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Abstract

During a lytic gammaherpesvirus infection, host gene expression is severely restricted by the global degradation and altered
39 end processing of mRNA. This host shutoff phenotype is orchestrated by the viral SOX protein, yet its functional
significance to the viral lifecycle has not been elucidated, in part due to the multifunctional nature of SOX. Using an
unbiased mutagenesis screen of the murine gammaherpesvirus 68 (MHV68) SOX homolog, we isolated a single amino acid
point mutant that is selectively defective in host shutoff activity. Incorporation of this mutation into MHV68 yielded a virus
with significantly reduced capacity for mRNA turnover. Unexpectedly, the MHV68 mutant showed little defect during the
acute replication phase in the mouse lung. Instead, the virus exhibited attenuation at later stages of in vivo infections
suggestive of defects in both trafficking and latency establishment. Specifically, mice intranasally infected with the host
shutoff mutant accumulated to lower levels at 10 days post infection in the lymph nodes, failed to develop splenomegaly,
and exhibited reduced viral DNA levels and a lower frequency of latently infected splenocytes. Decreased latency
establishment was also observed upon infection via the intraperitoneal route. These results highlight for the first time the
importance of global mRNA degradation during a gammaherpesvirus infection and link an exclusively lytic phenomenon
with downstream latency establishment.
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Introduction

A number of viruses from diverse evolutionary lineages down-

regulate cellular gene expression through a variety of mechanisms

[1,2,3,4]. For certain viruses this host shutoff activity is a

consequence of viral gene expression strategies, such as influenza-

virus cap snatching [5] or picornavirus translation factor cleavage

to facilitate alternate mechanisms of ribosome engagement [6].

For others, the contribution of host shutoff towards viral

replication and gene expression is not as apparent, although

proposed roles include resource reallocation and immune evasion

[6,7]. In many cases, the precise in vivo function has been difficult

to delineate, in part due to the multifunctional nature of the viral

proteins driving host shutoff and the lack of appropriate model

systems. Within this latter category are the gammaherpesviruses,

which direct host shutoff primarily through the induction of host

mRNA degradation.

Gammaherpesviruses include the human pathogens Epstein-

Barr virus (EBV/HHV-4) and Kaposi’s sarcoma-associated

herpesvirus (KSHV/HHV-8) [8], the etiologic agents of some of

the most common AIDS-associated cancers, such as Burkitt’s

lymphoma, nasopharyngeal carcinoma, and primary effusion

lymphoma. The related murine gammaherpesvirus 68 (MHV68)

is often used as a model for human gammaherpesviruses because,

unlike KSHV and EBV, it is genetically tractable, readily

replicates in tissue culture without the use of chemicals or

overexpression to overcome latency, and infects small rodents

including laboratory mice [9,10,11]. MHV68 has therefore been

instrumental in the identification of factors that contribute to in vivo

replication and pathogenesis of the gammaherpesviruses.

All herpesviruses exhibit a biphasic lifecycle. In the latent state

few viral genes are expressed, and the viral genome is maintained

in the nucleus of the host cell until stimulating signals induce lytic

reactivation [12,13,14]. Most gammaherpesvirus-induced diseases

are associated with latency. During the lytic cycle the vast majority

of viral genes are expressed, and the virus undergoes active

replication to produce progeny virions. At this stage during

productive replication, gammaherpesviruses induce global mRNA

degradation via the product of the alkaline exonuclease gene,

termed SOX in KSHV, muSOX (ORF37) in MHV68, and

BGLF5 in EBV [1,15,16]. SOX and its homologs are conserved in

all subfamilies of herpesviruses, where they were first identified as

DNA exonucleases critical for the resolution of branched

structures that arise during viral DNA replication [17,18,19,20].
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Only in members of the gammaherpesvirus subfamily does the

SOX protein have an additional mRNA turnover function.

Although the precise mechanism by which these proteins cause

mRNA degradation remains unclear, biochemical evidence

suggests that at least EBV BGLF5 and KSHV SOX possess some

intrinsic ribonuclease (RNase) activity in vitro [21,22]. In addition

to mRNA turnover, SOX promotes the nuclear relocalization of

cytoplasmic poly(A) binding protein (PABPC), which leads to

aberrant polyadenylation and nuclear retention of mRNAs

[23,24]. The failure to repopulate the cytoplasm with newly

transcribed mRNAs is thought to increase the overall magnitude

of the host gene expression blockade [23].

The contribution of host shutoff towards the gammaherpesviral

lifecycle is unknown, and efforts to delete muSOX from MHV68

yielded virus unable to replicate, presumably due to an essential

role for the DNase activity [16]. Previous studies found the DNase

and host shutoff functions of SOX and BGLF5 to be genetically

separable [25,26], making it possible to evaluate the role of each

function of the protein in isolation. We report herein the

identification of a functionally similar MHV68 muSOX point

mutant that renders the virus selectively defective for host shutoff,

enabling the analysis of the role of this phenotype during infection

of cultured cells and in vivo. The mutant virus exhibited little to no

defect during multi-step growth curves in tissue culture or during

acute replication in the mouse lung following intranasal inocula-

tion. Unexpectedly, the virus accumulated to significantly reduced

levels in the lymph nodes at 10 days post infection and was highly

attenuated at the downstream stage of latency establishment. Once

trafficking was bypassed via an intraperitoneal infection, the host

shutoff defective virus still was attenuated in establishing latency in

the spleen. Our results identify for the first time a key role for the

lytic mRNA turnover activity in establishing viral latency,

emphasizing the important interplay between these seemingly

disparate stages of the viral lifecycle.

Results

Identification of a Host Shutoff Defective muSOX Mutant
We sought to evaluate the contribution of muSOX-induced

mRNA turnover towards the gammaherpesvirus lifecycle through

the generation of a muSOX mutant lacking mRNA turnover

activity but retaining the conserved DNase function. We

engineered mutations in the sites necessary for host shutoff activity

in muSOX homologs from other gammaherpesviruses (EBV

BGLF5 [25] and KSHV SOX [26]), as well as in several sites

selectively conserved amongst these homologs that lay outside the

putative DNase domains [27]. However, none of the mutants

generated had the desired single-function phenotype (Table S1).

We therefore designed an unbiased screen to investigate a large

number of mutants following the previous methodology used to

identify the single-function SOX variants (Figure 1A) [26]. Briefly,

the muSOX gene was amplified by error-prone PCR under

conditions designed to introduce 1–4 mutations per gene. The

PCR product was then cloned into a mammalian expression

vector, and clones were screened for the ability to repress

expression of a GFP reporter in a fluorescence-based assay in

293T cells. Mutants that did not deplete GFP fluorescence were

categorized as host shutoff defective and further analyzed for wild-

type protein expression levels by Western blotting, as even minor

changes to the muSOX primary amino acid sequence often

significantly reduced its protein expression. Finally, candidate

mutants were tested for retention of DNase activity using an in vitro

assay established previously for SOX and BGLF5 [25,26]. After

screening approximately 150 candidates, we identified a clone that

lacked mRNA degradation activity of the GFP reporter, but

retained wild-type protein expression levels and DNase activity.

Sequencing revealed this clone to have only a single non-silent

mutation, the amino acid substitution R443M, which we modified

to R443I for purposes of screening by restriction digest. MuSOX

R443I failed to suppress GFP protein expression in the

fluorescent-based assay for host shutoff (Figure 1B), which was a

consequence of its inability to degrade GFP mRNA (Figure 1C).

R443I is expressed at slightly higher levels than wild-type (WT)

muSOX (Figure 1D), as expected of a mutant that cannot promote

turnover of its own mRNA. Importantly, WT and R443I muSOX

both degrade linear DNA with very similar kinetics (Figure 1E).

We conclude that the amino acid substitution R443I produces a

single-function muSOX mutant selectively defective for host

shutoff activity.

Generation and in vitro Characterization of MHV68.DHS
To investigate the role of muSOX-induced host shutoff during

viral infection, we engineered a host shutoff defective MHV68

virus by replacing WT muSOX with muSOX R443I using

bacterial artificial chromosome (BAC)-based homologous recom-

bination [28]. The R443I mutation introduced an additional PsiI

restriction site within the muSOX gene, allowing us to screen for

successful recombination via restriction digest (Figure 2A). We also

generated a mutant rescue (MR) virus by replacing the R443I

mutant with WT muSOX to ensure that any observed phenotypes

could be attributed to the R443I mutation rather than to

unexpected secondary mutations elsewhere in the viral genome.

Restriction digests with PsiI and EcoRI confirmed that both

recombinant viruses were successfully isolated and did not have

any unexpected recombination events (Figures 2B & 2C). These

viruses shall henceforth be referred to as MHV68.DHS (host

shutoff defective virus) and MHV68.MR (mutant rescue virus).

Sequencing of muSOX and the surrounding genomic regions in

both recombinants confirmed that only the desired changes were

introduced.

We next verified that the R443I mutation in MHV68.DHS

conferred a host shutoff defect during viral infection. We assayed

levels of several endogenous mRNAs by real-time quantitative PCR

(RT-qPCR) following infection of NIH 3T3 fibroblasts with wild-

type MHV68 (MHV68.WT), MHV68.DHS, or MHV68.MR. WT

Author Summary

Herpesviruses are ubiquitous pathogens infecting a wide
range of hosts. They exhibit a biphasic lifecycle comprised
of a lytic replicative stage and a relatively dormant latent
stage. Members of the gammaherpesvirus subfamily
include the human pathogens Epstein-Barr virus and
Kaposi’s sarcoma-associated herpesvirus, the etiologic
agents of some of the most common AIDS-associated
malignancies. During a lytic gammaherpesvirus infection,
cellular gene expression is severely compromised in a
process termed host shutoff. In this study, we address the
purpose of this activity in the viral lifecycle through the
generation of a single amino acid point mutant selectively
defective for host shutoff activity. Unexpectedly, host
shutoff appears largely dispensable for viral replication, yet
plays an important role in the ability of the virus to traffic
and establish latency in the host organism. These findings
link two distinct phases of the viral lifecycle and indicate
that the global manipulation of gene expression may
contribute to the establishment of a lifelong gammaher-
pesvirus infection.

Role of RNA Turnover in Gammaherpesvirus Infection
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and MR infections reduced endogenous b-actin (actB), tubulin-b
(tubb5), rplp2, and gapdh mRNA levels to 20–40% of the mock

infected sample. In contrast, mRNA levels remained significantly

higher in MHV68.DHS infected cells (Figure 3A–3D). Thus, the

single amino acid change R443I in muSOX is sufficient to suppress

virus-induced endogenous mRNA turnover. The somewhat lower

endogenous mRNA levels in MHV68.DHS compared to mock

infected cells could be due either to incomplete inactivation of the

muSOX host shutoff function, or to the contribution of one or more

additional viral genes towards host shutoff.

An additional phenotype linked to host shutoff caused by muSOX

and its homologs is the relocalization of cytoplasmic poly(A) binding

protein (PABPC) into the nuclei of infected cells [24]. We observed

clear nuclear relocalization of PABPC in cells infected with

MHV68.WT, whereas in mock infected or cells infected with

MHV68.DHS, PABPC remained cytoplasmic (Figure 3E). Thus,

Figure 1. Isolation of the single-function muSOX mutant R443I. (A) Diagram of the random PCR mutagenesis screening strategy. (B) HEK293T
cells were transfected with a plasmid expressing GFP alone or together with a plasmid expressing HA-tagged wild-type (wt) muSOX or muSOX R443I.
GFP fluorescence was monitored 24 h post transfection, along with HA-muSOX, which was detected by immunofluorescence with anti-HA
antibodies. Samples were co-stained with DAPI to visualize nuclei. (C) Cells were transfected for 24 h as described above, whereupon GFP mRNA and
18S rRNA levels were analyzed by Northern blot. Shown is a representative northern blot for GFP mRNA and 18S rRNA, and below is the normalized
data from five independent experiments with means and standard deviations shown. (D) Total protein was harvested 24 h post transfection with the
indicated plasmids, and Western blotted with anti-HA antibodies. The bottom band present in all samples is due to non-specific binding of the
antibody. (E) In vitro translated GFP, wild-type muSOX, or muSOX-R443I was incubated with linear DNA for the indicated times. DNA was then
extracted and separated by agarose gel electrophoresis. A representative figure from three independent experiments is shown.
doi:10.1371/journal.ppat.1002150.g001

Role of RNA Turnover in Gammaherpesvirus Infection
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MHV68.DHS is defective for two hallmarks of host shutoff, mRNA

depletion and PABPC relocalization. These results also demonstrate

for the first time that muSOX-induced host shutoff is necessary to

drive PABPC relocalization during a viral infection.

Previous studies with MHV68 mutants have shown that muSOX

is critical for replication in cultured cells [16,19]. To determine the

contribution of host shutoff activity towards this defect, we

performed a multi-step growth curve in murine fibroblasts. 3T3

cells were infected at a multiplicity of infection (MOI) of 0.1 plaque

forming units (pfu) per cell and MHV68.WT, MHV68.DHS, and

MHV68.MR all replicated to equivalent titers and with similar

kinetics (Figure 4). We sequenced the muSOX gene from

MHV68.DHS samples at 5 days post-infection (dpi) and found no

evidence for reversion or secondary mutations (data not shown).

Therefore, muSOX-dependent mRNA degradation had little effect

on viral titers in 3T3 cells through multiple replication cycles.

MHV68.DHS Causes Larger Plaques to Develop and
Increased Expression of Lytic Cycle Proteins

Interestingly, we noticed that plaques derived from

MHV68.DHS infections differed morphologically from those

obtained upon MHV68.WT or MHV68.MR infections

(Figure 5A). To quantify these differences, we measured 75

plaques from 5 independent MHV68.DHS and MHV68.MR

infections and found that, indeed, MHV68.DHS plaques were

generally larger (p-value ,0.01) and had a broader frequency

distribution (Figure 5B). This seemed unlikely to be a consequence

of more rapid lytic replication, given the above growth curve

results. In addition, the altered plaque size does not appear to be

caused by enhanced cell-to-cell spread of the mutant virus, as we

observed no significant differences in the ratio of extracellular to

intracellular virus produced in 3T3 cells infected with

MHV68.WT, MHV68.DHS, and MHV68.MR (data not shown).

We and others have consistently observed that plaques formed

upon infection with wild-type (or mutant rescue) MHV68 are often

quite heterogeneous in size. One possible explanation for this is

asynchronous entry into the lytic cycle, in which smaller plaques

arise from later entry into the lytic cycle. In this regard, we sought

to determine whether the large plaque phenotype of MHV68.DHS

might be due to enhanced entry into the lytic cycle, signified by an

increased percentage of infected cells expressing early lytic proteins

relative to the wild-type virus. To test this hypothesis, we acquired

a version of MHV68 (MHV68-YFP) which constitutively expresses

YFP from a CMV promoter, regardless of whether infected cells

Figure 2. Generation of the MHV68.DHS virus. (A) Outline of the strategy for generating MHV68-muSOX-R443I (MHV68.DHS), in which the
muSOX amino acid arginine at position 443 was mutated to isoleucine, creating an additional PsiI site. The number is derived from the sequenced
MHV68 genome [10] (Refseq: NC_001826). (B) MHV68.WT, MHV68.DHS, and MHV68.MR BAC DNA were digested with the enzyme PsiI and
subsequently resolved on an agarose gel to confirm successful generation of the desired mutants. Arrows indicate the new 1200 bp and 450 bp
bands generated after introduction of the PsiI restriction site in muSOX R443I. (C) MHV68.WT, MHV68.DHS, and MHV68.MR BAC DNA were digested
with the enzyme EcoRI and subsequently resolved on an agarose gel to confirm no unexpected recombination had occurred.
doi:10.1371/journal.ppat.1002150.g002

Role of RNA Turnover in Gammaherpesvirus Infection
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are in the lytic or latent phase [29]. Thus, YFP expression serves as

a general marker of infection, whereas lytically infected cells are

identified by immunofluorescence-based detection of the early lytic

protein muSOX. NIH 3T3 cells were infected at an MOI of 1 with

either MHV68-YFP or a version of MHV68-YFP bearing the

muSOX R443I mutation (MHV68-YFP.DHS), and the percent-

age of cells co-expressing muSOX and YFP was calculated at

18 hours post infection. A similar number of YFP-expressing cells

were detected in cultures infected with MHV68-YFP and

MHV68-YFP.DHS, indicating equivalent efficiency of initial

infection (Figure 5C & data not shown). However, there was an

approximately three-fold increase in the percent of cells co-

expressing both YFP and muSOX following infection with

MHV68-YFP.DHS compared to MHV68-YFP (30.1% versus

11.0%; Figure 5C). A similar trend was observed when the YFP-

and muSOX-expressing cell populations were analyzed by flow

cytometry following infection with these viruses (Figure S1). Also

in agreement with these findings were increased levels of the viral

ORF54 transcript following a MHV68.DHS infection relative to

MHV68.WT or MHV68.MR (Figure S2). Thus, enhanced and/

or more rapid expression of lytic genes occurs in cells infected with

MHV68.DHS, perhaps escalating entry into the lytic cycle and

leading to larger plaques.

We also evaluated whether increased cell death might contribute

to the larger plaques observed following a MHV68.DHS infection.

We first measured necrosis by quantifying levels of lactate

dehydrogenase released into the media at 16 hpi, but detected no

measurable release following infection with any of the viruses (Figure

S3A). We next monitored apoptosis by several assays, including

measuring caspase activity, and testing for loss of plasma membrane

symmetry and increased membrane permeability. While there was a

slight, but statistically significant, increase in caspase 3/7 activity

following MHV68.DHS infection relative to MHV68.WT or

MHV68.MR infection, in all three cases the level was below that

observed in mock infected cells (Figure S3B), making it unlikely that

this is a primary cause of the increased plaque size. Plasma

membrane asymmetry was monitored using PE-conjugated Annexin

V, which binds to a component of the plasma membrane normally

found on the cytoplasmic surface, and membrane permeability was

quantified by the nucleotide binding dye 7-Amino-Actinomycin (7-

AAD). By flow cytometry we detected no significant increase in

Annexin V binding or 7-AAD staining following infection with either

MHV68.DHS or MHV8.MR relative to the uninfected control

(Figure S3C). Collectively, these findings indicate that although a

higher percentage of MHV68.DHS infected cells express viral lytic

antigens, this does not appear to cause enhanced cell death, nor does

it culminate in higher viral titers.

Host Shutoff is Dispensable for Acute Replication in vivo
The presumed natural route of MHV68 infection is through the

upper respiratory tract [30], whereupon the virus undergoes lytic

replication in the mucosal epithelial cells lining the mouse lung

and nasal cavity. Following intranasal inoculation, viral loads in

the lung peak 5–8 dpi before subsiding as the virus traffics to the

draining lymph nodes and ultimately to the spleen [31]. A burst of

lytic replication occurs in these sites of latency establishment

Figure 3. MHV68.DHS is defective for host shutoff. RNA was
isolated from NIH 3T3 cells infected with MHV68.WT, MHV68.DHS, or
MHV68.MR at an MOI of 10 at 20 h post infection. ActB (A), Rplp2 (B),
Tubb5 (C), GAPDH (D) and 18S RNA levels were quantified via RT-qPCR.
The mean and standard deviation of the normalized mRNA/18S ratio is
plotted for at least four independent experiments. The p-values
comparing MHV68.DHS and MHV68.MR are indicated. (E) COS7 cells
were infected with MHV68.WT or MHV68.DHS for 24 h. Both viruses
express GFP from the BAC vector sequence, which serves as a marker
for infection. PABPC localization was monitored by immunofluores-
cence with anti-PABPC antibodies, and cells were stained with DAPI to
visualize nuclei.
doi:10.1371/journal.ppat.1002150.g003

Figure 4. MHV68.DHS replicates with wild-type kinetics. Viral
replication kinetics were determined by multi-step growth curves in
mouse fibroblasts cells following an infection at a MOI of 0.1 with
MHV68.WT, MHV68.DHS, or MHV68.MR. At the indicated times post
infection virus was harvested, and the titer was determined by plaque
assay. The mean and standard deviation from at least three
independent experiments is graphed.
doi:10.1371/journal.ppat.1002150.g004

Role of RNA Turnover in Gammaherpesvirus Infection
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[30,32] which seeds subsequent latency, primarily in germinal

center B cells, although also in macrophages and dendritic cells

[33]. By 14–18 dpi splenomegaly develops, and as many as one

out of 100 splenocytes harbor the latent viral genome [34].

Host shutoff manifests with delayed early kinetics during lytic

replication, consistent with the onset of muSOX expression [16].

We therefore hypothesized that MHV68.DHS would be attenu-

ated during lytic viral replication in the lung. We infected C57BL/

6 mice intranasally with 56104 pfu of MHV68.WT,

MHV68.DHS, or MHV68.MR, and monitored viral titers in the

lung at 3, 5, and 7 dpi by plaque assay. Viral titers were equivalent

at 3 dpi for all three viruses, and at 5 and 7 dpi we observed only a

very modest 2–3 fold defect in MHV68.DHS relative to

MHV68.MR accumulation (Figure 6). Although MHV68.WT

reached higher titers than MHV68.MR at 5 dpi, the two viruses

accumulated to equivalent levels at all earlier and later timepoints

(see subsequent sections). To ensure MHV68.DHS had not

reverted back to WT or incorporated any compensatory

mutations, we sequenced the muSOX gene from infected lung

homogenate but found no changes. Thus, contrary to our

hypothesis, host shutoff appears largely dispensable for acute

replication of gammaherpesviruses in vivo.

MHV68.DHS is Attenuated in Latency Establishment
To evaluate the role of host shutoff during later stages of the

viral lifecycle, mice were infected intranasally with 56104 pfu of

MHV68.WT, MHV68.DHS, or MHV68.MR, and the spleens

were harvested at 17 dpi, during the peak of latency establishment.

Interestingly, mice infected with MHV68.DHS did not display the

characteristic splenomegaly and had spleens three to four times

smaller than MHV68.WT and MHV68.MR infected mice

(Figure 7A), indicating a role for host shutoff in viral pathogenesis.

To evaluate the cause of MHV68.DHS attenuation, we first

performed an infectious center assay to test whether the

Figure 5. MHV68.DHS generates larger plaques and increases the percentage of lytic antigen-expressing cells. (A) Shown are
representative images of plaques generated 4 dpi in 3T3 cells infected with MHV68.DHS or MHV68.MR. The scale bar in the lower right corner of the
images represents 1 mm. (B) Plaque diameters of 75 plaques from 5 independent experiments were measured at 4 dpi from cells infected with
MHV68.DHS or MHV68.MR, and the frequency distribution was graphed. (C) 3T3 cells infected at an MOI of 1 with either MHV68-YFP or MHV68-
YFP.DHS were analyzed at 18 hpi for YFP and muSOX expression by immunofluorescence using anti-muSOX antibodies. Samples were co-stained
with DAPI to visualize nuclei. Shown are representative images from four independent experiments. The numbers of lytically infected cells (YFP- and
muSOX-positive) were determined by counting multiple fields of view from four independent experiments, and the percentage of infected cells
expressing muSOX is shown.
doi:10.1371/journal.ppat.1002150.g005

Role of RNA Turnover in Gammaherpesvirus Infection
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splenocytes from infected mice harbored latent virus capable of

lytic reactivation. In this assay, equivalent numbers of splenocytes

from infected mice are overlayed onto cultured mouse fibroblasts.

Spontaneous lytic reactivation of the splenocytes leads to infection

of the fibroblasts, which can be quantified by counting the

resulting plaques [34]. Splenocytes from MHV68.DHS infected

mice reactivated at a significantly lower frequency than those from

MHV68.WT or MHV68.MR infections (Figure 7B). This

reactivation frequency was independently assessed in a subset of

the samples by a limiting dilution cytopathic effect assay, which

yielded identical results (data not shown). Plaque assays on spleen

homogenates confirmed that no preformed virus was present,

indicating that the virus detected in these experiments originated

from latently infected cells.

The reduction in lytic reactivation frequency could either be a

consequence of a decreased number of latently infected spleno-

cytes or, alternatively, a failure of latently infected cells to undergo

lytic reactivation. To distinguish these possibilities, we first

monitored viral DNA load in the spleens of infected mice using

a previously described qPCR assay for the glycoprotein B (gB)

gene [35] and found that MHV68.DHS infected splenocytes

harbor fewer viral genomes than splenocytes infected with

MHV68.WT or MHV68.MR (Figure 7C). We also analyzed the

frequency of splenocytes harboring the viral genome by limiting

dilution PCR. Briefly, serial dilutions of splenocytes were plated in

a 96 well plate and subjected to nested PCR for the viral ORF50

gene [36]. Spiked template controls confirmed that in this assay we

were achieving near single copy sensitivity for the viral genome,

with a very low rate of false positives (data not shown). While

approximately one out of 200 splenocytes latently harbor the

MHV68.WT or MHV68.MR genome, the frequency of

MHV68.DHS genome harboring splenocytes was less than one

out of 10,000 splenocytes (Figure 7D). Thus, while host shutoff

appears dispensable for acute replication in the lung, it plays an

important role in the downstream events leading to efficient

latency establishment in the spleen.

MHV68.DHS Exhibits Defects in Both Trafficking and
Latency Establishment

During the normal course of an infection, the virus traffics from

the site of lytic replication in the lung to the draining lymph nodes

and spleen where latency is established. We reasoned that the

decreased frequency of latently infected splenocytes during

MHV68.DHS infection could be a consequence of a defect in

trafficking, persistence at these sites, or a latency establishment

defect. We quantified levels of virus in the cervical lymph node at

10 dpi, an intermediate time point after peak virus replication in

the lung but before peak latency establishment in the spleen.

Following an intranasal inoculation, high levels of MHV68 have

been found in the cervical lymph node at this time point [30,32].

Interestingly, we detected significantly lower levels of

MHV68.DHS at this site relative to MHV68.MR (Figure 8A),

suggesting that muSOX-induced mRNA degradation contributes

to the ability of the virus to traffic to or persist at the sites of latency

establishment.

To determine whether this was the root cause of the defect in

latency establishment upon MHV68.DHS infection, we next

infected mice via the intraperitoneal route, which bypasses the

requirement for the virus to undergo acute replication and traffic

through the lymph before reaching the spleen [37]. At 19 dpi, we

found significantly less MHV68.DHS virus in the spleen relative to

MHV68.MR by qPCR (Figure 8B), indicating that a defect in viral

trafficking cannot fully account for the latency establishment defect

observed during an intranasal infection. Collectively, these data

indicate that muSOX-induced host shutoff plays important roles

both in the ability of MHV68 to traffic to the lymph nodes, as well

as establish latency in the spleen.

Discussion

All gammaherpesviruses studied to date block host gene

expression through widespread mRNA degradation, yet the

contribution of this function towards the viral lifecycle remained

unknown. Here we analyzed the impact of host shutoff both in

tissue culture and in vivo infections with the murine gammaher-

pesvirus MHV68, and we found this activity to be largely

dispensable for acute lytic replication yet critical for the

downstream viral accumulation in the lymph nodes and

subsequent establishment of latency in the spleen. These results

were unexpected given that MHV68-induced host shutoff is

executed by muSOX, a viral protein whose expression has only

been detected during the lytic cycle [38,39,40]. In addition, the

role for muSOX-induced mRNA turnover clearly diverges from

Figure 6. MHV68.DHS replicates to near MHV68.MR levels during the acute phase of infection in the mouse lung. C57BL/6 mice were
infected intranasally with 56104 pfu MHV68.WT, MHV68.DHS, or MHV68.MR. At 3, 5, or 7 dpi lungs were harvested and homogenized, and viral titers
were determined by plaque assay. Each point on the graph represents the viral titer from a single lung, and the bar indicates the mean titer for each
virus. The dotted line represents the limit of detection at 20 pfu/lung. The p-values comparing MHV68.DHS and MHV68.MR are indicated. ‘‘n.s.’’
indicates a p-value greater than 0.05.
doi:10.1371/journal.ppat.1002150.g006
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that of the alphaherpesvirus host shutoff factor vhs, which similarly

induces global mRNA degradation but plays a critical role during

acute replication in vivo [41,42,43]. The severe attenuation of

HSV-1 and HSV-2 vhs mutants is hypothesized to be a

consequence of ineffective immune evasion, as vhs blocks dendritic

cell activation and down-regulates the type I interferon response

[44,45,46]. In contrast, we find little difference between

MHV68.MR and MHV68.DHS during acute replication in mice,

suggesting that while alpha- and gammaherpesviruses block host

gene expression via analogous mechanisms, the functional

ramifications of this activity are distinct, and may relate to the

unique in vivo biology of each class of virus.

Modeling the muSOX three-dimensional structure from the

KSHV SOX or EBV BGLF5 crystal structure [21,47] indicates

that amino acid R443 is positioned on the outer surface, away

from the catalytic core where nucleic acids are presumably cleaved

(data not shown). Although SOX, BGLF5, and muSOX are

functionally homologous and likely induce mRNA degradation

through a similar mechanism, the identified amino acid mutations

that selectively remove host shutoff activity are not conserved, nor

are they positioned in the same three-dimensional region. Likely

these different mutations alter the local structure of each protein

thereby inhibiting or weakening the mRNA or co-factor

interactions which contribute to overall mRNA degradation. In

this regard, we anticipate that the residual host shutoff activity

observed upon infection with the MHV68.DHS virus is at least

partially due to incomplete inactivation of muSOX mRNA

turnover activity by the R443I mutation.

Host shutoff has been hypothesized to play a role in the

diversion of gene expression resources and machinery towards the

virus during lytic replication [16,48], as well as general immune

evasion through the down-regulation of immune stimulatory

factors [49]. Our failure to detect a significant replication defect

for MHV68.DHS during a multi-step growth curve in cultured

Figure 7. MHV68.DHS is attenuated for latency establishment. In two independent experiments, C57BL/6 mice were infected intranasally
with 56104 pfu MHV68.WT, MHV68.DHS, or MHV68.MR, and spleens were harvested at 17 dpi. (A) The weight of each spleen is plotted with the mean
weight for each virus variant indicated by the bar. (B) Spleen cells were harvested and analyzed for lytic reactivation frequency via infectious center
assay. The number of reactivating splenocytes per 107 cells is plotted with the mean for each virus indicated by the bar. The dashed line denotes the
limit of detection. (C) DNA was isolated from spleen cells and analyzed by qPCR for the viral glycoprotein B (gB, ORF8) gene and endogenous GAPDH.
The normalized gB/GAPDH ratio is plotted along with the mean and standard deviation for each viral infection. The p-values comparing MHV68.DHS
to MHV68.MR are indicated. (D) The frequency of latently infected cells was determined by limiting dilution-PCR. The percent of wells positive for PCR
product is plotted for each dilution. Each point represents the average and standard deviation of three or four mice. The dotted line at 63.2% is used
to calculate the frequency of genome harboring cells according to the Poisson distribution.
doi:10.1371/journal.ppat.1002150.g007
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murine fibroblasts or in the mouse lung implies that resource

reallocation is unlikely to be the primary role for muSOX-induced

mRNA depletion. Likewise, the similar viral titers in the lungs of

mice infected with MHV68.MR or MHV68.DHS argues against a

role for muSOX in the general suppression of host innate immune

responses Because MHV68.DHS still retains residual mRNA

degradation activity, it is possible that some degree of host shutoff

could be important for viral replication. However, the appearance

of significant defects in downstream viral events even with a partial

host shutoff defect further strengthens our conclusion that host

shutoff plays a vital role in the lifecycle and pathogenesis of

MHV68 in vivo.

The first major defect observed in an in vivo MHV68.DHS

infection is significantly lower levels of the virus in the lymph nodes

at 10 dpi. Following an intranasal infection, wild-type MHV68

undergoes lytic replication in the lung and upper respiratory track,

after which the virus drains to the lymph nodes and spleen where a

variety of cell types are infected, including macrophages, dendritic

cells, and B-cells [37,50,51,52]. A burst of lytic replication occurs

at these sites [30,32], after which replicating virus is cleared and

long-term latency is established. Lower levels of MHV68.DHS in

the lymph node could be caused by a cell-type specific role for

muSOX-dependent mRNA degradation in viral replication or

immune evasion during viral transport to, and maintenance in, the

lymphatic tissue. The observation that the EBV muSOX homolog

(BGLF5) down-regulates HLA class I molecules and CD8+ T cell

recognition in cultured cells may support this model [25]. The

means by which the virus traffics to the sites of latency

establishment remain unclear, yet it is likely that latently infected

B cells carry the virus given that viremia is undetectable during an

infection, and latently infected B cells are present in the lung very

early after infection [37,53,54]. A failure of MHV68.DHS to

establish latency in these cells might also cause their selective

immune-based eradication and decreased accumulation in the

lymph nodes. Alternatively, muSOX could influence the ability of

the virus to reactivate from latency, as this process has been linked

to efficient latency establishment. Mutations in a number of genes

alter the frequency of lytic reactivation and lead to lower levels of

latency establishment following an intranasal infection, such as v-

cyclin (ORF72) [55], M1 [56], M2 [57,58], and LANA (ORF73)

[59,60], but unlike muSOX these genes are all expressed during

latency as well as during lytic replication [61]. Mutations in the

lytic ORF36 gene encoding a protein kinase also lead to defects in

latency establishment and reactivation [62,63], which have been

tracked to the requirement for ORF36 to inhibit the IRF-3

mediated type I interferon response [62] and its modification of

the DNA-damage response protein H2AX [63]. Experiments are

currently underway to examine MHV68.DHS replication, reac-

tivation, and latency establishment in specific cell types relevant to

in vivo infection.

The second major defect observed upon MHV68.DHS

infection is a marked reduction in the number of infected

splenocytes present during peak latency establishment relative to

mice infected with wild-type or mutant rescue viruses. This defect

could arise simply as a downstream consequence of the

aforementioned impairment in trafficking. However, significantly

reduced levels of viral DNA are detected in the spleen even after

an intraperitoneal infection, which bypasses the need for acute

replication in the lung and subsequent trafficking through the

lymph nodes [37]. Thus, MHV68.DHS appears defective in both

trafficking and latency establishment in the spleen. Such a

phenotype might occur if MHV68.DHS-infected cells preferen-

tially entered the lytic cycle, perhaps enabling more efficient

clearance by the immune system. This model is supported by our

observation that an increased percentage of cultured 3T3 cells

infected with MHV68.DHS express lytic markers relative to those

infected with MHV68.WT. However, if this represents enhanced

entry into the lytic cycle, there must be a downstream defect that

tempers subsequent viral output, as the host shutoff mutant virus

does not replicate to higher titers in 3T3 cells than the wild-type

virus. In this regard, host shutoff could be important for optimizing

the balance of host or viral proteins in an infected cell, as has been

reported in an EBV mutant lacking BGLF5, where altered levels

of proteins inhibited viral maturation and egress [64]. One

mechanism that could shift the balance of infection away from

latency is if muSOX down-regulates factors that inhibit latency

establishment; such negative regulators would then accumulate in

the presence of the R443I mutant, driving cells into lytic

replication. MuSOX activity may also be required for the virus

Figure 8. MHV68.DHS fails to traffic to the lymph system and
establish latency. (A) C57BL/6 mice were infected intranasally with
56104 pfu MHV68.WT, MHV68.DHS, or MHV68.MR, and cervical lymph
nodes were harvested at 10 dpi. DNA was isolated from the cells and
analyzed by qPCR for the viral glycoprotein B (gB, ORF8) gene and
endogenous GAPDH. The normalized gB/GAPDH ratio is plotted along
with the mean for each viral infection. (B) Mice were infected
intraperitoneally with 16103 pfu of each of the indicated viruses.
DNA was isolated and quantified as above and the normalized gB/
GAPDH ratio is plotted along with the mean for each viral infection.
Each point on the graph represents the ratio from a single mouse. Data
for each figure are compilations of two independent experiments and
the p-values are indicated.
doi:10.1371/journal.ppat.1002150.g008
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to achieve the appropriate level of host and or viral factors

packaged into the viral particle in order to efficiently establish

latency in newly infected cells rather than enter the lytic cycle.

The large plaque phenotype observed with MHV68.DHS is

similar to what is observed following infection with MHV68

constitutively expressing (or over-expressing) the lytic transcription

factor RTA [65]. Also similar to MHV68.DHS, these viruses

replicate to near wild-type levels in the lung but establish latency at

lower levels in the spleen. The constitutive RTA-expressing viruses

have been found to efficiently traffic to the spleen but fail to be

maintained at this site [66]. This attenuation has been ascribed to

the viruses producing excessive amounts of the RTA-inducible

lytic genes, creating an intracellular environment favoring

immediate entry into the lytic cycle rather than entering latency.

Thus, during an infection, an important role for muSOX may be

to ensure that factors driving lytic replication are not overrepre-

sented. While it is tempting to speculate a connection between the

increased percentage of lytically infected 3T3 cells and the latency

establishment defect in vivo with MHV68.DHS, at present the

precise relationship between these observations remains unclear.

Given the broad effects of host shutoff, the mechanism of

MHV68.DHS attenuation is anticipated to deviate from the gene-

for-gene interactions associated with many virulence factors.

Further research in this area will uncover the likely means by

which host shutoff influences latency establishment, as well as

reveal novel connections between the lytic and latent stages of the

gammaherpesviruses lifecycle.

Materials and Methods

PCR Mutagenesis
A hemagglutinin (HA) tag was introduced at the 59 end of

muSOX by PCR using the primers 59-CGGAATTCATGGCT-

TACCCATACGATGTACCTGACTATGCGATGGAAG GG-

TCGATTATTC-39 and 59-ATAGTTTAGCGGCCGCTTA-

GGGGGTTATGGGTTTTCT-39. HA-muSOX was then cloned

into the EcoRI/NotI sites of pCDEF3 containing a T7 promoter

to generate pCDEF3-T7-HA-muSOX. MuSOX was randomly

mutagenized by PCR with the Genemorph kit (Strategene)

according to the manufacturer’s protocol using 35 ng of

pCDEF3-T7-HA-muSOX as template, the above primers, and

30 PCR cycles to generate a pool of random mutants. The

mutants were then cloned into the EcoRI/NotI sites of pCDEF3-

T7. R443I was generated by QuickChange (Stratagene) using the

primers 59-GCTCATCATCACTCCTGT TATAATTCCATC-

TACTGTGCTGC-39 and 59-GCAGCACAGTAGATGGAAT-

TATAACAG GAGTGATGATGAGC-39.

Cells, Transfections, and Viruses
HEK293T, COS7, NIH 3T3, NIH 3T12, and Vero cells were

maintained in Dulbecco’s modified Eagle’s medium (DMEM;

Invitrogen) supplemented with 10% fetal bovine serum (FBS,

Invitrogen). 293T cells were transfected with Effectene (Qiagen)

following the manufacturer’s protocol.

The green fluorescent protein (GFP)-expressing MHV68

bacterial artificial chromosome (BAC) infectious clone has been

described elsewhere (RcHV68A98.01 [28]), and mutants were

generated by allelic exchange as previously described [67]. To

generate the MHV68.DHS BAC, a targeting region consisting of

566 nt upstream and 568 nt downstream of the mutation site was

ligated into pGS284 between BglII and NotI restriction sites and

electroporated into the S17lpir strain of E. coli. The MHV68-YFP

BAC infectious clone was a generous gift from Dr. Samuel Speck

(Emory University) [29], and MHV68-YFP.DHS was generated

using the same methodology as MHV68.DHS. The targeting

vector for the mutant rescue BAC (MHV68.MR) was generated

by ligating the region around wild-type muSOX into pGS284.

Targeting vector-containing cells were cross-streaked with BAC-

containing GS500 cells and successful recombinants were

identified by colony PCR and subsequent digest with PsiI. BAC

DNA was isolated from positive clones using the Qiagen Large-

Construct kit (Qiagen). BAC variants were verified by restriction

digests with EcoRI and PsiI and sequencing of the region

surrounding the recombination site. BAC-derived MHV68 virus

was produced by transfecting 2 mg of BAC DNA into NIH 3T3

cells using SuperFect (Qiagen). Virus was then amplified in NIH

3T12 cells and titered by plaque assays on NIH 3T3 cells. Before

infecting mice, the loxP-flanked BAC vector sequence was

removed from the recombinant viruses by passaging the virus

over Vero cells expressing Cre recombinase (kindly provided by

Dr. Samuel Speck, Emory University) [59], and BAC removal was

confirmed by PCR analysis.

Immunofluorescence Assays
MuSOX expression and PABPC or HA-muSOX localization

were analyzed as described previously [16,23]. Briefly, NIH 3T3,

HEK293T, or COS7 cells were grown on coverslips, and infected

with MHV68 variants or transfected with HA-muSOX variants.

Cells were then stained with rabbit polyclonal anti-muSOX (1:25

dilution), mouse monoclonal anti-PABPC 10e10 (1:25 dilution)

(Santa Cruz Biotechnology), or mouse monoclonal anti-HA (1:500

dilution) (Abcam) and AlexaFluor 546- or 488-conjugated goat

anti-mouse or goat anti-rabbit secondary antibody (1:1500).

Coverslips were mounted in DAPI-containing Vectashield mount-

ing medium (Vector Labs) to stain cell nuclei.

For flow cytometry analysis, NIH 3T3 cells were infected with

the indicated virus and, 18 hpi, cells were washed with PBS and

harvested via trypsin digestion. Cells were fixed in a 4%

formaldehyde solution, permeabilized in 1% Triton X-100 and

0.1% sodium citrate in PBS, and incubated with anti-muSOX

antibodies at a 1:12.5 dilution in 1% Triton X-100, 0.5% Tween,

and 3% BSA in PBS. Stained cells were then washed in PBS and

incubated with goat anti-rabbit antibodies conjugated to PE-Cy5.5

(Invitrogen) at a dilution of 1:150. Data were collected on an

EPICS XL cytometer (Beckman-Coulter) and analyzed using

FlowJo software (Tree Star).

Western Blots and Northern Blots
For Western blotting, cell lysates were prepared in RIPA buffer

[50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 2 mM EDTA, 1%

Nonidet P-40 (vol/vol), 0.1% SDS (w/vol)] containing Protease

Inhibitor Cocktail (Roche) and quantified by Bradford assay (Bio-

Rad). Equivalent amounts of each sample were resolved by SDS-

PAGE, transferred to a PVDF membrane, and Western blotted

with anti-HA 12CA5 monoclonal antibodies (Invitrogen; 1:5,000)

and HRP-conjugated goat anti-mouse secondary antibodies

(Southern Biotechnology; 1:5,000).

For Northern blotting, total RNA was harvested using RNA-

BEE (Tel-Test) and resolved by agarose-formaldehyde gel

electrophoresis. RNAs were transferred to a 0.45 mm nylon

membrane and probed with 32P-labeled GFP DNA probes

generated using the Rediprime II random prime labeling system

(GE Healthcare).

DNase Assays
DNase activity of the muSOX variants was performed as

described previously [16]. Briefly, muSOX variants were in vitro

transcribed with the mMessage mMachine T7 Kit (Ambion) and
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translated using rabbit reticulocyte lysates (Promega). Translation-

al product was incubated with linear DNA at 37uC for the

indicated time period and then the DNA was phenol/chloroform

extracted, and resolved by agarose gel electrophoresis. One-sixth

each IVT reaction was also separated by SDS-PAGE. The gels

were then fixed, dried, and visualized by autoradiography to verify

equivalent protein expression.

Quantitative PCR
To quantify RNA, we isolated RNA from transfected cells using

RNA-Bee (Tel-Test) or the Zymo Mini RNA II Isolation Kit (Zymo

Research). Samples were treated with Turbo DNase (Ambion)

according to the manufacturer’s protocol to remove genomic DNA

contamination. To generate cDNA, RNA samples were reverse

transcribed using AMV RT (Promega) and an oligo dT or 18S-

specific primer. 18S rRNA or GAPDH mRNA levels were quantified

using TaqMan ribosomal RNA control reagents or TaqMan rodent

GAPDH control reagents (Applied Biosystems). Other endogen-

ous mRNA levels were quantified using Applied Biosystems Taq-

man Gene Expression Assays (actB-Mm01205647_g1, rplp2-

Mm03059047_gH, tubb5-Mm00495806_g1). To quantify viral

genomes, DNA was first isolated from spleen cells or cervical lymph

node cells by the Qiagen QIAamp DNA Mini Kit following the

manufacturer’s protocol. Viral DNA levels were then measured using

a previously described assay targeting the MHV68 ORF8 gene [35].

All qPCR reactions were performed with TaqMan Universal PCR

Master Mix.

Cell Death Assays
To measure levels of lactate dehydrogenase (LDH) released into

the media during an infection, NIH 3T3 cells were infected at an

MOI of 5 for 16.5 h. Infection supernatant (60 ml) was mixed with

60 ml LDH detection reagent in triplicate in a 96-well plate as

described previously [68]. Absorbance was read on an Elisa-reader

at 490 nm wavelength. To detect caspase activity, NIH 3T3 cells

were infected at an MOI of 5 for 24 h, whereupon caspase activity

was measured using the Caspase-Glo 3/7 Assay System (Promega)

following the manufacturer’s protocol. To monitor Annexin V-PE

and 7-AAD staining by flow cytometry, NIH 3T3 cells were

infected at an MOI of 10 for 18 h. Cells were then washed with

PBS and harvested via trypsin digestion. Infection supernatant,

PBS wash, and cells were combined and pelleted by centrifugation.

Cells were washed in PBS and then stained for Annexin V-PE (BD

Biosciences, Material # 556422) and 7-AAD (BD Biosciences,

Material # 559925) via the manufacturer’s protocol using 3 ml of

each dye. Data were collected on an EPICS XL cytometer

(Beckman-Coulter) and analyzed using FlowJo software (Tree

Star).

In vivo Infections and Experiments
Female C57BL/6J mice were obtained from The Jackson

Laboratory (Bar Harbor, ME) and infected when 4–6 weeks old.

Mice were anesthetized with isoflourane and inoculated intrana-

sally with 56104 plaque forming units (pfu) in 20 ml DMEM

(Invitrogen). For intraperitoneal infections, 16103 pfu in 0.2 ml

PBS were injected into the peritoneal cavity of mice. Lungs were

harvested at 3, 5, or 7 dpi, homogenized with a tissue

homogenizer for 1 minute at 24,000 rpm in 10 ml DMEM with

10% FBS, 100 U of penicillin per ml, and 100 mg of streptomycin

per ml (Pen/Strep, Invitrogen). Spleens were harvested at 17 or

19 dpi. To identify any preformed infectious particles, half of each

spleen was homogenized as above in 5 ml DMEM with 10% FBS,

and Pen/Strep. The tissue homogenate was then assayed for viral

particles by plaque assay on monolayers of NIH 3T3 cells overlaid

with 1% agarose for 4 days. The cells were then fixed and stained

with 0.04% methylene blue. Splenocytes were isolated from the

other half of the spleen by dissociating the spleen and passing

through a 40 mm cell strainer (BD-Falcon). Cells were then

pelleted, resuspended in red blood cell lysis buffer (150 mM

NH4Cl, 10 mM KHCO3, 0.1 mM EDTA), and incubated at

room temperature for 5 minutes. Cells were again pelleted and

resuspended in RPMI medium with 10%FBS and Pen/Strep

before counting. Cervical lymph nodes were harvested at 10 dpi

and isolated in the same manner as splenocytes, but without lysing

the red blood cells.

Infectious Center Assay
The number of reactivating splenocytes was determined as

described previously [34]. Briefly, 21,000 NIH 3T3 cells were

plated per well in a 24-well plate the day before infection.

2.56106, 56105, or 16105 splenocytes were overlayed onto the

NIH 3T3 cells and incubated for 4 days. Cells were then fixed with

10% formaldehyde and stained with 0.04% methylene blue to

visualize plaques.

Limiting Dilution PCR
The frequency with which cells latently harbor the viral genome

was determined as described previously [36]. Briefly, 4-fold serial

dilutions of splenocytes were plated in 96-well plates with 16 wells

per dilution. Nested PCR for the ORF50 gene was performed and

the resulting PCR product was run on an agarose gel. Wells

positive for a PCR product by ethidium bromide staining contain

at least one copy of the viral genome. Single-copy sensitivity was

confirmed using serial dilutions of MHV68 BAC DNA.

Graph Design and Statistical Analysis
All graphs were designed and statistical analysis performed

using the GraphPad Prism Software version 4 or 5. Data were

analyzed for statistical significance using the Student’s t-test or, for

in vivo data, the Mann-Whitney nonparametric test. For limiting

dilution PCR analysis, data were subject to nonlinear regression

using the log(agonist) vs. response curve with a nonvariable slope.

Ethics Statement
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Laboratory Animals of the National Institutes of Health. The

protocol was approved by the Committee on the Ethics of Animal

Experiments of the University of California Berkeley (Permit

Number: R292-0507). All animals were anesthetized prior to

infection with isoflurane, and all efforts were made to minimize

suffering.

Supporting Information

Figure S1 Levels of muSOX expressing cells increase
upon MHV68.DHS infections. 3T3 cells infected at an MOI

of 1 with either MHV68-YFP or MHV68-YFP.DHS were

analyzed at 18 hpi for YFP and muSOX expression by flow

cytometry using anti-muSOX antibodies. The percentage of cells

within each quadrant is indicated. Shown is a representative graph

of four independent experiments.

(EPS)

Figure S2 ORF54 transcript accumulates to higher
levels during a MHV68.DHS infection. 3T3 cells were

infected at an MOI of 5 with MHV68.WT, MHV68.DHS, or

MHV68.MR. At the indicated times post infection total RNA was
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isolated and levels of ORF54 mRNA and 18S rRNA were

quantified by RT-qPCR. Shown are the ORF54/18S ratios

normalized to wild-type infection at 18 hpi along with the mean

and standard deviation from at least five independent experiments.

The p-values comparing MHV68.DHS to MHV68.MR are

indicated. ‘‘n.s.’’ indicates that the p-value is greater than 0.05.

(EPS)

Figure S3 MHV68.DHS does not induce cell death. (A)

3T3 cells were infected for 16.5 h with MHV68.WT,

MHV68.DHS, or MHV68.MR at an MOI of 5, whereupon

levels of lactate dehydrogenase released into the media were

quantified by an enzymatic color change assay. Triton X-100 was

added at 1% to lyse cells as a positive control. Shown are the mean

and standard deviation from three experiments. (B) 3T3 cells were

infected as described above but for 24 h, then levels of caspase3/7

activity were quantified via a luciferase-based luminescent assay.

Etoposide (ETP) was included at 25 mM as a positive control.

Shown is the luciferase signal strength normalized to the mock

infected control along with the mean and standard deviation from

three independent experiments. The p-value comparing

MHV68.DHS to MHV68.MR is indicated. ‘‘n.s.’’ indicates that

the p-value is greater than 0.05. (C) 3T3 cells were infected at an

MOI of 10 and analyzed for Annexin V-PE and 7-AAD staining

18 hpi by flow cytometry. ETP was included at 25 mM as a

positive control. The percentage of cells within each quadrant is

indicated.

(EPS)

Table S1 Amino acid mutations introduced into mu-
SOX.

(PDF)
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