31,37,39 and therein.

CAl fraction=0.03 Ca(wt%) p*Ca 20

CAl 10.1 370 160

Allende 19 392 50

Allende w/o CAI 1.6 396 67

CAl fraction=0.03 Ti(ppm) u*Ti 20 pOTi 20

CAl 6042 172 12 933 69

Allende 899 67 7 365 34

Allende w/o CAI 739 40 9 221 46

CAl fraction =0.03 Cr(ppm) p>Cr 20

CAl 997 641 90

Allende 3638 87 7

Allende w/o CAI 3720 82 7

CAl fraction=0.03  Ni(ppm) p®Ni 20 pé*Ni 20

CAl 342 117 20 247 58

Allende 14193 11 3 31 9

Allende w/o CAI 14621 11 3 31 9

CAl fraction=0.03  Sr (ppm) u8Sr 20

CAl 66 126 11

Allende 16 63 10

Allende w/o CAI 14 54 12

CAl fraction=0.03  Zr (ppm) p%zZr 20 p%Zr 20 u%zZr 2o

CAl 40 0 6 -2 14 161 31

Allende 7 2 21 -3 8 110 31

Allende w/o CAI 6 2 26 -3 10 99 38

CAl fraction=0.03 Mo (ppm) p*Mo 20 p*Mo 20 p¥Mo WMo 20
CAl 35 274 21 123 19 197 131 22
Allende 15 287 67 210 51 168 100 48
Allende w/o CAI 14 288 72 217 55 166 98 52
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CAl fraction=0.03 Ba(ppm) pB%Ba 20 ub2Ba 20 piBa 20 u¥Ba 20 p¥Ba 20

CAl 30 -40 44 -119 74 54 6 18 5 17 9
Allende 5 63 130 13 258 26 41 19 25 9 32
Allende w/o CAl 4 87 161 44 318 20 50 19 31 8 39

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Nd isotope compositions of enstatite and ordinary chondrites.
Data from this study (solid symbols) show less scatter and more precisely defined mean

values (grey bars represent Student-t 95% confidence intervals of the means) than data from
previous studies6,15,17,24 (open symbols), and thus reveal systematic correlated anomalies
in all Nd isotopes. Uncertainties on individual data points are 2omean Of individual
measurements. For definition of piNd see Table 1. The origin of the different p5°Nd of
ordinary chondrites analyzed in this study and previous studies is unclear. We note, however,
that our processed standards are indistinguishable from the unprocessed JNdi-1 standard
within uncertainty, rendering an analytical effect in our study unlikely. Furthermore, our
u15ONd data for ordinary chondrites are correlated with anomalies in other Nd isotopes, as
expected.
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Fig. 2. Nd and Sm isotope variations among meteoritic and terrestrial samples.
(a,b) Anomalies in non-radiogenic Nd isotopes are consistent with a heterogeneous

distribution of s-process Nd. Solid, dotted and dashed lines are mixing lines between
terrestrial Nd and s-process Nd, calculated using modeled s-process compositions27, Nd
data for presolar SiC grains26, and Nd data for chondrite leachates20,21. The isotopic
composition measured for bulk Allende can be accounted for by admixture of CAlsto a
CAl-free carbonaceous chondrite source reservoir (Allende without CAI point)
characterized by a s-process deficit. (c) The p-deficit observed for bulk Allende in pl44Sm
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can also be attributed to admixture of CAls. Grey dashed CC-CAI line represents a mixing
line calculated by subtracting CAls from the isotopic composition measured for bulk
Allende. Error bars are 95% confidence intervals.
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Fig. 3. Nd and Sm isotope variations among meteoritic and terrestrial samples.
(a-d) For enstatite chondrites, ordinary chondrites and NWA 5363, the p142Nd anomalies are

correlated with the non-radiogenic Nd isotopes as expected for a heterogeneous distribution
of s-process Nd. Carbonaceous chondrites plot off this correlation due to admixture of CAls.
Mass-balance indicates that a CAl-free carbonaceous chondrite source reservoir was
characterized by a s-process deficit. Error bars are 95% confidence intervals.
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Sm/Nd ratios and Nd and Sm isotope compositions of meteoritic and terrestrial samples.

Sample Type 147Sm/#4Nd measured  pl42Nd measured  p!42Nd corrected  u4°Nd ul48Nd ulONd ul44sm u48sm - ul4ds
Huittis (1) EL6 0.1999(2) 6 (5) -12 (5) 5 (9) 2(5)  -10(24) 6(22) 1(12) -73(
Huvittis (2) EL6 0.1986(2) -3(6) 7(6) 2(6) 4(7)  26(24)  9(43) -1(10) 76
Huvittis (3) EL6 0.1993(2) -10 (8) -14 (8) 7(13) 0 (15) 1(31) 0(38) 4(10) -75(
Atlanta (1) EL6 0.1909(2) -5(6) 3(6) 2(6) 2(7) -3(24) 14(43) 0(10) -44(
Atlanta (2) EL6 0.1849(2) -8(9) 8(8) 2(13)  -2(15)  15(31) -10(43)  0(10)  -44(
Blithfield (1) EL6 0.2285(2) 22(6) -26(6) 4(6) A7) 11(24) 243 3(10)  -34(
Blithfield (2) EL6 0.1998(2) 98 -14(8 4(13) 5(15)  22(31) 14(38) 0(10)  -51(
St. Sauveur EH6 0.1956(2) -10 (5) -9(5) 5(9) 5(5)  -5(24) -17(22) -6(12) -49(
Abee (1) EH4 0.1874(2) -19 (6) -6(6) -3(6) 3(7) 8(24) -18(43) -6(10) -39 (
Abee (2) EH4 0.1903(2) 5 (8) 3(8) 8 (13) 1(15)  22(31) -15(43) 0(10)  -33(
Indarch (1) EH4 0.1953(2) -14 (6) -12 (6) -1(6) 30) 0(24) 18(43) 0(10) -35
Indarch (2) EH4 0.1948(2) -16 (8) -14 (8) 7(13) 2(15)  12(31)  -7(43) -5(10) -68(
Av. enstatite chondrites -10.4 (4.5) -9.2(49) 34(21) 1.9(15) 83(7.4) -2(8) -1(2)
Kermouve H6 0.1926(2) 18(22) -1(12) 10
Queens Mercy H6 0.1946(2) -20 (5) -18 (5) 2(9) 6() 16(24) 11(22) -2(12) 11
Allegan H5 0.1952(2) -16 (5) -15 (5) 5(9) 11(6)  25(24) 0(22) -8(12) -12
Forest City H5 0.1944(2) -19 (5) -16 (5) 5 (9) 4(6) T4 42 -12(12) 0
Pultusk H5 0.1934(2) -20 (8) 116(8)  13(13)  11(15)  18(31)  13(38) 2(10) 52
Ste. Marguerite (1) H4 0.1955(2) -16 (6) -16 (6) 10 (6) 11(7)  21(24) 12(43) 1(10) -16(
Ste. Marguerite (2) H4 0.1955(2) 24 (8) 23(8)  10(13) 6(15)  18(31) 0(38) -4(10) -18(
Bruderheim L6 0.1935(2) -19 (5) -16 (5) 2(9) 1(6) 12(24)  -4(22) 2(12) 58
Farmington (1) L5 0.1944(2) 26(22)  -4(12) 6(
Farmington (2) L5 0.1944(2) -16 (6) -13 (6) 10 (6) 10(7) 2424 -10(43) -2(10) 9
Dhurmsala LL6 0.1965(2) 14 (5) 15 (5) 0(9) 9G) 224 12220 5(12) 1
Paragould LL5 0.1924(2) 22(22) -5(12) 70
Chelyabinsk LL5 0.1963(2) -18 (5) -19 (5) 2(9) 3(4) 8 (24) 3220 1(12) -8
Av. ordinary chondrites -18.3(2.1) 167(20) 60(31) 7.2(27) 17.0(4.6) 6(7) -2(3)

Allende (1) cv3 0.1929(2) -85(22) -2(12)  -46(
Allende (2) cv3 0.1959(2) -30 (5) -30 (5) 2(9) 94 8(24) -68(22) -8(12) 31
Allende (3) cv3 0.1961(2) -30 (6) -31 (6) 5 (6) 47 -6(24) -T7(22) -8(12) -33(
Allende (4) cv3 0.1948(2) -33(8) -31 (8) 8(13)  16(15)  11(31) -89(38)  4(10) -29(
Average CV -31.3(3.7) 307(L1)  5.2(7.5) 9 (16) 4(22)  -80(15)  -3(9)

NWA 5363 Ung. 0.2520(2) 67.1(5.9) -16.0 (7.5) 11(6) 17.1(7.3)  39(24)  27(43) -1(10) -109
A-ZH-5 CAl 0.2000(11) 9.2(7.6) 1152(7.8)  -19(13) -28(15)  -47(31) -233(38) 62(10) -35(
INdi-1 (1) std 005) 005) -6 (9) 5()  -2(24)

BHVO-2 std 0.1484(2) -1(5) -1(5) 2(9) 706 34 T2 412 6(
INdi-1 (2) std 0(8) 0(8) 0(13) 0 (15) 0 (31)

BIR-1 Std 0.2759(3) 2(8) 2(8) 5 (13) 0(15) -10(31) -10(38) 7(10) 1
Av. processed std. -0.5 (1.6) 05(16) -0.7(72) -30(56) -38(73) 919  5(12) 4
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WIND=[(*Nd/L44Nd)* sample/("Nd/44Nd)*standard-11x108 and pism=[(sm/152sm)* sample/(“Sm/252Sm)*standard-11x108 where the *
superscript denotes that the ratios have been corrected for mass fractionation by internal normalizations to fixed 146Ng/144Nd and 1475m/1525m
ratios using the exponential law. 'u142Nd corrected' denotes u142Nd corrected for radiogenic 142\ variations to a common

chondritic 147sm/144Nd = 0.1960. Individual sample data represent average values of up to five measurement runs from the same filament (full
data set is available in the Supplementary Materials). Repeat samples denoted (1-4) represent separate digestions processed though chemistry at
different times and were run on separate filaments. Uncertainties shown in parentheses are external reproducibilities of the standard (2s.d.) or two-

sided Student-t 95% confidence intervals (for group averages with n>2). The deficits in u1495m and excesses in u15OSm present in some meteorite

samples are due to thermal neutron capture reactions on 149gm during exposure to galactic cosmic rays (Extended Data Fig. 5).
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