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Abstract: Wheat is the most extensively cultivated crop and occupies a central place in human
nutrition providing 20% of the daily food calories. This study was conducted to find both T and ψ
effects on wheat germination and the cardinal Ts value; a lab experiment was accomplished using
HTT models. Cultivars were germinated under different accelerated aging periods (AAP, 0, 24, 48,
and 72 h) at each of the following constant Ts of 15, 20, 25, 30, and 35 ◦C at each of the ψs of 0, −0.05,
−0.1, −0.15, and −0.2 MPa. GR, GP, and other germination parameters (GI, GRI, CVG, SVI-I, SVI-II,
GE, and MGT) were significantly determined by solute potential, temperature, and reciprocal action
in both cultivars (p ≤ 0.01). Depending on the confidence interval of the model co-efficiently between
cultivars, there was no significant difference. Hence, the average of cardinal Ts was 15, 20, and 35 ◦C
for the Tb, To, and Tc, respectively, in the control condition (0 MPa). Hydro-time values declined
when Ts was raised to To in cultivars, then remained constant at Ts ≥ To (2.4 MPah−1 in Pirsabak
15 and 0.96 MPah−1 in Shahkar). The slope of the relationship between ψb(50) and TTsupra with
temperature when Ts is raised above To and reaches 0 at Tc. In conclusion, the assessed parameter
values in this study can easily be used in simulation models of wheat germination to quantitatively
characterize the physiological status of wheat seed populations at different Ts and ψs.

Keywords: water potential; cardinal temperatures; hydrotime model; hydrothermal time; wheat

1. Introduction

Cereals, such as wheat, maize, and rice, are among the most important sources of
calories and protein worldwide. Wheat was the first domesticated crop and is now the
most important staple crop worldwide [1]. Based on estimates, wheat accounts for 38.8%
of the harvested area and provides significantly more protein per gram (12–15%) compared
to rice or maize (2–3%), thus serving as a more advantageous cereal [2]. Despite the fact
that it is cultivated on a large area of land, its production levels are much lower than those
of maize and rice [3]. A meta-analysis of 17,006 simulations shows that every 2 ◦C increase
in temperature greatly reduces its productivity in temperate and tropical regions [4]. In
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a similar climate study, the researchers predicted that wheat yields would reduce by 6%,
equivalent to a possible 42 Mt/◦C [5]. The continuous change in climate conditions has
led to an increase in environmental stresses, which negatively impacts the development,
growth, and productivity of important crop species, including wheat [6–9]. Therefore,
adaptation strategies need to be designed to maximize yield for continuously increasing
food demands in the face of continuously changing climatic conditions.

Seed germination (SG) is a critical phase of plant development primarily affected by
abiotic stressors [10–13]. Temperature and water potential have been determined to be
major determinants of germination rate (GR), while other factors were not relevant for
non-dormant seeds (Bradford 2002). In order to understand how and why germination
in various environmental conditions is affected, seedling growth models are employed.
A number of studies have examined the effects of temperature (T), water potential (ψ),
and the interaction between T × ψ on germinating seeds via thermal, hydrothermal, and
hydrotime models [7,13,14].

Temperature (T) and water potential (ψ) are the two critical environmental factors
affecting seed germination rates, germination percentages, seedling emergence and estab-
lishment [15]. It is fairly helpful to use different models for predicting the response of
seed germination and emergence of seedlings to various abiotic stress factors. For instance,
several studies have utilized the hydrothermal model (HTT) and the hydrotime model (HT)
to analyze the responses of seed germination to changes in temperature and water [16–19].

In addition, to determine the best planting date for each crop, it is important to
understand the three fundamental concepts of solar gradient: base (Tb, SG = zero), optimum
(To, SG = maximum), and ceiling temperature (Tc, SG = zero) [18,20,21]. Furthermore, the
accelerated aging test is a straightforward, quick, and low-cost method of ranking seeds
based on seed degradability and vigor. When the accelerated aging period (AAP) increases,
the characteristics of SG decreases in different crop plants, including wheat [22,23].

The hydrothermal (HTT) time model measures the germination time concept across
T and ψ in the sub-optimal range (between Tb-To) and with alteration, as well as in
the supra-optimal range (between Tb-Tc [7]. So far, several species have adopted this
approach. For instance, Daucus carota [24], Plantago ovata Forssk. [25], Sinapis arvensis
L. [26], Eruca sativa [7], and Hordeum vulgare [13]. To our knowledge, research regarding
hydrothermal time validation for predicting wheat germination to different water potential
and temperature levels is scarce. Hence, we aimed to investigate the effect of both T and ψ
on seed germination and the cardinal Ts value of wheat using HTT models.

In the present study, we aimed (1) to predict the response of wheat germination at vari-
ous temperatures and solute potentials; (2) to influence the Ψb and the cardinal temperature
for this plant; (3) to determine the effects of accelerating the aging period on the response
of wheat germination under different solute potentials using the hydrotime concept.

2. Materials and Methods
2.1. Seed Description and Experimental Protocol

Two winter varieties of wheat seeds, including “Pirsabak 15” and “Shahkar”, were
obtained from the cereal crop research institute (CCRI) Pirsabak, Nowshera. Seeds were
assembled at the University of Peshawar, Pakistan, in November 2020. The main plot
consisted of four levels of the accelerated aging period (AAP; 0, 24, 48, and 72 h), with five
levels of water potential (0, −0.05, −0.15, and −0.2 MPa) and a range of constant Ts (15,
20, 25, 30, and 35 ◦C) by using incubator (Memmert Beschickung-Loading Model 100–800).
As a control, distilled water was used (0 MPa), and the solute potential was formed using
a liquid solution of PEG6000, followed by Michel and Radcliffe (1995). According to [7],
seeds were germinated in 95 mm Petri dishes. Concisely, 10 seeds were kept in each Petri
dish, with 2 layers of Whatman No. 1 filter paper and control, 5 mL of distilled water, or
5 mL of polyethylene glycol solution. At each temperature, 3 replicates were generated for
the respective treatment. Petri dishes were randomly incubated inside the dark (incubator),
excluding when noted SG. Depending on the T and Ψ, seeds were reported frequently
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daily, and when the radical was at least 0.2 cm long, the seeds were considered to have
germinated. To avoid errors, we removed germinated seeds when recording germination in
each Petri dish. When we had no new germinated seeds at each cardinal T, the experiment
was finished in each treatment replicate for five successive days. The hydrothermal time
model was fitted using the statistical analysis system IBM SPSS Statistics 2020 and Excel
software, and figures were drawn by the origin 2020 software. According to the method
reported in [17,20], the hydrothermal time model parameters were influenced.

2.2. Data Analysis

The germination data were evaluated using a repeated probit regression analysis
based on the TT, HT, and HTT models, as stated by [7,25]. For each percentile at each T or
C, the germination rate (GR) was computed as the inverse of the germination time.

2.3. Thermal Time (TT)

For deciding the appropriate water level and temperature for effective crop devel-
opment, three cardinal temperatures (Ts) include maximum temperature (Tc), base tem-
perature (Tb), and optimum temperature (To) [7,21,25]. The thermal time model can be
arranged as:

TTsub = (T− Tb)tg at sub− optimal T (1)

TTsupra = (Tc− T)tg at supra− optimal T (2)

2.4. Hydrotime (θH)

Gummerson (1986) suggested using a hydrotime model (θH) to improve the model
prediction. θH determines the relationships between solute potential and germination rate
in the same way as the thermal time model:

θH(g) = (ψ−ψb)tg (3)

probit g = { ψ− (θH/tg)−ψb 50}/σψb (4)

2.5. Hydrothermal Time Model (HTT)

The hydrothermal time model (HTT) was a combination of the thermal time model
(TT) and the hydrotime model (θH) [16].

θHTT =
(
ψ−ψb(g)

)
(T − Tb) tg (5)

probit g = [
(
ψ (θHTT/(T− Tb)tg)−ψb (50)

]
/σψb (6)

Within the seed lot, population σψb is the standard deviation of Ψb, and Ψb(50) is the
base water potential of the 50th percentile. The amount of Ψb(g) varied among seeds in
the population, and the θHTT and base temperature are expected to be constant in this
model [16]. Nevertheless, the models could not claim a decrease in germination rate at
Ts [17]. Previous studies on potato (Solanum tuberosum L.) [17], lemon balm (Melissa offic-
inalis L.) [18], watermelon (Citrullus vulgaris L.) [7], and zucchini (Cucurbita pepo L.) [27]
reported that there were interactions between temperature and water potential at a supra-
optimal range of T. In all these publications, there is an increase in the amount of Ψb(g)
as temperature rises above the optimum temperature. Nevertheless, a modified form of
Equation (5) was found [28].

θHTT =
[
ψ −ψb(g) − (kT (T − To))

]
(T − Tb) tg (7)

probit g =
[
ψ − kT (T − To)− (θH/(T− Tb) tg)−ψb (50)

]
/σψb (8)
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where kT is a constant (the slope of the relationship between Ψb(50) and Ts > To, Alvarado
and Bradford (2002) reported that the value of Ψb(50) is equal to Ψb(50) distribution at To
and T-To is equal to To-Tb at the supra optimal range of Ts. The shift in the distribution of
ψb(g) with T is linear at Ts > To the models (Equations (7) and (8)), which could be used.
Studies by [27,29] described methods for the TT sub-optimal, TT supra-optimal, hydrotime,
and hydrothermal time models (Equations (1)–(8)). Equations (5) and (7) combine the HTT
model and are used to predict and describe seed germination responses at all cardinal
temperatures and water potentials at which germination could occur.

2.6. Germination Attributes

The per day and cumulative germination, physical observation, radicle, and plumule
lengths, and fresh and dried weight of the seedlings were used to generate the following
germination indices.

2.6.1. Mean Germination Time (MGT)

MGT is a measure of how rapidly a population of seeds germinated. The higher the
population germinated, the lower the mean germination time [30].

MGT =
∑ fx
∑ f

(9)

The number of seeds germinated on day x is denoted by the letter “f”.

2.6.2. Germination Rate Index (GRI)

Higher GRI values indicate more excellent and maximum GR. GRI represents the
percentage of SG overtime throughout the germination phase [30].

Germination Rate Index =
G1
2

+
G2
2

+ . . . . . . +
Gx
2

(10)

G1 represents the percentage of germinated seeds on the first day after planting,
whereas G2 represents the percentage of germinated seeds on the second day after sowing.

2.6.3. Germination Index (GI)

The germination index was calculated using a standard procedure [30].

GI = (10× n1) + (9× n2) + . . . . . . + (1× n10) (11)

Thus, n1, n2, . . . , n10 denoted the number of seeds germinated on the first, second,
and third days, respectively, while 10, 9, . . . , and 1 denoted the number of germinated
seeds on the first, second, and third days, respectively.

2.6.4. Coefficient of Velocity of Germination (CVG)

The coefficient of germination reflects the speed with which seeds germinate. The
lower the time, the higher the CVG value necessary for germination. When all seeds
germinate on the first day, the most outstanding CVG value (100) may be attainable [30].

CVG = N1±N2± . . .± NX ∗N1T1 + . . . . . . N× T
100

(12)

where “N” is the number of seeds germinate each day, and temperature denotes the number
of days from planting corresponding to seed germinated N.
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2.6.5. Germination Energy (GE)

We determined germination energy following a standard technique [31].

GE =
X1
X2

+
(X2− X1)

Y2
. . . . . . +

(Xn− Xn− 1)
Yn

(13)

The final germination on the last (nth) counting day is Xn, and the number of days
from sowing to the previous (nth) counting date is Yn.

2.6.6. Seed Vigor Index-I (SVI-I)

Seed vigor was calculated using the following equation.

Seed vigor index = seedling length (cm)× seedling germination % age (14)

2.6.7. Seed Vigor Index-II (SVI-II)

Seed vigor index was determined using the following Equation.

Seed vigor index = Seedling dry weight (mg)× Seed germination % age (15)

2.7. Statistical Analysis

Using IBM SPSS Statistics 26 and SigmaPlot Version 11.0, the effects of Ts (thermal time)
(hydrotime) and their interactions (hydrothermal time model) on seed germination rate
and germination characteristics were investigated using linear regression. Excel was used
to conduct the basic statistical calculations. The values of the following parameters were
calculated using linear probit regression analysis in SPSS: ψb(50), ψb, R2, SE. To produce
various graphs of germination fraction vs. accelerated ageing duration and germination
parameters versus T and C, the ORIGIN 2021 PC Corporation was utilized.

3. Results

Our findings revealed that ψ, Ts, and AAP and their interactions substantially affected
the germination percentage and other characteristics (Figures 1–4). The longer and lower
AAP caused obvious changes in seed percent germination (Figures 1 and 2). Longer AAP
(from 0 to 24, 48, and 72 h) significantly reduces GP compared to control (averaged across
all levels). Furthermore, when GP was increased from zero to −0.05, −0.1, −0.15, and
−0.20 MPa, it was reduced in contrast to the control (averaged for all levels of AAP)
(Figures 1 and 2).
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Figure 1. (a–e) Interaction effect of water potential and accelerated aging period on the germination
percentage of Triticum aestivum L. Pirsabak 15 at 15, 20, 25.30, and 35 ◦C.
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Figure 3. (A) Interaction effect of water potential and temperature on germination parameters (MGT,
GI, GRI, GE) of Triticum aestivum L. Pirsabak 15 during the aging period (24, 48, 72, 96). (B) Interaction
effect of water potential and Temperature on Germination parameters (CVG, SVI I, and SVI II) of
Triticum aestivum L. Pirsabak 15 during the aging period (24, 48, 72, 96). Different letters above the
columns represent significant differences at p < 0.05 (LSD method) method.
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Figure 4. (A) Interaction effect of water potential and temperature on germination parameters (MGT,
GI, GRI, GE) of Triticum aestivum L. Shankar 15 at aging period (24, 48, 72, 96). (B) Interaction
effect of water potential and Temperature on germination parameters (CVG, SVI I and SVI II) of
Triticum aestivum L. Shankar 15 at aging period (24, 48, 72, 96). Different letters above the columns
represent significant differences at p < 0.05 (LSD method) method.

Water potential, temperature, and inter-linkage (p ≤ 0.01) significantly affected the
germination percentage and germination rate of both varieties of Triticum aestivum. Like-
wise, when Ψ declined at each T, the germination rate and percentage decreased. The
θH was constant at 2.4 MPah−1 for Pirsabak 15 and 0.96 MPah−1 for Shahkar. The water
relations changed when Ts increased above To but not at sub-optimal Ts of temperature
(Table 1) when Ts decreased below To. Rather, the θH value was raised as the tempera
model proposed by Alvarado and Bradford (2002) to report the relationship between Ψb(50)
and temperature at supra-optimal Ts (Figures 1 and 2). Take hold of the point of the
model Ψs = 0 MPa at the Tc value, which was concluded from the germination rate data
(Figures 1 and 2) and or measured by the fitting of Equation (8) (Table 2), based on the
confidence interval of the models. There was no significant difference between varieties, so
the mean value of Tc and kT was approximately 0.1041 MPaOCh−1 for both types (Table 2).
On the contrary, this shows that for each ◦C raised at T > To, the effect on germination seed
water potential was increased and became more positive by 0.1041 MPa.
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Table 1. Estimated parameter values using the hydrotime (θH, Equation (3)) model to describe
Triticum aestivum L. seed germination under different Ts and Ψs. R2 is the coefficient determination.
SE is the standard error. σψb is the standard error. Ψb(50) is base water potential at the 50 percentile.
θH is hydrotime.

Cultivar T (◦C) θH (MPah−1) Ψb(50) (MPa) σψb (MPa) R2 SE

Pirsabak 15 15 ◦C 6.24 −0.11 0.161 0.997 0.0089
20 ◦C 8.61 −0.12 0.148 0.856 0.0600
25 ◦C 6.72 −0.04 0.077 0.862 0.0588
30 ◦C 2.4 −0.015 0.031 0.510 0.1167
35 ◦C 2.4 −0.03 0.063 0.775 0.0750

Shahkar 13 15 ◦C 7.68 −0.10 0.154 0.853 0.0606
20 ◦C 6.72 −0.12 0.148 0.921 0.0444
25 ◦C 8.16 −0.06 0.1 0.542 0.1070
30 ◦C 0.96 −0.02 0.063 0.800 0.0707
35 ◦C 0.96 −0.03 0.044 0.133 0.1040

Table 2. Estimated parameter values using the hydrothermal time model (HTT) for describing seed
germination of sesame at five-constant Ts (15, 20, 25, 30, 35 °C) at each of the following five different
Ψs (0, −0.05, −0.1, −0.15, and −0.2 MPa). R2 is the coefficient determination. σψb is the standard
error. Ψb(50) is base water potential at the 50 percentile. θHTT is hydrothermal time.

Cultivar Pirsabak 15 Shahkar 13 Averaged Values

HTT parameter

Ψb(50) (MPa) −0.120 −0.120 −0.120
σψb (MPa) 0.148 0.148 0.148

θHTT (MPa ◦Ch−1) 43.20 38.40 40.80
kT (MPa ◦Ch−1) 0.104 0.1041 0.104

Cardinal Temperature

Tb (◦C) 15 15 15
To (◦C) 20 20 20
Tc (◦C) 35 35 35

R2 0.86 0.97 0.91

Following the hydrothermal time model coefficient, Triticum aestivum germination
was ventilated in water when temperature declined at sub-opt TT. The Ψb(50) value of
Triticum aestivum varieties was varied with temperature, and it remained constant at
Ts < to < span=""> (−0.12 MPa, averaged for both varieties, calculated by using Equation (8)
and then raised linearly with temperature when Ts was raised above To (Figures 1 and 2).
Depending on the temperature in both varieties, the amount of σψ < /To < ψb varied and
ranged from 0.031 to 0.161 MPa. According to the outcomes, Ψb(50) values were raised from
−0.12 MPa at 20 ◦C (To) to −0.015, −0.02 MPa for “Pirsabak 15” and “Shahkar” cultivars
severally at 30 ◦C, when the temperature was raised above the optimum temperature
(Table 1 and Figure 1). Consequently, the line temperature was equal to the maximum
temperature or when the base water potential was 0 MPa (Figures 1 and 2). Mostly, there
were various Ψs, and variation in the amount of Tc could be observed at Ts > To in both
varieties (Figures 1 and 2).

The maximum value decreased from 30 to 35 ◦C as water potential decreased and
became more negative from 0 Mpa to −0.2 MPa. Both varieties followed the same pattern
(Figures 1 and 2). Further, the same reaction was perceived when the temperature at which
Ψb(g) for the specific solute potential was 0 MPa, as a consequence of decreasing the germi-
nation rate at a temperature above To. It explains how the maximum temperature varies
at each Ψs. Hydrothermal time models were used to determine the response of Triticum
aestivum germination to the temperature at each solute potential (Equations (5) and (7)).
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We found that the model determines these interactions well with an R2 greater than 0.133
(Figures 1 and 2 and Table 2). At all Ψs, which are restricted to an individual temperature,
i.e., Tb (Figure 1a–e, and then at Ts above To, the germination rate decreases geometrically
until Tc. The same pattern was followed for both varieties. An average value was 15 ◦C for
Tb, 20 ◦C for To, and 35 ◦C for Tc in the control condition was 0 MPa for Triticum aestivum
(Figure 1 and Table 2).

Moreover, we find a strong correlation (R2 > 0.133) between data at sub-TT and
decreased water potential, which shares a standard set of hydrothermal time models
invariable for both varieties (Figures 1 and 2 and Table 2). As mentioned earlier, Ψb(50) is
raised linearly at Ts > To (Figures 1 and 2). Hence, Equation (8) was fitted to evaluate the
tg at Ts > To. The top-quality values of the HTT model parameters are given in Table 2.
According to our findings, the models could pretend well on the tg (Figures 1 and 2).
Nevertheless, the miserable fits of the models at 35 ◦C occur because, for all the data, the
HTT models were fitted in both varieties to report the complete data set (Figures 1 and 2).

Other germination parameters yielded similar findings. As the AAP was increased
from 0 to 24, 48, and 72 h, the germination characteristics declined (Figures 3A,B and 4A,B).
In comparison to the control, the germination index (GI), germination rate index (GRI),
mean germination time (MGT), coefficient of the velocity of germination (CVG), germi-
nation energy (GE), seed vigor index I (SVI-I), and seed vigor index II (SVI-II) fell from
0 to −0.05, −0.10, −0.15, and −0.20 MPa (Figures 3A,B and 4A,B). The results of cultivar
Pirsabak 15 germination characteristics are represented in Figure 3A,B) (germination index
(GI), germination rate index (GRI), mean germination time (MGT), coefficient of the velocity
of germination (CVG), germination energy (GE), seed vigor index I (SVI-I), and seed vigor
index II (SVI-II) indicated that there were decreased when water potential declined at each
temperature, and these were maximum at the optimum temperature. Similar results were
found for cultivar Shankar germination parameters (Figure 4A,B).

Our findings indicate that Ts had a more significant impact on germination percentage
and other germination parameters than AAP. On the other hand, farmers will benefit from
using high-vigor Triticum aestivum L. seeds rather than low-vigor seeds, especially in DS
conditions, because low-vigor seeds can drastically affect germination percentage and other
germination parameters under stressful conditions.

4. Discussion

The optimal geographic location for a species is determined by an assessment of its
germination patterns under different environmental conditions.

Mathematical models (TT, HT, and HTT) are quite effective in quantifying the effects
of abiotic stress on seed germination. A knowledge of Triticum aestivum germination predic-
tion using different germination models is also useful in agronomic management programs.
This could help to determine and specify the impression factors of the environment on
Triticum aestivum germination, especially the fluctuation that occurs in tg among a single
seed in a seed lot [28]. Nevertheless, the thermal time model was used in many studies to
report the tg at sub-optimal TT. However, at supra-optimal TT, there was a decline in these
models. Furthermore, thermal time models were not predicting the reduction in germina-
tion rate when Ts exceeded the optimal temperature (Bradford 2002). Accordingly, the θH
and hydrothermal time models were developed by Bradford and Still [32] and Gummer-
son [16] to remove the limitations and solve the related problems. Moreover, Bradford [28]
reported that hydrothermal time models were accurate methods for understanding how Ts
and Ψs (environmental factors) in a seed lot interact during seed germination.

Our study investigated the effect of temperature and solute potential on the germina-
tion of two winter wheat varieties for the purpose of determining their cardinal Ts, using a
hydrothermal time model (Equations (5) and (7)), also known as a seed population model.
Consequently, the evaluated parameters by hydrothermal time models may be incorporated
into a seed germination prediction model in field conditions. Our findings show that, at
each temperature level, a decline in water potential results in a lower germination rate and
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germination percentage in Triticum aestivum. This could be attributed to the fact that the
seeds were being dried from a fully hydrated form, which was then unable to complete its
germination process [28]. Analogous results were described in potatoes [17], zucchini [27],
and watermelon [7].

In addition, we observed that the percentage of germinated seeds decreased signif-
icantly with a longer and a lower (more negative) accelerated aging period AAP. For
instance, longer AAP (from 0 to 24, 48, and 72 h) decreases GP compared to the control
(averaged across all levels) [33]. Further, when GP was increased from zero to −0.05, −0.1,
−0.15, and −0.20 MPa, it was reduced in contrast to the control (averaged for all levels of
AAP). Previous studies showed that a longer accelerated aging period (AAP) lowers the
values of GP and GR in diverse crops [23,34].

Moreover, the sum germination rate declined, and the hydrotime rose largely with
the declined temperature, especially at sub-TT. Because, at Ts < to < span=““>, the model
measured constant Ψ < /To < ψb(50) (−0.12 MPa, averaged for both varieties), which was
the fundamental cause of the decline in germination rate. Later on, Ts > To, the θH was
constant (2.4 MPah−1 in Pirsabak 15 and 0.96 MPah−1 in Shahkar), and only Ψb(50) was
raised with the rising temperature, which resulted in an increase in germination times and a
decline in germination rate. Likewise, previous studies on potatoes [17] and watermelon [7]
observed an increase in θH numerical quantity at sub-optimal TT. The θH value can be used
in a seed lot as a seed quality indicator, as reported previously [35]. At low temperatures,
the large seeds can germinate sooner than the small seeds. On the contrary, the large seeds
required a lower value of θH than the small seeds, especially at low temperatures [36].

The amount of Ψb(50) was at the minimum at Ts ≤ To (−0.12 MPa, averaged for both
varieties) and then increased geometrically at supra-optimal TT, due to the thermoinhibition
of Triticum aestivum seed germination. Other findings describe that the Ψb(g) was minimum
at optimum temperature and raised linearly at supra TT, such as in potato [17], tomato [35],
both onion and carrot [24], zucchini [27], and chick pea [7]. The above-described phe-
nomenon has similar effects as declining water potential; hence, the germination rate
decreased at Ts > To. If the variation between water potential and Ψb(50) is mostly small,
then Triticum aestivum germination will be dilatory, and the germination period will be
longer [28]. Additionally, according to Kebreab and Murdoch (1999), Ψs higher than Ψb(50)
are evaluated in raised inactivity of the enzyme, water absorption, and accelerates the emer-
gence of radicals. The σψb varied from 0.044 to 0.161 MPa in both varieties. In spite of this,
using the estimated parameters (e.g., θH, Ψb(50) and σψb) for any of the water potentials at
each temperature, we can assume that the germination time courses of Triticum aestivum.

Moreover, we estimated the amount of Tb at 15 ◦C and found that Triticum aestivum
Tb ranges from 10 to below. The To value (20 ◦C) was also measured to be closer to that
described by [37,38], who reported the To for Triticum aestivum germination ranged from
20–25 ◦C. The Tc value at 35 ◦C observed was equal to the Tc value in this study exported
by [38] (above 31 ◦C), [37] (above 30 ◦C), and [39] (35–42 ◦C). [28] proposed that using
the hydrothermal time models (Equations (5) and (7)) along with a standardization factor
([1–(Ψ/Ψb(g))] tg), all tg at constant temperature and solute potential are measured on a
thermal time scale, which bears the same finding in watermelon [7] and potato [17]. In the
present study, we used this factor. The result showed that the elements robustly reported
the time germination course of Triticum aestivum. Thermal time scales indicated a poor fit at
35 ◦C due to the model’s fitting to the entire data set to provide a more accurate statement
for all levels of temperature and solute potentials. The same finding was evaluated by
Rowse et al. [24], who fitted hydrothermal time models to report the germination of carrots
and onions.

5. Conclusions

Conclusively, germination rate, percentage and other parameters (GI, GRI, CVG, SVI-I,
SVI-II, GE, and MGT) are significantly influenced by water potential, temperature, and
their interactions. At all Ψs and Ts, the hydrothermal time models could well report
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the wheat germination response. Depending on the confidence intervals of the model’s
parameter, between varieties, there was no significant difference, so an average value of
40.8 MPa °C h−1 for θHTT, −0.12 MPa for Ψb(50), 0.1041 MPa °C h−1 for kT, 15 ◦C for Tb,
20 ◦C for To, and 35 ◦C for Tc was estimated for this plant. In this regard, the hydrothermal
time model (HTT) provides insight into the interactive effects of T and Ψ on the germination
of wheat seeds. However, the parameters of the model, on the other hand, need to be
examined and compared concerning the physiological state of wheat seed populations
under various environmental stress factors to predict future germination time courses in
the changing climatic conditions. In light of future climate change and rising food demands,
such studies may be useful to determine the optimum water potential and temperature
for effective crop species development and productivity. However, the parameters of the
model should be designed to assess the physio-biochemical and molecular response of the
test species seed populations in relation to abiotic factors for predicting germination times
in the future.
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