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SUMMARY

Obstructive sleep apnea (OSA) induces intermittent hypoxia (IH), an independent risk factor for non-alco-
holic fatty liver disease (NAFLD). While the molecular links between IH and NAFLD progression are un-
clear, immune cell-driven inflammation plays a crucial role in NAFLD pathogenesis. Using lean mice
exposed to long-term IH and a cohort of lean OSA patients (n = 71), we conducted comprehensive hepatic
transcriptomics, lipidomics, and targeted serum proteomics. Significantly, we demonstrated that long-
term IH alone can induce NASH molecular signatures found in human steatohepatitis transcriptomic
data. Biomarkers (PPARs, NRFs, arachidonic acid, IL16, IL20, IFNB, TNF-a) associated with early hepatic
and systemic inflammation were identified. This molecular link between IH, sleep apnea, and steatohepa-
titis merits further exploration in clinical trials, advocating for integrating sleep apnea diagnosis in liver
disease phenotyping. Our unique signatures offer potential diagnostic and treatment response markers,
highlighting therapeutic targets in the comorbidity of NAFLD and OSA.

INTRODUCTION

Obstructive sleep apnea (OSA) is one of themost frequent chronic diseases, affecting nearly one billion people worldwide.1 The central compo-

nent of OSA is the repetitive occurrence of upper airway collapse during sleep leading to the cyclical sequences of desaturation-reoxygenation

known as intermittent hypoxia (IH). The severity of IH (i.e., ‘‘the hypoxic burden’’) is the major contributor to the occurrence, aggregation, and

progression of other common chronic diseases such as diabetes, hypertension, heart failure, non-alcoholic fatty liver disease (NAFLD), and ce-

rebrovascular diseases.2–4 It has been established in animal models of NAFLD and from clinical studies that IH and OSA trigger and accelerate

the transition from steatosis to non-alcoholic steatohepatitis (NASH) and fibrosis.4–7 Inflammation plays a crucial role in the pathophysiology of

NASH and OSA but to date the molecular mechanisms underlying this comorbid association are poorly characterized.8–11 In humans and in

mouse models, the specific role of IH is often masked by major confounders such as obesity, diabetes, and/or reduced physical activity. To

circumvent these issues, we investigated both a model of lean mice exposed to long-term IH (16 weeks) and a cohort of lean OSA patients

free of comorbidities (n = 71) using high-throughput hepatic transcriptomics, lipidomics, and targeted serum proteomics.

Our hypothesis was that long-term IH is sufficient to induce the biological pathways found in human steatohepatitis transcriptomic data-

sets. In addition, we asked whether there is a unique set of biomarkers in mice and humans associated with hepatic and systemic inflamma-

tion. Confirmation of these hypotheses would support the notion that IH is an independent ‘‘hit’’ that can autonomously induce NASH in

humans.

RESULTS

A unique standard-diet mouse model exposed to long-term IH

To explore the consequences of long-term exposure to IH during sleep on hepatic physiology,micewere housed under a 12 h light-dark cycle

and fed with a regular chow diet. They were randomly assigned to either IH (1-min cycles of 5%–21% FiO2) or normoxic control (NC, 1-min

cycles of 21% FiO2), 8 h per day during their sleep cycle (between ZT0 and ZT8, Figure 1A) for up to 16 weeks. The body weight of mice
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subjected to IH decreased rapidly during the first 2 weeks and remained significantly and consistently lower throughout the experiment

compared to the NC group (Figure 1B). Food intake tends to decrease during the first week of exposure and then remains similar in between

groups (Figure S1A). It is interesting to note that fasted glycemia starts to increase significantly after 8 weeks of IH (Figure 1C). Amajor strength

Figure 1. Hepatic transcriptomic signatures of long-term intermittent hypoxia in mice

(A) Experimental design of mouse model of sleep apnea. Lean male mice fed with regular chow diet were exposed to 16 weeks of intermittent hypoxia (IH) or

normoxic cycles (NC).

(B) Body weight of mice exposed to intermittent hypoxia (IH, n = 15) and normoxic control (NC, n = 15) measured once a week over the time course of the

experiment. Dark bars and circles are for NC mice and gray bars and triangles for IH mice. Body weight was presented as mean + standard error of mean

(SEM). Significance was calculated per each time point using a Student’s t test and *** indicates a p value %0.001.

(C) Fasted glycemia of mice exposed to intermittent hypoxia (IH, n = 15) and normoxic control (NC, n = 15) measured once a week over the time course of the

experiment. Fasted glycemia was presented asmean + standard error of mean (SEM). Significance was calculated per each time point using a Student’s t test and

*** indicates a p value %0.001.

(D) Pie chart representing the number of differentially expressed genes in the liver after 16 weeks of IH. Upregulated genes are shown in red and downregulated

genes are shown in blue. Genes were selected using a p value %0.01 indicating a significant difference between IH and NC.

(E) Gene ontology (GO) analysis showing the top six biological processes enriched in upregulated genes upon IH (top) denoted in red and downregulated genes

upon IH (bottom) represented in blue. The number of dysregulated genes in our transcriptome over the total number of genes for each GO category is indicated

on the graph. On the left panel, genes were selected using a p value%0.01 indicating a significant difference betweenNC and IH and rankedGOwere ranked per

p value. On the right panel, the top 500 genes with the highest expression difference between IH and NC were selected and GO were ranked per p value.
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of our experimental design is that mice exposure to 16 weeks of IH is quite unique in the field and reflects more accurately the long-term

consequences of IH in human OSA.

Specific hallmarks of long-term IH on the hepatic transcriptome

Wefirst examinedwhether specific hepatic transcriptional reprogramming occurred after long-term exposure to IH. Hepatic RNA sequencing

(RNA-seq) revealed that IH significantly dysregulates 1203 genes (p% 0.01, Figure 1D). To identify related biological functions, we performed

pathway enrichment analysis using the Gene Ontology Biological Processes database, and upstream transcriptional regulator enrichment

analysis using the ChIP enrichment (ChEA) database. Gene ontology analysis identified distinct enriched biological pathways differentially

expressed in response to IH (Figures 1E, and S1B). Specifically, metabolic pathways involving lipids and nutrient utilization were significantly

enriched in downregulated genes, while inflammatory processes were overrepresented in upregulatedgenes (Figure 1E, top panel). Likewise,

downregulated genes were mostly targets of PPARg, a transcription factor involved in fatty acid and glucose metabolism, whereas enriched

upregulated genes were targets of GATA1 and STAT3, which are transcription factors implicated respectively in the maturation of blood cells

and inflammation (Figure S1). These observations were consolidatedwith different gene ontology resources to reinforce the robustness of the

data (Figure S1B). Collectively, these data demonstrate that IH is sufficient to induce molecular pathways found in steatohepatitis in humans

mostly characterized by an increase in hepatic inflammation.

Exposure to long-term IH alone in mice is enough to capture a human steatohepatitis molecular signature

To evaluate the relevance of our IHmousemodel to human pathology, we compared our RNA-seqwith transcriptome that has been reported

in humans with steatohepatitis. We performed biological pathway enrichment and upstream transcriptional regulator enrichment analysis on

the top 500 most significantly dysregulated genes in human and mice transcriptomes and compared the 20 most significantly dysregulated

pathways (Figures 2A and S2; Table S2) and associated transcription factors (Figure 2B and S2; Table S2). Downregulated genes present a

common signature for fatty acid oxidation and PPARg target genes. Upregulated genes are enriched for neutrophils, inflammation, and

GATA1 and NRF2 target genes (Figures 2 and S2; Table S2). These results further support the notion that IH in mice is an independent

‘‘hit’’ sufficient to induce molecular markers implicated in human NASH. This occurred in the context of individuals under standard diet

but subject to long-term IH exposure.

Long-term IH exposure reprograms hepatic lipid metabolism

The ‘‘multiple hit’’ hypothesis proposes that a continuum and potentially a combination of hepatic insults trigger and accelerate NAFLD

development. Deregulation of lipid metabolism has been strongly associated with the onset and progression of NAFLD and our transcrip-

tomic analyses confirmed that the PPARg transcription factor and the mitochondrial fatty acid oxidation pathway are central to liver injury

pathogenesis in IH (Figures 3A, 3B, S2, and S3). This is exemplified by the expression profiles of target genes such as Cd36, Pparg, and

Hadh (Figures 3C, S3, and S6). Therefore, this signature prompted us to analyze the hepatic lipid content through amass spectrometry-based

lipidomic approach (Figure 3D). We found no consistent differences in terms of overall hepatic content of lipids but we discovered significa-

tive variations in the abundance of specific fatty acids species potentially involved in signaling/inflammation (Figures 3D, 3E, and S3). Among

them, arachidonic acid (C20:4) is significantly increased in the liver during IH while eicosanoic acid (C20:0) is decreased (Figure 3D and S3).

Arachidonic acid is the precursor for the synthesis of the pro-inflammatory molecules prostaglandins and leukotrienes (Figure 3F). Interest-

ingly, arachidonic acid is also increased in the serum of mice exposed to 16 weeks of IH (Figure 3D and S3). Hence, both lipidomic and tran-

scriptomics analysis converge to indicate the occurrence of an inflammatory response to long-term IH.

Long-term IH exposure promotes immune cell infiltration into the liver

The distinctive inflammatory signature mediated by IH likely arises from the immune cell contribution in the bulk liver transcriptomic analysis.

Remarkably, the top 500most upregulated genes are typically found in leukocytes and are associated with inflammatory response (Figure 1E,

right panel). Furthermore, GSEA corroborates the overrepresentation of the leukocytic signature upon IH (Figure 4A) and the comparison of

mice and human transcriptomes pinpoints a predominant presence of neutrophils (Figures 1E and S2). These observations were further sup-

ported by immunohistochemistry experiments showing an increased number of neutrophils and monocytes in the liver of mice exposed to

16 weeks IH (Figure 4B). It is important to note that no difference in leukocyte staining was found after 4 weeks of IH exposure (Figure 4B)

demonstrating again that long-term IH is required to boost hepatic immune cell infiltration and inflammation.

Long-term IH exposure in lean mice is associated with a hepatic and systemic inflammatory signature

Consequently, we investigated whether long-term IH generates a peculiar inflammatory signature in the liver. GSEA confirmed the hepatic

cytokine response and highlighted a specific set of inflammatory markers during IH (Figures 5A and S4). Among them, IH significantly upre-

gulates the NLRP3 inflammasome and targets genes Il1a and Il1b, all involved in the development of chronic inflammation-related diseases

(Figure 5B). We then assessed the longitudinal time course of hepatic expression by RT-qPCR of representative inflammatory markers. Strik-

ingly, the increased expression of Il1a, Il1b, and Il16 occurs only after long-term IH exposure (Figure 5C).

The bidirectional interactions between local and systemic inflammation prompted us to search for a comprehensive immune response set

of markers in serum frommice exposed either to short (4 weeks) or long-term IH (16 weeks). Cytokine profiling revealed a significant induction
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of circulating biomarkers IL16, INFB1, and TARC after 16 weeks of IH (Figures 6A, 6B, and S5). It is important to note that the circulating cy-

tokines are not altered after a short exposure to IH, except the significant increase of IL1A. There is also a progressive evolution in hepatic

inflammation and cytokine profile during exposure to NC or IH.

Inflammatory signature in OSA patients

We then investigated the relevance of this circulating cytokine signature in the serum of lean OSA patients. These patients came from a

unique cohort of lean, middle-age OSA individuals free of any cardiovascular, hepatic, or metabolic comorbidities (cohort characteristics

are shown in supplementary Table S1). The goal here was to mirror the situation of lean mice exposed to long-term IH. Among the inflam-

matory markers found in mice, only IL16 and interferon B (IFNB) were significantly higher in OSA patients than in control subjects (Figure 6B).

Nevertheless, cytokine profiling of OSA patient samples also revealed a significant induction of IL20, LIF, TNF-a, and IFNg, consistent with

trends found in mouse results (Figure 6 and S5).

DISCUSSION

OSA and NAFLD are among the most frequent chronic diseases with a high burden for patients, society, and health systems.12,13 Consistent

data from clinical studies advocate that OSA contributes to the development and progression of NAFLD. However, these observational data

are partly flawed by the difficulty in delineating the respective role of IH versus comorbid obesity, sedentarity, and/or diabetes. To identify

specific IH-driven molecular alterations at the early stage of NAFLD development, we used a mouse model fed with a standard diet (i.e., lean

mice) exposed for up to 16 weeks to IH to reflect long-term exposure to a hypoxic burden as it occurs in patients with OSA. The design of our

Figure 2. Comparison of hepatic signatures of human NASH and mouse long-term IH

(A) Venn diagrams representing the comparison of the top twenty GO biological processes ranked by p value enriched in the top 500 upregulated genes (red

circles, left panel) or the top 500 downregulated genes (blue circles, right panel) in IH versus NC mice (dark blue and dark red circles) and NASH versus healthy

humans (light blue and light red circles). The top 500 genes were selected using a p value %0.01.

(B) Venn diagrams representing the upstream transcriptional regulators ranked by p value associated with the top 500 upregulated genes (red circles, left panel)

or the top 500 downregulated genes (blue circles, right panel) in IH versus NC mice (dark blue and dark red circles) and NASH versus healthy humans (light blue

and light red circles). The top 500 genes were selected using a p value %0.01.
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Figure 3. IH reprograms fatty acid metabolism and PPARg-dependent gene expression

(A) GSEA showing the enrichment of genes involved in mitochondrial fatty acid beta-oxidation andmitochondrial ATP synthesis coupled electron transport in the

livers from the 16 weeks IH group.

(B) Heatmap representing significant (p value %0.01) differentially expressed PPARg target genes in the livers from the 16 weeks IH group.

(C) Representative expression of PPARg target and fatty acid metabolic genes determined by RT-qPCR at different length of IH exposure (4 and 16 weeks). Gene

expression was normalized to beta-actin and presented as mean + standard error of mean (SEM, n = 4–5 biological replicates per group). Significance was

calculated using a Student’s t test and *indicate a p value of 0.05.

(D) Heatmap representing fatty acid profiles in the liver and serum of mice exposed to 16 weeks of IH determined by mass spectrometry. Each fatty acid

abundance was calculated and normalized according to the internal standard and presented as mean + standard error of mean (SEM, n = 5 biological

replicates per group). Significance was calculated using Student’s t test and * indicates a p value %0.05.

(E) Illustration depicting arachidonic acid metabolism and significant dysregulated fatty acid under IH and their link with inflammation.
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study focused on how IH in isolation may impact hepatic molecular pathways rather than the parallel histological feature of NASH. This

approach has allowed us to minimize secondary events such as steatosis and fibrosis and confounders that would be encountered using

mouse models of NAFLD. The 16-week exposure to IH is a clear strenght as most of the studies available in the field do not extend beyond

4 weeks of exposure. This is of crucial importance as early acute adaptation of the animals to IH is known to have a significant impact on body

weight and food intake (Figures 1B and S1) that might widely interfere with identification of mechanisms specific to IH.

To depict themolecular portrait of the hepatic consequences of IH, we employed unbiased transcriptomic analysis and revealed that long-

term IH without confounders is powerful enough to drive a gene expression cascade observed also in human NASH. This is an important

addition to previous observational clinical studies showing that OSA severity (assessed through the apnea-hypopnoea index) is an indepen-

dent predictor of liver disease progression.4

Comparison of IH mice and human NASH hepatic transcriptomes has revealed a common set of dysregulated genes, targets of PPARg and

NRF2 transcription factors. These factorsarewell knowntobe implicated in liverdiseaseand linked tometabolismand inflammationbut theyhave

notbeendescribedpreviously in rodentmodelsof sleepapnea. It is important tonote that currentdataarenot supportingorprovidinga rationale

for a pivotal role of hypoxia-inducible factors (HIF1a andHIF2) in the context of long-term IH (Figure S6) suggesting distinct adaptivemechanisms

to short- and long-term IH. InNASHpatients, it has been demonstrated thatNRF2 activation is correlatedwith liver inflammation.14 Interestingly,

Figure 4. IH fosters immune cell infiltration and activation in the liver

(A) GSEA showing the enrichment leukocytes, neutrophils, monocytes, and lymphocytes-specific genes in the livers from the 16 weeks IH group.

(B) Representative immunohistochemistry of the neutrophil marker MPO, monocytes marker CD68, and lymphocytes marker CD3 in liver biopsies at 4 and

16 weeks of IH exposure and their respective controls. A comparative observation of cell content in the liver sections from different groups was quantified

and expressed as a number of positive cell staining per section area. Two slides per animal (n = 4–5) were analyzed and are presented as mean + standard

error of mean (SEM). Statistical significance was calculated per each time point using a Student’s t test,*,** and *** indicates respective p value %0.05, 0.01,

and 0.001.
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wehavepreviously shown that short-term IH (2weeks) is sufficient to alter NRFs-dependent hepatic gene expression withoutmediating any tran-

scriptional changes in inflammatory genes. The current data constitute an addition to our knowledge in showing that sustained deregulation of

NRFs target genes might contribute to the progression of liver disease. PPARs are key regulators of fatty acid and glucose metabolism, inflam-

mation, and fibrosis and PPARs agonists have demonstrated promising improvement in liver disease in randomized controlled clinical trials.11,15

Ourdata suggest that theassociationbetweenNASHandOSAmightbeofparticular interest for thispharmacological approachand thismerits to

be investigated in further studies dedicated to this comorbid association. Interestingly, PPARg lipolytic target genes are downregulated after

16 weeks of IH exposure in association with a remodeling of hepatic fatty acid content. Among them, arachidonic acid has been shown to be

an early indicator of inflammation during NAFLD development.16,17 Accordingly, our group has previously reported that the arachidonic acid-

derived metabolite, leukotriene B4 (LTB(4)), is increased during OSA and is linked to early vascular remodeling.18–20

We demonstrated that long-term IH boosts leukocyte infiltration into the liver, which probably accounts for the strong inflammatory signature

revealed by our bulk liver transcriptomic analyses. It would have been compelling to complement this analysis with single-cell and spatial tran-

scriptomics and/or to characterize hepatic immune cells population by flow cytometry in order to precisely map the immune and inflammatory

signature.21 Despite its limitations, this strategy allowed us to identify a set of inflammatory markers associated with long-term IH. Among them,

IH significantly upregulates the NLRP3 inflammasome and the interleukins Il1a, Il1b, and Il16. Interestingly, the induction of IL16 has also been

found in serumofmice exposed to long-term IH aswell as inOSApatients. IL16 is a pro-inflammatory cytokine22,23 that is chemotactic for CD4+ T

lymphocytes, monocytes, and eosinophils linked to various diseases such as asthma,24 rheumatoid arthritis,25 and inflammatory bowel dis-

ease.26,27 Furthermore, recent studies have shown that IL16 expression in the liver correlates with inflammation in patients with primary biliary

cholangitis and progression of liver hepatocellular carcinoma,28,29 making IL16 an interesting therapeutic target. We also found a significant in-

duction of IFNB in both IHmice andOSA patients. In addition, OSA patients present a significant increase of other interferons such as IFNg and

IFNw. IFNs are essential cytokines of the immune system that serve as key effectors. Initially recognized for their crucial role in defending against

viral infections, their involvement in diverse diseases has come to light in recent studies, revealing both protective and potentially harmful roles.

Interestingly, several studies have shown that interferons affect the progression of non-alcoholic fatty liver disease.30

Figure 5. IH induces a set of hepatic inflammatory biomarkers

(A) GSEA showing the enrichment of genes involved in response to cytokine and inflammatory response in the livers from the 16 weeks IH group.

(B)Heatmap illustratinggenescharacterizingtheresponsetocytokineand the inflammatory responsesignificantlyupregulated in the16weeks IHgroup (p-value%0.01).

(C) Representative inflammatory markers expression determined by RT-qPCR at different length of IH exposure (4 and 16 weeks). Gene expression was

normalized to beta-actin and presented as mean + standard error of mean (SEM, n = 4–5 biological replicates per group). Significance was calculated using

a Student’s t test and *, ** indicates respective p value of 0.05 and 0.01.
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The cytokine profiling also revealed a significant induction of IL20, LIF, and TNF-a in OSA patients that parallels with the trends toward an

increase in mice. It would be worthwhile to increase the number of biological replicates in mice to fully characterize the conserved signature

between mice and humans. TNF-a has been described in various inflammatory diseases including NASH and OSA31–33 while little is known

about IL20 and LIF in these pathologies.34 IL20 has been implicated in several inflammatory diseases35 and ongoing clinical trials are inves-

tigating the potential therapeutic effects of anti-IL20 in psoriasis and rheumatoid arthritis (NCT01038674, NCT01261767)making IL20 an inter-

esting target to explore in the context of OSA and NASH.

Overall, our unbiased multi-omics approach has revealed molecular signatures linking IH, NASH, and OSA. We identified group of dys-

regulatedmarkers (PPARg,NRF2, arachidonic acid, IL16, IL20, IFNB, and TNF-a) that warrant further investigation in clinical trials as theymight

impinge on both hepatic and extrahepatic organs and participate toward the development of metabolic and cardiovascular complications

associated with OSA8,36–38 (Figure 7).

Both OSA and NAFLD are chronic diseases with different clusters of associated co-morbidities that impact individual prognosis.39 To imple-

ment precision medicine in both conditions, biomarkers reflecting this complexity of these pathologies are needed to guide the personalized

management of the patients. The progression of liver disease is controlled by a variety of factors, including inflammatory cells and cytokines.9,10

Our original data pave new avenues for investigating therapeutic targets related to the specific role of cytokines in the comorbid association

between OSA and NAFLD. These observations also provide a strong rationale for studies conducted specifically on this co-morbid association.

In clinical practice, our data support the systematic implementation of sleep apnea diagnostic tests in liver disease phenotyping.

Limitations of the study

Our study demonstrated that long-term IH significantly enhances leukocyte infiltration into the liver, likely contributing to the inflammatory

signature identified through our bulk liver transcriptomic analyses. While our findings provide valuable insights, a more nuanced understand-

ing could be achieved by complementing this analysis with advanced techniques such as single-cell and spatial transcriptomics. Additionally,

Figure 6. Cytokine profiling of IH mice and OSA patients

(A) Cytokine analysis was performed using serum from NC and IH mice collected after 4 or 16 weeks exposure (n = 5 biological replicates per time point per

group). Results are displayed as a heatmap and significance was calculated using Student’s t test and * indicates a p value %0.05.

(B) Comparison of cytokines profiles from serum from IH mice and OSA patients. Data are shown as mean + standard error of mean (SEM). Significance was

calculated using Student’s t test and * indicates a p value %0.05.
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characterizing the specific hepatic immune cell population through flow cytometry would offer a more precise mapping of the immune and

inflammatory signatures, enhancing the depth of our investigation.

In our exploration, we pinpointed a distinctive cluster of biomarkers, including pivotal transcription factors such as PPARg and NRF, as

well as inflammatory cytokines like IL16 and TNF-a. However, our study refrains from definitively concluding the specific roles of each

element. It is crucial to acknowledge that these mechanisms may interconnect, and our current investigation cannot firmly establish the

individual contributions of PPARg, NRF, IL16, and TNF-a to IH-induced alterations in cellular metabolism and inflammation. Subsequent

studies are imperative to unravel the intricate relationships among these factors and ascertain their respective impacts on the observed

physiological changes.

Our study uncovered a subtle, time-dependent signature, revealing distinct mechanisms of adaptation or maladaptation to short-term

and long-term IH exposure, emphasizing the importance of characterizing the adaptive and maladaptive responses associated with varying

durations of IH exposure.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND STUDY DETAILS

B Animal handling and ethics approval

B Human biological samples: study population and ethics approval

d METHOD DETAILS

B Food intake and glycemia

B RNA extraction

B Reverse transcription and quantitative real-time PCR analysis

B RNA sequencing analysis

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Functional analysis of the hepatic transcriptome

B Graphical representations and statistical analysis

Figure 7. Summary of findings

Long-term IH in mice induces inflammatory pathways entangled in human sleep apnea and steatohepatitis.
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SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2024.108837.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit Anti-CD68 Abcam ab12512

Rabbit Anti- MPO Abcam ab208670

Rabbit Anti-CD3 Abcam ab5690

Rabbit anti-HIF1a Abcam ab2185

Mouse anti-HIF1a Santa Cruz Biotechnology sc13515

Mouse anti- Tubuline-a Sigma Aldrich T5168

HRP Goat anti-Rabbit Jackson ImmunoResearch 111-035-003

HRP Goat anti-Mouse Jackson ImmunoResearch 115-035-003

Biotinylated Goat Anti-rabbit Vector Laboratories BA-1000

Biological samples

Human Serum ClinicalTrials.gov NCT00764218

Mouse Serum This paper See STAR Methods

Mouse Liver This paper See STAR Methods

Chemicals, peptides, and recombinant proteins

TRIzol reagent Invitrogen 15596026

DEPC treated water Invitrogen 4622224

Actinomycin D Sigma Aldrich A1410

Tridecanoic acid Sigma Aldrich 91988

Phosphatidylcholine Avanti 840009

Chloroform/methanol (1:2)-TMSH solution Macherey-Nagel 701520

Citrate buffer pH6 Sigma Aldrich C999

Hydrogen peroxide Sigma Aldrich H1009

Goat Serum Blocking Solution Vector Laboratories S-1000

HistoGreen Novus Biological E109

Mayer hematoxylin Sigma Aldrich 51275

Vectamount permanent medium Vectorlab H-5000

Bovine serum albumin Euromedex 04100812

Trichostatin A (TSA) Santa Cruz Biotechnology sc-3511

Nicotinamide Sigma Aldrich N0636

Dihydroethidium Sigma Aldrich 309800

Complete protease inhibitor Roche 04693132001

Critical commercial assays

iScript complementary DNA (cDNA) synthesis

kit

BioRad Laboratories 1708840

SsoAdvanced SYBR Green Supermix kit BioRad Laboratories 1725270

SuperScript II reverse transcriptase Thermo Fischer Scientific 18064014

Vectastain Elite ABC kit peroxidase Vector Laboratories PK-6101

Avidin/biotin blocking kit Vector Laboratories SP-2001

4–20% Mini-PROTEAN TGX Precast

Protein Gels

BioRad Laboratories 4561096

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Jean-Louis Pépin

(jpepin@chu-grenoble.fr).

Materials availability

The study did not generate new unique reagents.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Mouse Liver Gene Expression Dataset GEO GSE242668

Human Liver Gene Expression Dataset GEO GSE33814

Experimental models: Organisms/strains

Mouse: C57BL/6JRj Janvier Labs C57BL/6JRj

Oligonucleotides

Primers for RT-qPCR This paper See STAR Methods

Software and algorithms

R software R project N/A

Illumina software bcl2fastq v2.20.0.422 Illumina N/A

SARTools GitHub.com N/A

DESeq2 bioconductor.org N/A

GSEA gsea-msigdb.org N/A

MetaScape metascape.org N/A

AmiGO geneontology.org N/A

EnrichR maayanlab.cloud N/A

DAVID david.ncifcrf.gov N/A

Microsoft Office Microsoft N/A

GraphPad Prism GraphPad N/A

Affinity Designer Affinity N/A

BioRender Biorender.com N/A

Zen software Zeiss N/A

Other

LASQC diet Génobios Rod 16-R

Precellys 24 tissue homogenizer Bertin Technologies N/A

CK14 ceramic beads Bertin Technologies P000912-LYSK0-A

Agilent Bioanalyzer Nano RNA Agilent N/A

Nanodrop Thermofischer N/A

NovaSeq 6000 Illumina N/A

Gas chromatography-mass spectrometry Agilent 5977A-7890B

Axio Scan microscope Zeiss N/A

LSM510 microscope Zeiss N/A

Luminex� 200 system Eve Technologies Corp. N/A

Roche Accu-Chek Guide glucometer Roche N/A
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Data and code availability

� Data reported in this paper will be shared by the lead contact upon request. RNA-seq data have been deposited at the Biotechnology

Information Gene Expression Omnibus (GEO) and are publicly available as of the date of publication. Hepatic mouse gene expression

data reported in this paper is available under the accession numberGSE242668. This dataset contains 10 samples, 5 from IHmice and 5

fromNCmice. The hepatic human gene expression dataset used in this study was recovered from theGEO repository under the acces-

sion number GSE33814. It consisted of 25 samples, 12 of which were steatohepatitis and 13 were controls.

� This paper does not report original code.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY DETAILS

Animal handling and ethics approval

Sixteen-week-old male C57BL/6JRj mice (Janvier Labs, France) were housed with ad libitum food and water access on a 12 h light/12 h dark

cycle (light ON at 8 am = ZT0 and light OFF at 8 pm = ZT12). Mice were maintained with regular chow diet (LASQC diet, Rod 16, Altromin

international) during all the experiment.Mice were randomly assigned to either intermittent hypoxia (IH) or normoxic control (NC) and directly

exposed in their housing cages to 16 weeks of NC or IH, 8h per day during their sleeping period (IH from 8 am= ZT0 to 4 pm= ZT8 andNC the

rest of the day) (Figure 1A).

The IH stimulus consisted of 60 sec cycles alternating 30 sec of hypoxia (hypoxic plateau at 5% FiO2) and 30 sec of NC (normoxic plateau at

21% FiO2). NCmice were exposed to similar air-air cycles in order to avoid bias from noise and turbulence related to gas flow. After 16 weeks

of exposure, mice were sacrificed by decapitation, serums were collected and livers were harvested and immediately frozen in liquid nitrogen

until further analysis.

All experimental procedures were carried out in accordance with European Directive 2010/63/UE. They were reviewed by the Institutional

Ethics Committee for Animal Care and Use (Cometh 12) and authorized by the French Ministry of Research (APAFIS# 15156-

2018051615245109).

Human biological samples: study population and ethics approval

Biological samples from a case-controlled study (InfraSAS) of patients without any known cardiovascular comorbidity comprised 71 patients:

19 with severeOSA (AHI>30), 27 withmoderateOSA (15<AHI<30) and 25 control subjects (AHI<15) (ClinicalTrials. gov: NCT00764218). Serum

samples were taken in a fasted state in themorning after an overnight polysomnography andwere stored at�80�Cuntil use. For both studies,

ethical approval was obtained from our Institutional Review Board (Comité de Protection des Personnes Sud-Est V, Grenoble, France) and all

subjects or patients gave written informed consent. Protocols conformed to the principles of the Declaration of Helsinki.

METHOD DETAILS

Food intake and glycemia

Food intake was systematically measured each day at 8 am (=ZT0), just before the onset of the hypoxia exposure period. To achieve this, the

feeders in the cages, each accommodating fivemice, wereweighed, and the difference from the previous daywas calculated to determine the

food intake over the past 24 hours for a group of five mice. This approach, involving an average calculation across five mice, allowed for pre-

cise tracking of daily variations in dietary consumption.

Glycemic measurements were conducted at 2 pm (ZT6) after a 6-hour fasting period within the NC or IH exposure between ZT0 and ZT8.

Blood collection was facilitated through a minor incision at the tip of the tail, and the obtained samples were promptly analyzed using the

Roche Accu-Chek Guide glucometer.

RNA extraction

For RNA extraction, 50mg of frozen liver tissues were homogenized in TRIzol Reagent (Invitrogen, 15596026) using the Precellys 24 tissue ho-

mogenizer and CK14 ceramic beads (Bertin Technologies) with the following program: 6000 rpm, 33 10 sec operation (5 sec break). RNAwas

extracted after precipitation with isopropanol and ethanol washes according to the manufacturer’s protocol. RNA pellets were resuspended

in DEPC treated water (Invitrogen, 4622224), flash-frozen in liquid nitrogen and stored at �80�C.

Reverse transcription and quantitative real-time PCR analysis

One mg of RNA was reverse transcribed to cDNA using iScript complementary DNA (cDNA) synthesis kit (Bio-Rad Laboratories, 1708840),

according to the manufacturer’s protocol.

cDNA was used for quantitative real-time PCR (RT-qPCR) using a SsoAdvanced SYBR Green Supermix kit (Bio-Rad Laboratories, 1725270)

according to the manufacturer’s protocol. Gene expression was normalized to beta actin.

Primer sequences used for analysis are listed below:
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RNA sequencing analysis

mRNA sequencing

RNA quality was monitored for quality control using Agilent Bioanalyzer Nano RNA chip andNanodrop absorbance ratios of 260/280 nm and

260/230 nm. Library construction was performed according to the Illumina kit protocol (TruSeq stranded mRNA sample preparation). mRNA

was enriched using oligo dT magnetic beads and chemically fragmented. First-strand synthesis of cDNA was performed in the presence of

actinomycin D with random primers and SuperScript II reverse transcriptase. Second-strand synthesis of cDNA was performed by replacing

dTTP by dUTP and then the 30 endswere adenylated. Illumina barcoded adapters were ligated on the ends and the adapter ligated fragments

were enriched by PCR cycles. The resulting libraries were validated by qPCR and sized by Agilent Bioanalyzer DNA high sensitivity chip. The

concentrations for the libraries were normalized and thenmultiplexed together. The concentration used for clustering the flowcell SP was 300

pM. The multiplexed libraries were sequenced on one lane using single-end 100 cycle chemistry for the NovaSeq 6000 (Illumina).

Bioinformatic analysis

Sequencing data for 10 samples in FastQ format was produced using post-processing from Illumina software bcl2fastq v2.20.0.422 by the

Montpellier GenomiX Facility at the Biocampus,Montpellier (France). Reads failing Illumina’s standard quality tests were not included in these

FastQ files. The sequencing reads from each sample in the experiment were separately aligned to the reference genome mm10 and corre-

sponding known splice junctions extracted from the UCSC Genome Browser40,41 using the ELAND v2e short-read aligner (Illumina). Reads

aligned with a non-unique best match or with two or more mismatches with the reference sequences were discarded from the analyses.

The remaining uniquely aligned reads were used to estimate relative transcript abundance for further analysis. Reads per Kilobase of tran-

script per Million mapped reads (RPKM) were used to quantify the relative abundance of each transcript in a sample and to perform gene

expression analyses. Normalization, differential and statistical analyses were carried out using the R software, Bioconductor,42 DESeq2,43,44

and SARTools45 packages.

Lipidomics

Total lipid was extracted from the liver using chloroform/methanol, 1:2 (v/v) in the presence of 20 nmol of tridecanoic acid (Sigma) and 20 nmol

of phosphatidylcholine (PC, C21:0/C21:0, Avanti) as internal standard. The liver samples were dissected into small pieces and ground inmeth-

anol prior to the addition of chloroform. After vigorous sonication and vortex, the organic phase was extracted by biphasic separation gener-

ated by the addition of chloroform and 0.5% acetic acid/0.2% KCl to give a chloroform/methanol/aqueous phase 2:1:0.8 (v/v/v) ratio. The re-

sulting bottom organic phase was dried and on-line derivatized to fatty acid methyl ester by a chloroform/methanol (1:2)-TMSH solution

(Macherey-Nagel) and analyzed by gas chromatography-mass spectrometry (Agilent 5977A-7890B). Each fatty acid abundance was calcu-

lated and normalized according to the internal standard and liver weight.

Immunohistochemistry

Immunohistochemistry was adapted from the manufacturer’s protocol (PK-6101, Vectastain Elite ABC kit peroxidase, Vector Laboratories)

and46 with the followingmodifications: 5 mmslices of paraffin embedded liver were rehydrated and processed for antigen retrieval with citrate

buffer pH6 (C999, Sigma Aldrich) or tris-EDTA buffer pH9. Then, endogenous peroxidase activity was quenched with 3% hydrogen peroxide

(H1009, Sigma Aldrich) and non-specific binding was prevented with an avidin/biotin blocking kit (SP-2001, Vector Laboratories) and 5% goat

serum (Vector Laboratories). Afterwards, primary rabbit antibodies (CD68 ab12512; myeloperoxidase MPO ab208670; CD3 ab5690, Abcam)

and secondary biotinylated goat anti rabbit antibodies (Vector Laboratories) were used. After incubations and washes with PBS, colorimetric

substrate was added (E109, HistoGreen, Novus Biological) and slices were counterstained with Mayer hematoxylin (51275, Sigma Aldrich).

Vectamount permanent medium (Vectorlab) was used to glue the coverslips on the slides. Images were acquired using an Axio Scan micro-

scope (Zeiss) and Zen� software (Zeiss).

mRNA Forward Primer (50-30) Reverse Primer (50-30)

Il1a TTGGTTAAATGACCTGCAACA GAGCGCTCACGAACAGTTG

Il1b AGTTGACGGACCCCAAAAG AGCTGGATGCTCTCATCAGG

Il16 AAGGTCACAGACCCTTCTGG TGGCAGCAGCTCTCTGGT

Ccl9 TGGGCCCAGATCACACAT CCCATGTGAAACATTTCAATTTC

Cd36 TTGAAAAGTCTCGGACATTGAG TCAGATCCGAACACAGCGTA

Cpt1a GACTCCGCTCGCTCATTC TCTGCCATCTTGAGTGGTGA

Hadh TGGATACTACAAAGTTCATCTTGGA AAGGACTGGGCTGAAATAAGG

Pparg GAAAGACAACGGACAAATCACC GGGGGTGATATGTTTGAACTTG

Vegfa AAAAACGAAAGCGCAAGAAA TTTCTCCGCTCTGAACAAGG

Slc2a1 GACCCTGCACCTCATTGG GATGCTCAGATAGGACATCCAAG
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Dihydroethidium (DHE) staining

DHE staining was adapted from (15) with the following modifications: Frozen livers in OCTmountingmedia were cryosectioned at 10 mm thick

and allowed to air dry for 15 min at room temperature onto Superfrost plus slides (Dutscher France). DHE 10 mM (Sigma-Aldrich) was added

onto liver sections for 30 min at 37�C (PBS was used as control) in a dark moist chamber. After washing, cover slips were added and the fluo-

rescent signal was recorded using confocal microscopy (Zeiss, LSM510 Meta confocal microscope) and analyzed with ImageJ software. DHE-

positive cells were expressed as the percentage of liver area.

Protein extraction and Western blots analysis

The protocols were adapted from (36) with the following modifications:

For whole cell protein extracts, 50 mg of liver was homogenized in RIPA Buffer (10 mM Tris-HCl pH8, 150 mMNaCl, 1% NP40, 0.5%, DOC,

5 mM MgCl2, 0.22 mM TSA, 10 mM Nicotinamide, 20 mM NaF, 0.5 mM PMSF and Complete protease inhibitor (Roche, 04693132001)).

For Western blots analysis, 20 mg of whole cell protein extract was loaded on 4%–20% precast polyacrylamide gels (Biorad, 4561096). An-

tibodies used forWestern blots are as follows: anti-HIF1a (Abcam, ab2185), anti-HIF1a (Santa Cruz Biotechnologies, sc13515), anti-a-TUBULIN

(Sigma, T5168), anti-Rabbit HRP (Jackson laboratories, 111-035-003), anti-Mouse HRP (Jackson laboratories, 115-035-003).

Cytokine profiling

This study used Luminex xMAP technology for multiplexed quantification of 96 Human and 44 Mice cytokines, chemokines, and growth fac-

tors. The multiplexing analysis was performed using the Luminex 200 system (Luminex, Austin, TX, USA) by Eve Technologies Corp. (Calgary,

Alberta). For patients, 96 markers were simultaneously measured in the samples using Eve Technologies’ Human Cytokine 96-Plex Discovery

Assay�. For mice, 44 markers were simultaneously measured in the samples using Eve Technologies’ Mouse Cytokine 44-Plex Discovery

Assay�. The 96-plex assay consists of two separate kits; the Panel A 48-plex and the Panel B 48-plex (MilliporeSigma, Burlington, Massachu-

setts, USA). The assay was run according to themanufacturer’s protocol. The Panel A 48-plex consisted of sCD40L, EGF, Eotaxin, FGF-2, FLT-3

Ligand, Fractalkine, G-CSF, GM-CSF, GROa, IFN-a2, IFN-g, IL-1a, IL-1b, IL-1RA, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12(p40), IL-

12(p70), IL-13, IL-15, IL-17A, IL-17E/IL-25, IL-17F, IL-18, IL-22, IL-27, IP-10, MCP-1, MCP-3, M-CSF, MDC, MIG/CXCL9, MIP-1a, MIP-1b, PDGF-

AA, PDGF-AB/BB, RANTES, TGFa, TNF-a, TNF-b, and VEGF-A. The Panel B 48-plex consisted of 6CKine, APRIL, BAFF, BCA-1, CCL28,

CTACK, CXCL16, ENA-78, Eotaxin-2, Eotaxin-3, GCP-2, Granzyme A, Granzyme B, HMGB1, I-309, I-TAC, IFNb, IFNu, IL-11, IL-16, IL-20, IL-

21, IL-23, IL-24, IL-28A, IL-29, IL-31, IL-33, IL-34, IL-35, LIF, Lymphotactin, MCP-2, MCP-4, MIP-1d, MIP-3a, MIP-3b, MPIF-1, Perforin,

sCD137, SCF, SDF-1, sFAS, sFASL, TARC, TPO, TRAIL, and TSLP. Assay sensitivities of these markers range from 0.05–100 pg/mL for the

96-plex. Individual analyte sensitivity values are available in the MILLIPLEX MAP protocol. Data were extracted based on cytokine-specific

standards generated by Eve Technologies (Calgary, Canada).

QUANTIFICATION AND STATISTICAL ANALYSIS

Functional analysis of the hepatic transcriptome

Functional analysis of the RNA sequencing followed a protocol similar to the ones previously described.47,48 Normalization, differential and

statistical analyses were carried out using the R software, Bioconductor,42 DESeq2,43,44 and SARTools45 packages. Then, differentially ex-

pressed genes were selected using a p value of 0.01 and assessed using multiple pathway analysis tools GSEA 49 MetaScape 50 AmiGO
51,52 DAVID 53,54 EnrichR 55,56 to identify Gene Ontology (GO) terms (biological process, molecular functions and cellular compartments)

and transcription factor binding site (TFBS) enrichment.

Graphical representations and statistical analysis

Statistical analyses are detailed for each experiment in the figure legend. Heat maps were generated by R package ‘pheatmap’. Statistical

analyses and graphical representations were processed using Microsoft Excel and GraphPad Prism. Graphic design and illustrations were

created with Microsoft Powerpoint, Affinity Designer and BioRender.
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