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ABSTRACT
Background and objective  Obesity and asthma impose 
a heavy health and economic burden on millions of people 
around the world. The complex interaction between genetic 
traits and phenotypes caused the mechanism between 
obesity and asthma is still vague. This study investigates 
the relationship among obesity-related polygenic risk score 
(PRS), obesity phenotypes and the risk of having asthma.
Methods  This is a matched case–control study, with 
4 controls (8288 non-asthmatic) for each case (2072 
asthmatic). Data were obtained from the 2008–2015 
Taiwan Biobank Database and linked to the 2000–2016 
National Health Insurance Research Database. All 
participants were ≥30 years old with no history of 
cancer and had a complete questionnaire, as well as 
physical examination, genome-wide single nucleotide 
polymorphisms and clinical diagnosis data. Environmental 
exposure, PM2.5, was also considered. Multivariate adjusted 
ORs and 95% CIs were calculated using conditional logistic 
regression stratified by age and sex. Mediation analysis 
was also assessed, using a generalised linear model.
Results  We found that the obese phenotype was 
associated with significantly increased odds of asthma 
by approximately 26%. Four obesity-related PRS, 
including body mass index (OR=1.07 (1.01–1.13)), waist 
circumference (OR=1.10 (1.04–1.17)), central obesity as 
defined by waist-to-height ratio (OR=1.09 (1.03–1.15)) 
and general–central obesity (OR=1.06 (1.00–1.12)), were 
associated with increased odds of asthma. Additional 
independent risk factors for asthma included lower 
educational level, family history of asthma, certain chronic 
diseases and increased PM2.5 exposure. Obesity-related 
PRS is an indirect risk factor for asthma, the link being fully 
mediated by the trait of obesity.
Conclusions  Obese phenotypes and obesity-related PRS 
are independent risk factors for having asthma in adults 
in the Taiwan Biobank. Overall, genetic risk for obesity 
increases the risk of asthma by affecting the obese 
phenotype.

INTRODUCTION
Asthma and obesity impose a heavy health 
and economic burden on billions of people 
around the world.1–3 In recent decades, a 
considerable body of epidemiological studies 
have shown that obesity is associated with a 

higher risk of asthma and poor asthma control, 
and suggest that obesity precedes asthma.4–6 
The mechanism linking obesity and asthma 
is not clear, but systematic inflammation, a 
mechanical effect and genetic factors are 
possible explanations for the association.7 8 
One previous study from one large retrospec-
tive cohort also found obesity is significantly 
associated with decreased lung function in 
asthmatics, but the effect of genetic factors is 
not considered.9

Obesity and asthma are highly heritable 
traits that share genetic variants, leading 
to coexistence within the same person.10 11 
Exploring the pleiotropy of genetic variants 
of obesity and asthma can not only better 
clarify the link between obesity and asthma, 
but is also beneficial to reduce the risk of 
incident asthma and improve the poor prog-
nosis of asthma patients with obesity. Previous 
studies exploring the association between 
obesity-related genetic variants and asthma 
have reported several common characteris-
tics. First, the candidate gene approach is the 
most common method for selecting single-
nucleotide polymorphisms (SNPs). Limited 
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research has assessed the obesity-related polygenic risk 
score (PRS) to explore its association with asthma risk; 
moreover, this approach has not been reported for Asian 
adults.12 Second, most studies have focused on chil-
dren,13–15 and few have assessed adult participants, who 
might be affected by genetic traces and obesity pheno-
types. Third, most studies have not addressed the impact 
of multiple confounders on the results, especially objec-
tive disease histories.16 Fortunately, the linkage between 
the Taiwan Biobank (TWB) and National Health Insur-
ance Research Database (NHIRD) provides us with a 
unique opportunity to perform genome-wide association 
study (GWAS) analysis of asthma and the three obesity 
indicators—body mass index (BMI), waist circumference 
(WC) and waist-to-height ratio (WHtR). The linked data 
enabled us to explore the association between genetic 
variants for obesity-related traits and asthma risk in 
adults at three levels—SNPs, genes and overall genetic 
risk (PRS). Additionally, since we integrated data from 
the micro to macro level including the health behaviours 
questionnaire, physical examination, genome-wide SNPs, 
clinical diagnosis data and PM2.5 exposure data, we were 
able to explore the relationship among obesity-related 
genetic variants, obesity traits and asthma risk and adjust 
multiple confounders simultaneously.

There are two aims of the study. The first is to eluci-
date the relationship among obesity-related PRS, obesity 
phenotypes and the risk of having asthma via multivari-
able analysis, interaction tests and mediation analyses. 
The second aim is to identify what obesity-related SNPs 
affect the risk of having asthma and explain the role of 
these SNPs in biological pathways to explore the patho-
genesis of asthma.

METHODS
Patient and public involvement
This study obtained secondhand data; participants did 
not receive feedback on the results and were not involved 
in the study.

Data source
This is a matched case–control study. Participants’ pheno-
typic and genotype data were from the TWB database,17 
and the data of asthma and other disease diagnoses were 
collected from the NHIRD between 2000 and 2016.18 19 
Two data sets were linked using encrypted personal iden-
tification numbers through the Health and Welfare 
Data Science Center, Ministry of Health and Welfare. In 
accordance with the year and month of enrolment, the 
2-year average PM2.5 concentration of each participant’s 
residential area was identified. Annual PM2.5 values were 
determined using a two-step spatiotemporal prediction 
model that included 76 air quality monitoring sites and 
1882 Airbox microsensors. The detailed computation 
method was presented in another study.20

Participants
The study participants consisted of volunteers who were 
between 30 and 70 years of age with no history of cancer 
and were recruited from 2008 to 2015 into the TWB. 
The flowchart of study participants is shown in figure 1. 
Of the 24 000 participants, we excluded those persons 
were living on offshore islands (n=108), those for whom 
health behaviours data was unavailable (n=23) or the 
genetic data did not meet quality control (QC) standards 
(n=2957).

Whole-genome genotyping analysis was performed 
using a customised Axiom‐Taiwan Biobank Array Plate 
(TWB chip: Affymetrix, Santa Clara, California, USA).21 
The QC criteria for samples were as follows: genotype 
call rate (GCR)≥0.95, average heterozygosity within three 
SD of the mean, no chromosomal aberrations, iden-
tity by descent≤0.1875 and no divergent ancestry. The 
following criteria were used to determine the quality 
of SNPs: GCR≥0.95, minor allele frequency≥0.01 and 
Hardy-Weinberg equilibrium p≥8.185999e−08. All QC 
analyses were conducted using the PLINK V.1.9 (https://
www.cog-genomics.org/plink/1.9/).22 A total of 21 043 
participants and 606 086 autosomal SNPs met the QC 
standards. A QC flowchart is presented in figure 2.

Participants diagnosed with asthma (ICD-9-CM/ ICD-
10-CM code 493/J45) at least two times within a 1-year 
period between 2000 and 2016 were included in the 
case group. By contrast, participants without asthma 
formed the control group. Propensity score matching of 
asthmatics versus non-asthmatics was generated by 1:4 
matching with age and sex. A total of 10 360 participants 
(asthma 2072; non-asthma 8288) were included in the 
analysis.

Obesity indicators
BMI, WC and WHtR from the TWB data were indicators 
for defining obesity in our study. BMI is a value calculated 
by height and weight and was stratified into four catego-
ries: underweight (<18.5 kg/m2), normal (18.5≤BMI<24 
kg/m2), overweight (24≤BMI<27 kg/m2) and obese (≥27 
kg/m2).23 WC≥90 cm for men and ≥80 cm for women 
means central obesity.23 WHtR is defined as WC divided 
by height, and the cut-off point for central obesity is 0.5.24

GWAS analysis
We used PLINK V.1.9 to conduct association tests. Quan-
titative traits (obesity indicators) and the disease trait 
(asthma) were analysed with linear and logistic regres-
sion under the additive, dominant and recessive genetic 
models and both were adjusted for age, sex and 18 
ancestry principal components used to control for popu-
lation stratification.25 The scree plot (online supple-
mental figure S1) of principal components analysis was 
drawn by R software V.3.6.3 (R Core Team, Vienna). 
Most studies only consider additive genetic effects, but 
testing different genetic effects in meta-analysis may help 
to detect less common genetic variants.26 We combined 
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the results of three genetic models by fixed-effect meta-
analysis, and the heterogeneity was evaluated according 
to Cochrane’s Q test.

Analysis of obesity-related SNPs and asthma
We examined the association between obesity-related 
SNPs and the risk of asthma using logistic regression with 
adjustment for age and sex under three genetic models 
(PLINK V.1.9).27 To identify the genetic components 
shared between asthma and obesity, we used the R soft-
ware’s CUMP package to identify pleiotropic SNPs.28 The 
information of SNPs was obtained from the SNP database 
(dbSNP, GRCH 37.p13: https://www.ncbi.nlm.nih.gov/​
snp) of the National Center for Biotechnology Informa-
tion and the Taiwan Biobank V.3 (https://taiwanview.​
twbiobank.org.tw/index). Additionally, the expression 
quantitative trait loci information, a method to iden-
tify the effect of genetic variation on gene expression 
across human tissue (p value<10−4), was obtained from 
the Genotype-Tissue Expression (GTEx) portal database 
(https://www.gtexportal.org/home/).29

Over-representation enrichment analysis
To determine the biological pathways involved in obesity-
related SNPs that are associated with asthma risk, we used 
the WebGestalt tool (http://www.webgestalt.org/) to 
assess gene ontology (GO) biological process functional 
and biological pathways (KEGG, Panther, Reactome and 
WikiPathways) with a significance threshold of 0.05.30

Polygenic risk score (PRS)
Polygenetic risk score (PRS), a method to calculate 
the effect of many genetic variants on an individual’s 
phenotype, is widely used to identify and predict an 
individual’s trait or disease risk31 32 and to study genetic 
pleiotropy between diseases or/and traits.33 A linkage 
disequilibrium (LD)‐based clumping procedure (R2 cut-
off of 0.05 within a 500 kb window) was applied to the 
GWAS results to determine the most significant SNPs 
(p value<5×10−8) that were independent of each other. 
Then, PRS were calculated using the score procedure. 
A PRS was constructed for each individual by weighted 
sum of the number of allele 1 (usually minor) carried, 
by using the effect size: log (OR) for binary traits, or the 
beta coefficient for continuous traits. PRSs were stand-
ardised to mean=0 and SD=1 for the analysis. The proce-
dure of clumping and score calculation was implemented 
in PLINK V.1.9.

Statistical analysis
Continuous and categorical variables are expressed as 
mean±SD and percentage, respectively. A conditional 
logistic regression was stratified by age and sex, and was 
used to analyse the association between obesity and asthma. 
We selected common sociodemographic variables and 
risk factors for asthma as covariates and used the stepwise 
regression method (selection criterion: α=0.10) to deter-
mine the covariates in the model. The model was checked 
by the 10% change-in-estimate method.34 Estimates of the 

Figure 1  Participant flow chart.

https://www.ncbi.nlm.nih.gov/snp
https://www.ncbi.nlm.nih.gov/snp
https://taiwanview.twbiobank.org.tw/index
https://taiwanview.twbiobank.org.tw/index
https://www.gtexportal.org/home/
http://www.webgestalt.org/


4 Huang Y-J, et al. BMJ Open Resp Res 2022;9:e001355. doi:10.1136/bmjresp-2022-001355

Open access

receiver operating characteristic (ROC) curve were used 
for the area under the ROC curve (AUC) to evaluate the 
accuracy of predicting the risk of asthma. A generalised 
linear model with binary and normal distribution was used 
for mediation analysis to explore the relationship between 
PRS of obesity indictors (independent variable), obesity 
indictors (mediator) and asthma (dependent variable). The 
same covariates were adjusted for all models: PRS of asthma, 
education, at least one parent has (or had) asthma, at least 
one sibling has (or had) asthma, chronic obstructive pulmo-
nary disease (COPD), depression, gastro-oesophageal reflux 
disease (GERD), hypertension and PM2.5. All analyses were 
performed by SAS V.9.4 (SAS Institute, Cary, North Caro-
lina, USA) and drawn by R software V.3.6.3 (R Core Team, 
Vienna). A p value less than 0.05 indicates statistical signif-
icance.

RESULTS
Baseline characteristics of the enrolled population
This case–control study included 10 360 participants, 
including 2072 asthma patients and 8288 non-asthmatic 
controls. The characteristics of the asthma and non-
asthma groups are summarised in table 1. The preva-
lence of obesity calculated by BMI (25.1% vs 19.3%), 
WC (48.8% vs 40.6%) and WHtR (65.1% vs 56.7%) was 
significantly different between the groups. Moreover, 
compared with the non-asthmatic group, the asthma 
group had significantly higher proportions of low 
education (primary and below:9.17% vs 5.88%; junior/
senior high school:40.1% vs 37.9%), light-intensity 
physical activity (77.9% vs 75.2%) and various medical 
histories, including hypertension (33.3% vs 25.0%), 
diabetes (20.0% vs 15.2%), hyperlipidaemia (16.1% vs 
10.4%), COPD (28.9% vs 7.34%), depression (16.1% 
vs 10.4%) and GERD (8.93% vs 4.44%) and had signif-
icantly higher PM2.5 exposure (24.3±11.1 vs 21.9±9.85 
μg/m3).

Figure 2  Quality control flow chart. GCR, genotype call rate; HWE, Hardy-Weinberg equilibrium; IBD, identity by descent; 
MAF, minor allele frequency; QC, quality control; SNPs, single-nucleotide polymorphisms.
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Table 1  Characteristics of asthma and non-asthma participants in adults at 30–70 years, Taiwan Biobank

Characteristic Sample (%) Asthma Non-Asthma
Crude OR
(95% CI) p value

n (%) 2072 (20) 8288(80)

Demography

 � Age (years) –

 �   30–39 19.5 19.5 19.5 –

 �   40–49 23.5 23.5 23.5 –

 �   50–59 27.5 27.2 27.6 –

 �   60–70 29.5 29.8 29.4 –

 � Female 56.3 56.0 56.4 – –

 � Education <0.001

 �   Primary and below 6.53 9.17 5.88 Ref

 �   Junior/senior high school 38.3 40.1 37.9 0.64 (0.53 to 0.78) <0.001

 �   College and above 55.2 50.8 56.3 0.53 (0.43 to 0.64) <0.001

Family history

 � One of the parents has asthma 6.60 10.1 5.72 1.87 (1.58 to 2.22) <0.001

 � One of the siblings has asthma 3.38 5.16 2.93 1.79 (1.42 to 2.26) <0.001

 � One of the parents has depression 3.09 3.86 2.90 1.35 (1.04 to 1.75) 0.023

Disease history

 � Hypertension 26.7 33.3 25.0 1.63 (1.45 to 1.84) <0.001

 � Diabetes 16.2 20.0 15.2 1.45 (1.27 to 1.65) <0.001

 � Hyperlipidaemia 11.5 16.1 10.4 1.66 (1.45 to 1.90) <0.001

 � Chronic obstructive pulmonary disease 11.7 28.9 7.34 5.51 (4.82 to 6.31) <0.001

 � Depression 11.5 16.1 10.4 1.66 (1.45 to 1.90) <0.001

 � Gastro-oesophageal reflux disease 5.34 8.93 4.44 2.10 (1.75 to 2.52) <0.001

Obesity indicators

 � WC (cm)

 �   Obese 42.2 48.8 40.6 1.41 (1.28 to 1.56) <0.001

 �   Non-obese 57.8 51.3 59.5 Ref

 � WHtR

 �   Obese 58.4 65.1 56.7 1.45 (1.31 to 1.61) <0.001

 �   Non-obese 41.6 34.9 43.3 Ref

 � BMI (kg/m2) <0.001

 �   Underweight 2.82 2.36 2.93 0.93 (0.67 to 1.27) 0.630

 �   Normal 48.4 42.9 49.8 Ref

 �   Overweight 28.3 29.7 28.0 1.26 (1.12 to 1.41) <0.001

 �   Obese 20.5 25.1 19.3 1.54 (1.36 to 1.75) <0.001

 � BMI+WC*

 �   Obese 18.9 23.3 17.8 1.41 (1.26 to 1.59) <0.001

 �   Non-obese 81.1 76.7 82.8 Ref

 � BMI+WHtR*

 �   Obese 20.3 24.9 19.1 1.41 (1.26 to 1.58) <0.001

 �   Non-obese 79.7 75.1 80.9 Ref

Health behaviours

 � Physical activity 0.011

 �   Light intensity (<3 METs) 75.8 77.9 75.2 Ref

Continued
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Obesity-related SNPs and their overlap with asthma-related 
SNPs
The meta-analysis identified 234 SNPs that met the 
p<5×10−8 threshold for genome-wide significance associ-
ated with BMI, 236 that were associated with WC and 263 
that were associated with WHtR (online supplemental 
tables S1–S3). Overall, 32 BMI-related, 24 WC-related 
and 33 WHtR-related SNPs were associated with asthma 
(online supplemental table S4). We used cross-phenotypic 
association analyses to identify the loci shared between 
asthma and obesity. Among the obesity-related SNPs asso-
ciated with an increased risk of asthma, we identified 41 
SNPs shared by asthma and obesity. Of these, 13 SNPs 
contained information from the GTEx portal database 
(online supplemental table S5). These involved 15 genes, 
including MBL2, PIAS1 and HPSE2, which are expressed 
across various human tissues (online supplemental figure 
S2). In the over-representation enrichment analysis, we 
identified several possible biological pathways for the 
genes shared between asthma and obesity. For instance, 
MBL2 gene is involved in the complement cascade of 
innate immunity. PIAS1 plays a role in both interferon 
signalling, including the regulation of interferon-gamma 
(IFN-γ) signalling, JAK/STAT signalling pathway and 
IFN-γ signalling pathway in the immune system, and 
the transcriptional regulation of transcription factors 
(SUMOylation). HPSE2 is involved in glycosamino-
glycan (heparin sulfate/heparin, HS-GAG) degradation. 
The top 10 GO terms and pathways are shown in online 
supplemental figures S3 and S4, respectively.

Asthma and obesity PRS
The PRS for asthma, BMI, WC and WHtR were calculated 
using 80 asthma-related SNPs (online supplemental table 
S6), 140 BMI-related SNPs (online supplemental table 
S7), 132 WC-related SNPs (online supplemental table S8) 
and 148 WHtR-related SNPs (online supplemental table 
S9), respectively. The mean PRS of asthma (0.63±0.95 
vs −0.16±0.95), PRS of BMI (0.08±1.02 vs −0.02±1.00), 
PRS of WC (0.10±1.01 vs −0.02±1.00) and PRS of WHtR 
(0.07±1.00 vs −0.02±1.00) were significantly different 
between asthma patients and non-asthmatic controls 
(table 2). The ability of the PRS of asthma, BMI, WC and 
WHtR to predict asthma was evaluated using ROC curves, 
as shown in online supplemental figure S5.

In addition to the obesity indicator PRS, we were also 
interested in obesity PRS; consequently, we further used 
discrete criteria to determine PRS for obesity. Obesity 
PRS includes general obesity PRS (BMI≥27 kg/m2), 
central obesity PRS (WC≥80 cm in women or ≥90 cm in 
men; WHtR≥0.05) and obesity PRS meeting both criteria 
for obesity. A comparison of this PRS between the two 
groups is presented in table 2, and online supplemental 
figure S6 shows the results of the ROC curve analysis for 
the accuracy of predicting asthma. The accuracies of the 
five obesity PRS in predicting asthma were comparable to 
those of the three obesity-indicator PRS.

Genetic variants, obesity traits and asthma
The covariate-adjusted conditional logistic regression 
model that identified the obese phenotype and obese-
related PRS as risk factors for asthma is presented in 
table 3. In model 1, both general obesity (OR of BMI=1.32, 
95% CI=1.14 to 1.52, p<0.001) and central obesity (OR 
of WC=1.26, 95% CI=1.12 to 1.41; OR of WHtR=1.27, 
95% CI=1.13 to 1.44; p all<0.001) indicated significantly 
higher odds of asthma. In model 2, a one-standardised 
score increase in PRS of BMI and PRS of WC significantly 
increased the odds of asthma by 7% (95% CI=1.01 to 
1.13, p=0.020) and 10% (1.04 to 1.17, p<0.001), respec-
tively. A one-standardised score increase in PRS of 
WHtR increased the odds of asthma by 5% (0.99 to 1.11, 
p=0.103), but this increase was not statistically significant. 
However, when we used WHtR (0.5 as the cut-off point) 
to define central obesity, a one-standard-score increase 
in the PRS of central obesity significantly increased the 
odds of asthma by 9% (1.03 to 1.15, p=0.003). There 
was no significant interaction effect for obesity-related 
PRS×asthma PRS (not shown here). Additionally, lower 
education level, family history of asthma, disease history 
of COPD, history of depression, history of GERD, history 
of hypertension and increased PM2.5 are also independent 
risk factors for asthma. The details of the model for each 
indicator are shown in online supplemental tables S10 to 
S16. In the covariate-adjusted ROC curve, the AUC for 
predicting asthma was 0.82 (online supplemental figures 
S7–S9).

We examined the relationship between the traits of 
obesity indicators, obesity-related PRS and asthma, as 
shown in figure 3. Obesity-related PRS is an indirect risk 

Characteristic Sample (%) Asthma Non-Asthma
Crude OR
(95% CI) p value

 �   High intensity (≥3 METs) 24.2 22.1 24.8 0.86 (0.76 to 0.96) 0.010

Environment

 � PM2.5 (μg/m3) 22.4±10.2 24.3±11.1 21.9±9.85 1.02 (1.02 to 1.03) <0.001

*Individuals with both central and general obesity were defined as obese.
BMI, body mass index; MET, metabolic equivalent of task; PRS, polygenic risk scores; WC, waist circumference; WHtR, waist-to-height ratio.

Table 1  Continued

https://dx.doi.org/10.1136/bmjresp-2022-001355
https://dx.doi.org/10.1136/bmjresp-2022-001355
https://dx.doi.org/10.1136/bmjresp-2022-001355
https://dx.doi.org/10.1136/bmjresp-2022-001355
https://dx.doi.org/10.1136/bmjresp-2022-001355
https://dx.doi.org/10.1136/bmjresp-2022-001355
https://dx.doi.org/10.1136/bmjresp-2022-001355
https://dx.doi.org/10.1136/bmjresp-2022-001355
https://dx.doi.org/10.1136/bmjresp-2022-001355
https://dx.doi.org/10.1136/bmjresp-2022-001355
https://dx.doi.org/10.1136/bmjresp-2022-001355
https://dx.doi.org/10.1136/bmjresp-2022-001355
https://dx.doi.org/10.1136/bmjresp-2022-001355
https://dx.doi.org/10.1136/bmjresp-2022-001355
https://dx.doi.org/10.1136/bmjresp-2022-001355
https://dx.doi.org/10.1136/bmjresp-2022-001355
https://dx.doi.org/10.1136/bmjresp-2022-001355
https://dx.doi.org/10.1136/bmjresp-2022-001355
https://dx.doi.org/10.1136/bmjresp-2022-001355
https://dx.doi.org/10.1136/bmjresp-2022-001355
https://dx.doi.org/10.1136/bmjresp-2022-001355
https://dx.doi.org/10.1136/bmjresp-2022-001355


Huang Y-J, et al. BMJ Open Resp Res 2022;9:e001355. doi:10.1136/bmjresp-2022-001355 7

Open access

factor for asthma, with the link being fully mediated by 
traits of obesity. The indirect effects of BMI, WC and 
WHtR were 1.05 (1.03–1.07), 1.06 (1.04–1.08) and 1.07 
(1.04–1.09), respectively. The indirect effects of general, 
central and general–central obesity were 1.04 (1.01–
1.06), 1.05 (1.02–1.07) and 1.04 (1.01–1.06), respectively.

DISCUSSION
We used the GWAS approach to scan the genomes from 
Taiwan adults to look for obesity-related and asthma-
related SNPs and summarised multiple effects to esti-
mate the PRS of obesity and asthma. As far as we know, 
no studies have found a relationship among obesity-
related PRS, obesity traits and asthma risk by mediation 
analyses. Through a clinical or public health lens, identi-
fying genetic variants related to both obesity and asthma 
might provide opportunities for preventing or treating 
asthma and obesity simultaneously, and establishment of 
a prediction model could be useful for disease manage-
ment.

Several epidemiological and genetic studies have 
suggested that obesity is a risk factor for asthma. For 
example, Beuther and Sutherland performed a meta-
analysis of prospective epidemiologic studies and found 
a dose–response relationship between body weight and 
asthma in adults.35 Bidirectional Mendelian randomi-
sation studies in European adult suggested that BMI is 
causal factor in asthma, particularly in later-onset and non-
atopic asthma.36 37 Our findings are similar to these obser-
vations, and our ROC analysis also suggested that obesity 
and obesity-related PRS have excellent discrimination in 

predicting asthma. Nevertheless, this finding requires 
further confirmation in a different cohort.

Using over-enrichment analysis, we also identified 
potential immunological mechanisms for the association 
between obesity and asthma. The MBL2 gene, regulated 
by rs11003136, involves the lectin pathway of comple-
ment activation. Complement is an ancient danger-
sensing component of the innate immune system, which 
is activated through three independent pathways—the 
classical pathway, the alternative pathway and the lectin 
pathway. The low-molecular-weight anaphylactic toxins 
(AT) C3a and C5a produced during complement activa-
tion have many important proinflammatory and immu-
nomodulatory properties, and regulate the development 
of Th2 immunity during allergen sensitisation.38 It is well 
known that the immune mechanism of asthma is predom-
inantly mediated by Th2 cells. MBL is a component of 
the lectin pathway, and its concentration is regulated by 
a polymorphism in the promoter region of the MBL2 
gene. Aittoniemi et al have demonstrated that carriage of 
−221 base pair promoter region variants (G>C) caused 
low MBL expression and increased the risk of asthma in 
the Finnish population.39 Our results found that allele T 
of rs11003136 was associated with increased asthma risk 
(OR (95% CI) of additive model=1.093 (1.015, 1.177); 
OR (95% CI) of recessive model=1.184 (1.005, 1.395)). 
The PIAS1 gene, which is regulated by rs4776990, is 
involved in both IFN signalling (IFN-γ signalling pathway, 
JAK/STAT signalling pathway and regulation of IFN-γ 
signalling) in the immune system and the SUMOy-
lation of transcription factor pathways. IFN-γ, a Th1 

Table 2  Asthma-related and obesity-related PRS in asthma and non-asthma participants among adults aged 30–70 years, 
Taiwan Biobank

Characteristic Sample Asthma, n=2072 Non-asthma, n=8288
Crude OR
(95% CI) P value

Asthma PRS 0.00±1.00 0.63±0.95 −0.16±0.95 2.40 (2.26 to 2.54) <0.001

Obesity indicators PRS*

 � BMI 0.00±1.00 0.08±1.02 −0.02±1.00 1.10 (1.05 to 1.16) <0.001

 � WC 0.00±1.00 0.10±1.01 −0.02±1.00 1.14 (1.08 to 1.19) <0.001

 � WHtR 0.00±1.00 0.07±1.00 −0.02±1.00 1.09 (1.04 to 1.15) <0.001

General obesity PRS†

 � BMI 0.00±1.00 0.05±0.99 −0.01±1.00 1.07 (1.02 to 1.12) 0.010

Central obesity PRS†

 � WC 0.00±1.00 0.06±1.02 −0.02±1.00 1.08 (1.03 to 1.13) 0.002

 � WHtR 0.00±1.00 0.07±0.99 −0.02±1.00 1.09 (1.04 to 1.14) <0.001

General–central obesity PRS‡

 � BMI+WC 0.00±1.00 0.05±0.99 −0.01±1.00 1.07 (1.02 to 1.12) 0.008

 � BMI+WHtR 0.00±1.00 0.05±1.00 −0.01±1.00 1.06 (1.01 to 1.11) 0.018

Polygenic risk scores were standardised to mean=0 and SD=1 for the analysis.
*Obesity measures were continuous variables.
†Obesity measures were binary variables (obese vs non-obese groups).
‡Obesity measures were binary variables (two obesity traits vs other groups).
BMI, body mass index; PRS, polygenic risk scores; WC, waist circumference; WHtR, waist-to-height ratio.
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cytokine primarily generated by natural killer and acti-
vated T cells, is crucial for the induction and regulation 
of a range of immune responses. Studies have reported 
that severe asthma is associated with higher IFN-γ levels.40 
The cellular responses to IFN‐γ are mediated by the IFN-γ 
receptor (IFNGR), which comprises two chains. Both 
IFNGR chains lack intrinsic kinase/phosphatase activity 
and thus rely on JAK1, JAK2 and STAT1 for signal trans-
duction to regulate gene expression, thereby mediating 
the biological functions of IFN-γ.41 42 Protein inhibitors 
of activated STATs (PIAS) are a class of negative regula-
tors that affect IFN-γ signalling by inhibiting various steps 
in the IFN-γ cascade.42 O'Connell et al suggested that the 
IFN-γ-induced JAK/STAT-associated signalling pathway is 
insensitive to glucocorticoid action, an insensitivity that is 
reversed by STAT1 inhibition.43 PIAS1 is a negative regu-
lator of STAT1. It blocks STAT1 from interacting with 
DNA and inhibits STAT1-mediated gene activation in 

response to interferons.44 SUMOylation is an important 
post-translational mechanism that affects transcriptional 
regulation by altering transcription factors and chro-
matin structures. SUMO3 and SUMO E3 ligase PIAS1 
may mediate the crosstalk mechanism between androgen 
receptor SUMOylation and ubiquitination to modu-
late the androgen receptor cellular distribution and 
stability.45 Androgen receptor signalling stabilises Treg 
suppressive function to reduce allergen-induced type II 
airway inflammation and airway hyper-responsiveness.46 
HPSE2 is regulated by rs10883230 and involves the 
HS- GAG degradation pathway. Increased extracellular 
matrix deposition in the airway wall is characteristic of 
airway remodelling. HS is a linear GAG that functions as 
an HS proteoglycan (HSPG). Ge et al demonstrated in 
a mouse model that HSPG influences the development 
of airway remodelling during chronic allergic asthma by 
promoting the recruitment of inflammatory cells and 

Table 3  Associations between obesity and asthma in adults aged 30–70 years, Taiwan Biobank

Variable

Model 1 Model 2

OR (95% CI) P value OR (95% CI) P value

BMI

 � Phenotype 1 (ref: normal)

  �  Underweight 0.83 (0.57 to 1.19) 0.307 – –

  �  Overweight 1.13 (0.99 to 1.30) 0.068 – –

  �  Obese 1.32 (1.14 to 1.54) <0.001 – –

 � Phenotype 2 (ref: non-obese)

  �  Obese 1.26 (1.10 to 1.45) <0.001 – –

 � BMI PRS – – 1.07 (1.01 to 1.13) 0.020

 � General obesity PRS – – 1.04 (0.98 to 1.10) 0.236

WC

 � Phenotype (ref: non-obese)

  �  Obese 1.26 (1.12 to 1.41) <0.001 – –

 � WC PRS – – 1.10 (1.04 to 1.17) <0.001

 � Central obesity PRS – – 1.06 (<1.00 to 1.12) 0.057

WHtR

 � Phenotype (ref: non-obese)

  �  Obese 1.27 (1.13 to 1.44) <0.001 – –

 � WHtR PRS – – 1.05 (0.99 to 1.11) 0.103

 � Central obesity PRS – – 1.09 (1.03 to 1.15) 0.003

Two obesity traits

 � Phenotype

  �  BMI (obese)+WC (obese) 1.27 (1.10 to 1.46) <0.001 – –

  �  BMI (obese)+WHtR (obese) 1.27 (1.11 to 1.46) <0.001 – –

 � General–central obesity PRS

  �  BMI (obese)+WC (obese) – – 1.06 (1.00 to 1.12) 0.036

  �  BMI (obese)+WHtR (obese) – – 1.03 (0.98 to 1.09) 0.241

Adjustments include PRS of asthma, education, one of the parents has asthma, one of the siblings has asthma, chronic obstructive 
pulmonary disease, depression, gastro-oesophageal reflux disease, hypertension and PM2.5.
BMI, body mass index; PRS, polygenic risk scores; WC, waist circumference; WHtR, waist-to-height ratio.
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regulating the expression of proremodelling factors in 
the lung.47 Our results suggest that the AA/GA geno-
type of rs10883230, which regulates HPSE2, is associated 
with an increased asthma risk by 12%. Additionally, we 
found that five SNPs are involved in ALCAM gene expres-
sion and associated with asthma risk. ALCAM is a trans-
membrane protein highly expressed in dendritic cells. 
It combines with CD6, a receptor on T-cells, to form an 
immune synapse, mediating the activation and differ-
entiation of T cells to regulate the immune response. 
There is evidence that ALCAM promotes the devel-
opment of allergic asthma by stimulating T helper cell 
type 2 immune response.48 The ALCAM–CD6 pathway 
is a target for severe asthma.49 Our results reported that 
minor alleles of four SNPs (rs28588542-T, rs9857705-C, 
rs6769329-C and rs2399047-T) were associated with an 
8% increase in asthma risk.

In addition to immunological mechanisms, a mechan-
ical effect in which obesity narrows the airways and affects 
airway closure and hyper-responsiveness is a well-known 
explanation for the relationship between obesity and 
asthma. Abdominal and thoracic fat are more likely to 
contribute to lung function impairment than general 
obesity is, which is independent of the fat distribution. 
This is because they directly affect the mechanical expan-
sion of the chest wall and diaphragm during forced inspi-
ration.8 A recent study in a Chinese population identified 
a strong negative genetic correlation between central 
obesity and lung function.50 Our study also found that 
WC and WHtR (indicators of central obesity) are genetic 
mediators of asthma.

However, our results should be interpreted with caution 
due to the following limitations. First, the cross-sectional 
survey data cannot be used to infer a causal or temporal 

Figure 3  Mediation analysis using generalised linear models with binary and normal distribution of obesity-related PRS, 
obesity trait and asthma. Adjusted for age, sex, PRS of asthma, education, one of the parents has asthma, one of the siblings 
has asthma, chronic obstructive pulmonary disease, depression, gastro-oesophageal reflux disease, hypertension and PM2.5. 
***p value <0.001. BMI, body mass index; PRS, polygenic risk score; WC, waist circumference; WHtR, waist-to-height ratio.
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relationship between obesity and asthma. Several studies 
have confirmed that obesity may predispose individuals 
to asthma, but as our study design is not prospective, 
we should interpret results cautiously when exploring 
the association and mediated effect. Second, only adults 
who are 30–70 years old without a history of cancer were 
recruited in the TWB, so our results should not be extrap-
olated to all populations in Taiwan. Third, we do not 
control all factors related to obesity and asthma due to 
the limitations of the secondhand data. Forth, owing to 
their distinctive genetic backgrounds,51 obesity may have 
heterogeneous effects on different subtypes of asthma. 
However, we lacked the diagnosis of asthma subtypes, 
which prevented us from further exploring the rela-
tionship between obesity and different asthma subtypes. 
Additionally, we generated obesity and asthma PRS using 
the traditional PRS methods. Because LD is not consid-
ered in traditional PRS approaches, their predictive 
value is restricted. Adopting advanced PRS approaches, 
such LDpred,52–54 will be beneficial in future analyses to 
address the LD structural problem and improve power.

In conclusion, we found that adults with obesity have a 
significantly higher risk of asthma, and observed a signifi-
cant positive relationship between the overall genetic risk 
for obesity and the risk of asthma. Furthermore, overall 
genetic risk for obesity increases the risk of asthma by 
affecting the obese phenotype.
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