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Abstract: Glycosylphosphatidylinositol (GPI)-anchored proteins (APs) on the plasma membrane are
involved in several cellular processes, including sperm functions. Thus far, several GPI-APs have been
identified in the testicular germ cells, and there is increasing evidence of their biological significance
during fertilization. Among GPI-APs identified in the testis, this review focuses on TEX101, a germ
cell-specific GPI-AP that belongs to the lymphocyte antigen 6/urokinase-type plasminogen activator
receptor superfamily. This molecule was originally identified as a glycoprotein that contained the
antigen epitope for a specific monoclonal antibody; it was produced by immunizing female mice with
an allogenic testicular homogenate. This review mainly describes the current understanding of the
biochemical, morphological, and physiological characteristics of TEX101. Furthermore, future avenues
for the investigation of testicular GPI-Aps, including their potential role as regulators of ion channels,
are discussed.
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1. Introduction

Mammalian spermatozoa acquire fertilizing capacity as they cross the epididymis in vivo [1–3]. However,
spermatogenesis itself takes place in the testicular seminiferous tubules [4]. Spermatogenesis, i.e., testicular
mitotic proliferation, meiosis, sperm cell division, and morphological changes from haploid sperm
to mature spermatozoa, results in the generation of cells that are highly specialized in structure and
function [4]. No other cell has undergone such extreme morphological changes while undergoing both
genetic modification and reduced chromosomal pluripotency. It is generally believed that the testes
have a unique mechanism to control spermatogenesis, where certain molecules are activated during
germ cell production and others are repressed.

There is increasing evidence that glycosylphosphatidylinositol (GPI)-anchored proteins (APs)
on the plasma membrane are involved in the function of a range of cell types [5], including gametes.
For example, male infertility is caused by disruption of the testicular angiotensin-converting enzyme,
which releases GPI-APs [6]. Thus, GPI-APs in the testis are quite important for proper sperm–plasma
membrane structure formation, which influences normal fertilizing ability.

In the past two decades, we have studied the structure and function of testicular factors, especially
the mechanism of germ cell production, starting with the discovery of a protein (TEX101). This protein
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is the core of our research, and we have accumulated a wealth of knowledge based on the functional
relationship between TEX101, a GPI-AP, and other molecules.

In this review, we focus on TEX101, which belongs to the lymphocyte antigen 6 (Ly6)/urokinase-type
plasminogen activator receptor (uPAR)-(LU) protein superfamily [7,8]; specifically, we discuss this as
an important biomolecule for the production of normally functioning gametes. TEX101 was originally
identified as a glycoprotein that contained the antigen epitope for a specific monoclonal antibody
(mAb); it was produced by immunizing female mice with an allogenic testicular homogenate [9,10].
Using immunoprecipitation (IP)–liquid chromatography (LC)–tandem mass spectrometry (MS/MS)
and immunofluorescence studies, we confirmed the association of TEX101 with at least two proteins
in the plasma membranes of adult testicular seminiferous tubules: cellubrevin (a member of soluble
N-ethylmaleimide-sensitive factor attachment protein receptor family) and Ly6k (a GPI-AP that was
recently recognized as an LU protein) [11,12]. TEX101 is a unique germ cell marker that is expressed only
during gametogenesis; its exhibits sexually dimorphic expression in developing gonadal tissues [13].
Before focusing on TEX101, we provide a brief explanation concerning the molecular nature of GPI-AP
for understanding the scientific status of a class in membrane proteins.

2. GPI-APs

2.1. History of the Discovery

In 1960, Slein and Logan reported that the intravenous injection of purified components of
Bacillus anthracis toxin into rabbits increased levels of alkaline phosphatase in their serum [14].
Moreover, phospholipase C (PLC) from Bacillus cereus culture medium induced the phosphatemia
in those rabbits [15]. In 1976, Ikezawa and his colleagues purified phosphatidylinositol (PI)-specific
PLC from B. cereus culture supernatant and found that the enzyme released alkaline phosphatase
from plasma membranes of rat kidney cells [16]. Their research group also showed elevated alkaline
phosphatase levels in rat serum following the intravenous injection of PI-PLC [17]. These results
suggested that PI-PLC treatment removes alkaline phosphatase from cell plasma membranes.
Subsequently, PI-PLC was found to induce the release of acetylcholinesterase, 5′-nucleotidase,
and alkaline phosphodiesterase I from mammalian cell plasma membranes [18–20], indicating that these
proteins are bound to the plasma membrane with phosphatidylinositol. Ferguson et al. discovered
that variant surface glycoproteins of Trypanosoma brucei are anchored to the plasma membrane
through C-terminus linkage with glycosyl-1,2-dimyristyl PI, which contains mannose, glucosamine,
ethanolamine, and PI [21]. Several subsequent studies provided evidence that GPI-APs form a class of
similar membrane proteins.

2.2. Basic Structure of GPI-APs

The plasma membrane contains many types of proteins, which are involved in cell functions and
interactions with the cell environment. Membrane proteins are associated with the cell membrane
lipid bilayer in various ways [22]. Many proteins on the cell surface exist as transmembrane proteins,
which contain both intracellular and extracellular domains. However, some membrane proteins lack
intracellular domains; they may be tethered to the outer leaflet of the plasma membrane by GPI,
and these are called GPI-APs. The core structure of the GPI anchor consists of PI, glycans (glucosamine
and three mannose residues), and phosphoethanolamine (Figure 1). Proteins bind to GPIs through an
amino bond between the peptide C-terminus and the ethanolamine amino group (Figure 1).
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Figure 1. Schema of glycosylphosphatidylinositol-anchored protein (GPI-AP) structure. The 
C-terminus of core peptide binds to phosphoethanolamine followed by three mannose (Man) 
residues and glucosamine (GlcN). The glycan core further links to phosphatidylinositol. 

2.3. General Characteristics and Potential Biological Significances of GPI-APs 

GPI-APs are broadly conserved among eukariotes [23], comprising approximately 170 types of 
human and mouse proteins (UniProt, http://www.uniprot.org). GPI-APs are presumed to play 
pivotal roles in fertilization [6,24–26], the immune system [27–29], nerve formation [30–32], and 
embryonic development [33–35], where they function as enzymes (e.g., alkaline phosphatase, 
5′-nucleotidase (CD73), and dipeptidase (DPEP)) [36], cell adhesion molecules (e.g., lymphocyte 
function-associated antigen 3 (CD58) and neural cell adhesion molecules) [37,38], component 
regulatory proteins (e.g., CD55 and CD59) [39,40], receptors (e.g., CD14, CD16b, and folate receptor) 
[41–43], mammalian antigens (e.g., Thy-1 (CD90), carcinoembryonic antigen (CD66e) [23,44], and ion 
channel or its modulator (e.g., α2δ subunit of voltage-gated calcium channel, prion protein, and 
Lynx1) [45–47]. 

Although GPI-APs lack an intracellular domain, a few hypotheses have been proposed to 
explain the mechanism by which they transduce extracellular signals into the cytoplasm. One 
tentative theory is that outside-in signaling mediated by GPI-APs passes through the plasma 
membrane by means of an associated transmembrane molecule. For example, uPAR (CD87), 
lipopolysaccharide (LPS)/LPS binding protein (LBP) receptor (CD14), Fcγ receptor IIIB (CD16b), and 
GPI-80 are associated with β2 integrin (CD11b/CD18) on the surfaces of polymorphonuclear 
leukocytes; these interactions regulate integrin-mediated cell adhesion [48]. 

A more likely theory is that lipid rafts are involved in signal transduction regulated by 
GPI-APs. Lipid rafts are membrane domains that contain many GPI-APs, Src family kinases, 
transmembrane proteins, cholesterol, and sphingolipids [49]; lipid rafts are presumed to play roles 
in signal transduction, cell adhesion, migration, and protein trafficking [50–52]. GPI-APs frequently 
cluster in lipid rafts and transiently recruit Lyn (a Src family member associated with lipid rafts) by 
means of both protein–protein and lipid–lipid (raft) interactions [53]. Indeed, GPI-AP clustering is 
known to induce cell activation via tyrosine phosphorylation [54–57]. Most GPI-APs are 
post-translationally modified by the addition of oligosaccharide (OS) chain(s) (UniProt, 
http://www.uniprot.org). Recently, Miyagawa-Yamaguchi et al. reported that GPI-APs with 
high-mannose or complex-type N-linked OS chains cluster on distinct lipid rafts under different 
physiological conditions [58]. This finding suggests that different GPI-AP types may form individual 
lipid rafts depending on the N-glycosylation pattern. 
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Figure 1. Schema of glycosylphosphatidylinositol-anchored protein (GPI-AP) structure. The C-terminus
of core peptide binds to phosphoethanolamine followed by three mannose (Man) residues and
glucosamine (GlcN). The glycan core further links to phosphatidylinositol.

2.3. General Characteristics and Potential Biological Significances of GPI-APs

GPI-APs are broadly conserved among eukariotes [23], comprising approximately 170 types of
human and mouse proteins (UniProt, http://www.uniprot.org). GPI-APs are presumed to play pivotal
roles in fertilization [6,24–26], the immune system [27–29], nerve formation [30–32], and embryonic
development [33–35], where they function as enzymes (e.g., alkaline phosphatase, 5′-nucleotidase
(CD73), and dipeptidase (DPEP)) [36], cell adhesion molecules (e.g., lymphocyte function-associated
antigen 3 (CD58) and neural cell adhesion molecules) [37,38], component regulatory proteins
(e.g., CD55 and CD59) [39,40], receptors (e.g., CD14, CD16b, and folate receptor) [41–43], mammalian
antigens (e.g., Thy-1 (CD90), carcinoembryonic antigen (CD66e) [23,44], and ion channel or its
modulator (e.g., α2δ subunit of voltage-gated calcium channel, prion protein, and Lynx1) [45–47].

Although GPI-APs lack an intracellular domain, a few hypotheses have been proposed to explain
the mechanism by which they transduce extracellular signals into the cytoplasm. One tentative theory
is that outside-in signaling mediated by GPI-APs passes through the plasma membrane by means of
an associated transmembrane molecule. For example, uPAR (CD87), lipopolysaccharide (LPS)/LPS
binding protein (LBP) receptor (CD14), Fcγ receptor IIIB (CD16b), and GPI-80 are associated with
β2 integrin (CD11b/CD18) on the surfaces of polymorphonuclear leukocytes; these interactions regulate
integrin-mediated cell adhesion [48].

A more likely theory is that lipid rafts are involved in signal transduction regulated by GPI-APs.
Lipid rafts are membrane domains that contain many GPI-APs, Src family kinases, transmembrane
proteins, cholesterol, and sphingolipids [49]; lipid rafts are presumed to play roles in signal transduction,
cell adhesion, migration, and protein trafficking [50–52]. GPI-APs frequently cluster in lipid rafts
and transiently recruit Lyn (a Src family member associated with lipid rafts) by means of both
protein–protein and lipid–lipid (raft) interactions [53]. Indeed, GPI-AP clustering is known to
induce cell activation via tyrosine phosphorylation [54–57]. Most GPI-APs are post-translationally
modified by the addition of oligosaccharide (OS) chain(s) (UniProt, http://www.uniprot.org). Recently,
Miyagawa-Yamaguchi et al. reported that GPI-APs with high-mannose or complex-type N-linked OS
chains cluster on distinct lipid rafts under different physiological conditions [58]. This finding suggests
that different GPI-AP types may form individual lipid rafts depending on the N-glycosylation pattern.

Many GPI-APs (e.g., CD14, CD16b, CD55, uPAR, and GPI-80) have been reported to exist on
cell surfaces as membrane proteins and in extracellular fluid in soluble form [59–63]. Although some
soluble GPI-APs are useful as biomarkers of cancers or inflammation diseases [64–71], the precise
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functions of soluble GPI-APs remain unclear. Further investigations are needed to understand the
biological functions of these molecules.

2.4. GPI-APs in the Testis

Thus far, the UniProt database (http://www.uniprot.org) lists 29 GPI-APs that are expressed in the
human and mouse testes (Table 1). Among these molecules, DPEP3, a glioma pathogenesis-related
protein 1 (GLIPR1)-like protein 1, hyaluronidase PH-20, hyaluronidase-5, Ly6k, prion-like protein
doppel, serine protease 41, sperm acrosome membrane-associated protein 4 (SPACA4), TEX101,
and testisin are strongly expressed in the male gonad (i.e., testis, epididymis, or mature spermatozoa),
but they are exhibited weakly or negligible in other tissues (e.g., female gonads and somatic
organs) [9,25,72–79]. Among these, GLIPR1-like protein 1, PH-20, and SPACA4 are presumed to
participate in the interaction between sperm and oocyte [73,79,80]. Although the other GPI-APs listed
may be involved in male germ cell development and differentiation, the precise functions of most of
these molecules remain unclear. As a hypothesis, the LU protein superfamily such as Ly6k and TEX101,
which possesses three-fingered protein domain (TFPD) [81], may have a function as a regulator of ion
channels. Indeed, Lynx1, a GPI-AP co-localized with α7 and α4β2-nicotinic acetylcholine receptors
(nAChRs), is the first identified prototoxin having TFPD in the brain, which modulates the function of
nAChRs [47]. In the testes, it has been well documented that ion channels, such as CatSpers, play an
important role in sperm functions [82–84]. In fact, various ions are mediated with important functions
of sperm, such as the acrosomal reaction and hyperactivation of the motility, so that ion channels are
deeply involved in control. With respect to TEX101, recent crystal structure analysis provides direct
evidence that this molecule actually has two LU domains, both of which have a TFPD [85]. It is striking
that such structural analysis holds great promise for elucidating the actual interactions between this
molecule and a group of molecules associated with the ion channels. However, the main points
remain unclear, and the physiological functions of these molecules are far from completely understood.
Accordingly, GPI-APs in the testis as these modulators could be a focus for further research, including
studies of ion channels.

Table 1. GPI-APs expressed within the testis.

Protein Name Putative Function Reference
5′-nucleotidase (CD73) Enzyme [86]
Acetylcholinesterase Enzyme [87]
Alkaline phosphatase,
placental-like Enzyme [88]

Alkaline phosphatase,
tissue-nonspecific isozyme Enzyme [89]

CD109 Receptor [90]
CD59 Complement regulator [91]
Complement decay-accelerating
factor (CD55) Complement regulator [91]

Dipeptidase 2 (DPEP2) Enzyme [92]
Dipeptidase 3 (DPEP3) Enzyme [72]
GDNF family receptor alpha-1 Receptor [93]
GDNF family receptor alpha-2 Receptor [93]
Glypican-5 Receptor [94]
GLIPR1-like protein 1 Others [73]
Hyaluronidase PH-20 Enzyme [75]
Hyaluronidase-5 Enzyme [75]
Lipoprotein lipase Enzyme [95]
Lymphocyte antigen 6A-2/6E-1
(Ly6A/E) Others [96]

Lymphocyte antigen 6E (Ly6E) Receptor [97]

http://www.uniprot.org
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Table 1. Cont.

Protein Name Putative Function Reference
Lymphocyte antigen 6K (Ly6K) Others [12]
Ly6/PLAUR domain-containing
protein 6 * Receptor [98]

Mesothelin * Others [99]
Prion-like protein doppel Receptor [77]
RGM domain family member B Receptor [100]
Serine protease 41 Enzyme [101]
Sperm acrosome
membrane-associated protein 4 Enzyme [79]

Testis-expressed protein 101
(TEX101) Others [9]

Testisin Enzyme [25]
Thy-1 membrane glycoprotein Others [102]
TNF receptor superfamily
membrane 10C Receptor [103]

Bold type: highly specific expression in the gonad. *: Data from gene expression analysis only.

3. Significance of TEX101 in the Fertilization Process

3.1. Strategies for Identifying Testis-Specific Molecule(s)

Generally, researchers consider tissue-specific factors to be localized in tissues related to their
specialized functions. Since the gonad is the sole organ of germ cell production, important factors for
spermatogenesis are expected to be located in testicular germ cells (TGCs). In a previous study of the
molecular mechanisms concerning gametogenesis and the fertilization process, we used mouse testes
as an experimental material to identify such factors, because adult seminiferous tubules contain germ
cells at all stages. To find out specific factor(s), we did not choose a genetic approach, because we know
from our professional experience that the establishment of a specific molecular probe (such as Abs) is a
key step for the further characterization of novel molecules. As producing mAbs with satisfactory
performance for further molecular characterization was not always easy, we did not dare use a strategy
that used a genetic approach. Using splenocytes from female mice immunized with syngenic male
germ cells, we established several mAbs and first performed immunohistochemical staining (IHS) of
the testis. Against the mAbs established, we did further Western blot (WB) and IP analyses, which was
followed by micro-amino acid analysis (this process has now been effectively replaced by MS analysis)
to find out unique factor(s). This procedure can be expected to find “novel” molecule(s) or molecular
complexes, and the mAbs established can be expected to have almost perfect performances (compatible
for IHS, WB, and IP) for further biochemical as well as morphological analyses.

We detected several hybrydoma clones that corresponded to an interesting IHS pattern within the
testis. Among the hybridoma clones established, a protein detected by an mAb (IgG1, termed TES101)
was produced from a hybridoma; this protein was tentatively named as TES101-reactive protein (RP);
later, the nomenclature was changed to TEX101 [9,13].

3.2. Molecular Characteristics of TEX101, a Unique Glycoprotein Germ Cell Marker

TEX101 is composed of a signal peptide region of 25 amino acids and a mature protein region of
225 amino acids, thus forming a protein with a molecular weight of 24,093 in mice. TEX101 contains four
potential N-glycosylation sites (Asn-Xaa-Ser/Thr) as well as many (>40) Ser/Thr residues, which could
be possible O-glycosylation sites [9]. When we first described this molecule in 2001, the cDNA sequence
revealed no homologous molecules in the DNA database; the molecule has since been classified as
a member of the LU protein superfamily [7,8], based on the conserved position of cysteine residues
within the molecule. The position of cysteine residues is highly conserved among major mammalian



Int. J. Mol. Sci. 2020, 21, 6628 6 of 17

species including human, indicating similarity in the steric structure of these orthologues due to
disulfide bonds (Table 2).

TEX101 contains strong hydrophobic portions [104] at both the N- and C-terminal ends of the
molecule, which is typical of GPI-APs [105]. Morphological analysis of testicular tissues and molecular
biological analysis of TEX101-expressing transfectants revealed that the enzyme PI-PLC, which removes
surface GPI-APs, exhibited TEX101-releasing activity on the cell surface [10]. Although TEX101 is
primarily detected on the TGC cell membrane [9,13], TEX101 appears to have at least two different
forms in nature: GPI-AP and non-membrane-bound soluble forms—subcellular TEX101 was found
in the Triton X-100-soluble fraction from the testicular membrane, as well as in water-soluble and
extracellular fractions [9].

TEX101 has been known to be a glycoprotein since its identification [9,10] as described above.
Various glycoproteins are generally presumed to be involved in mammalian physiological processes,
from fertilization to implantation [106–109]. Glycosylation is among the most pivotal post-translational
modifications; it is involved in biological processes including cell–cell interactions, as well as cell
differentiation and proliferation [110].

During antigen-epitope analyses of an anti-sperm auto-Ab using spleen cells of aged mice
(over one year) maintained under conventional conditions, we unexpectedly established a mAb,
termed Ts4, which reacts with the OS moiety of TEX101 [111]. The Ts4 mAb serves as an auto-Ab
against acrosomal regions of cauda epididymal spermatozoa [111]. At that time (two decades
ago), quantitative molecular identification was quite poor; therefore, we attempted the molecular
identification of a Ts4 target in testicular extract, rather than extracts of cauda epidydimal spermatozoa.
In the male mouse gonad, Ts4 exhibits immunoreactivity against several types of glycoproteins in
the acrosomal region of epididymal spermatozoa as well as against germ cells within seminiferous
tubules by interacting with a common OS chain on the molecules [112,113]. The antigenic determinant
for Ts4 was located on the fucosylated agalacto-biantennary complex-type N-glycan with bisecting
N-acetylglucosamine (GlcNAc) of TEX101 [113]. Although TEX101 does not appear in mature
epididymal spermatozoa [9,112,114] (Figure 2), we analyzed a Ts4-reactive glycoprotein in mouse
cauda epididymal sperm. IP and LC-MS/MS analyses showed that alpha-N-acetylglucosaminidase
(Naglu; a degradation enzyme of heparan sulfate) was among the glycoproteins recognized by Ts4 in
epididymal spermatozoa. Using a similar strategy, we recently identified the direct target protein of
Ts4 as NUP62; we also characterized GPI-AP molecular formation, including TEX101 and its related
molecules, during testicular development [115].
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Figure 2. Molecular expression of TEX101 during gametogenesis. Germ cells that express TEX101 
are indicated with bold lines. PGC, primordial germ cell; PSG, prospermatogonium or gonocyte; 
NSG, neonatal-type undifferentiated spermatogonium; SG, spermatogonium; SC, spermatocyte; ST, 
spermatid; SZ, spermatozoon, OG, oogonium; OC, oocyte; PF, primordial follicle; GF, glowing 
follicle (modified from [13]). 

Direct evidence of the biological significance of OS chain detected by Ts4 has not been reported. 
However, experimental observations increasingly suggest the potential importance of Ts4 target in 
the fertilization process; (1) this mAb affects fertilization in vitro [116]; (2) the molecular epitope for 
Ts4 showed unique structure [113]; and (3) its occurrence is limited to reproductive-related organs 
[112,113,115,116]. Indeed, the bisecting GlcNAc structures have been already reported to possess 
biological functions, such as cell growth and adhesion by modulating membrane glycoproteins [117–
119]. Together, these findings suggest that TEX101, as the major testicular molecule possessing 
Ts4-reactive OS, is essential for elucidating its molecular function and mechanism. 

3.3. Subcelllar Localization of TEX101 within Gonadal Organs 

TEX101 was initially identified in the TGCs [9]; however, it is also expressed in other cells. 
During embryonic development, TEX101 appears in germ cells of both male and female gonads after 
the pregonadal period [13] (Figure 2). In the testis, TEX101 is constitutively expressed on surviving 
prospermatogonia during prespermatogenesis. Following the initiation of spermatogenesis, 
prospermatogonia differentiate into spermatogonia; TEX101 expression diminishes in 
spermatogonia, but it is enhanced in spermatocytes and spermatids. TEX101 is also expressed in 
female germ cells until the start of folliculogenesis (before birth), but it is not detected in oocytes 
surrounded by follicular cells within the ovary [13]. These findings imply that TEX101 exhibits 
sexually dimorphic expression in male and female germ cells during gonadal development. The 
gene name is currently registered as “Testis Expressed 101” in the Mouse Genome Informatics (MGI) 
database (The Jackson Laboratory, Bar Harbor, ME, USA), despite its expression in premature 
female germ cells. Thus, TEX101 should not be regarded as a specific marker for male germ cells. 
TEX101 (TES101RP) is a marker specific for both male and female germ cells during gonad 
development; however, in adult animals, it is found only in the testes [9,13]. 
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observed in seminiferous epithelium was nearly identical among various stages, but it is varied 
among cell types in seminiferous tubules. Spermatogonia attached to the basal lamina of the 

Figure 2. Molecular expression of TEX101 during gametogenesis. Germ cells that express TEX101
are indicated with bold lines. PGC, primordial germ cell; PSG, prospermatogonium or gonocyte;
NSG, neonatal-type undifferentiated spermatogonium; SG, spermatogonium; SC, spermatocyte; ST,
spermatid; SZ, spermatozoon, OG, oogonium; OC, oocyte; PF, primordial follicle; GF, glowing follicle
(modified from [13]).
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Table 2. The primary structure of TEX101 in major mammalian species.

Species Amino Acid #

Mouse mgacriqyvl liflliasrw tlvqnty c qv sqtlsleddp grtf n wtska 50

Rat mgacriqyil lvflliashw tlvqniy c ev srtlslednp sgtf n wtska 50

Human mgtpriqhll illvlgasll tsglely c qk glsmtveadp anmf n wttee 50

Bovine mgachfqgll llflvgaptl imaqklf c qk gtfmgiqeda tnmf n wtsek 50

Mouse -eq c npgel c q etvllikadg trtvvlasks c vsqggeavt fiqytappgl 100

Rat -ek c npgef c q etvllikaeg tktailasks c vpqgaetmt fvqytappgl 100

Human vet c dkgal c q etiliikag- tetailatkg c ipegeeait ivqhssppgl 100

Bovine vea c dngtl c q etilliktag tktailatks c sldgtpait fiqhtaapsl 100

Mouse vaisysny c n dsl c nnkdsl asvwrvpett a-ts n msgtr- h c pt c valgs c - 150

Rat vaisysny c n dsl c nnrnnl asilqapept a-ts n msgar- h c pt c lalep c - 150

Human ivtsysny c e dsf c ndkdsl sqfwefsett astvst�tl- h c pt c valgt c f 150

Bovine aaisysny c e dpf c nnregl ydiwniqete eetkgt�tsl- h c pt c lalgs c 150

Mouse ssapsmp c a n gttq c yqgrl efsgggmdat vqvkg c ttti g c rlmamids 200

Rat ssapsmp c a n gttq c yhgki elsgggmdsv vhvkg c ttai g c rlmakmes 200

Human sapslp- c p n gttr c yqgkl eitgggiess vevkg c tami g c rlmsgila 200

Bovine lnapsva c p n ntdr c yqgkl qvsegnvnsl leikg c tsii g c klmsgvfk 200

Mouse -vgpmtvket c syqsflqprk aeigasqmpt slwvlellfp- llllplth�fp 250

Rat -vgpmtvket c syqsflhprm aeigaswmpt slwvlelllp- alslpliy�fp 250

Human -vgpmfvrea c phqlltqprk tengatclpi pvwglqlllp- ll-lpsfih�fp 249

Bovine kigplwvket c psmsist-rk idngatwlht svwklklllm- llllilggsasgp 253

Species Amino acid #

Conserved cysteine residues are indicated by black boxes, and possible N-glycosylation sites (n-x-s/t) are
dark-gray shadows.

Direct evidence of the biological significance of OS chain detected by Ts4 has not been reported.
However, experimental observations increasingly suggest the potential importance of Ts4 target in
the fertilization process; (1) this mAb affects fertilization in vitro [116]; (2) the molecular epitope
for Ts4 showed unique structure [113]; and (3) its occurrence is limited to reproductive-related
organs [112,113,115,116]. Indeed, the bisecting GlcNAc structures have been already reported
to possess biological functions, such as cell growth and adhesion by modulating membrane
glycoproteins [117–119]. Together, these findings suggest that TEX101, as the major testicular molecule
possessing Ts4-reactive OS, is essential for elucidating its molecular function and mechanism.

3.3. Subcelllar Localization of TEX101 within Gonadal Organs

TEX101 was initially identified in the TGCs [9]; however, it is also expressed in other cells.
During embryonic development, TEX101 appears in germ cells of both male and female gonads
after the pregonadal period [13] (Figure 2). In the testis, TEX101 is constitutively expressed on
surviving prospermatogonia during prespermatogenesis. Following the initiation of spermatogenesis,
prospermatogonia differentiate into spermatogonia; TEX101 expression diminishes in spermatogonia,
but it is enhanced in spermatocytes and spermatids. TEX101 is also expressed in female germ cells
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until the start of folliculogenesis (before birth), but it is not detected in oocytes surrounded by follicular
cells within the ovary [13]. These findings imply that TEX101 exhibits sexually dimorphic expression
in male and female germ cells during gonadal development. The gene name is currently registered
as “Testis Expressed 101” in the Mouse Genome Informatics (MGI) database (The Jackson Laboratory,
Bar Harbor, ME, USA), despite its expression in premature female germ cells. Thus, TEX101 should
not be regarded as a specific marker for male germ cells. TEX101 (TES101RP) is a marker specific for
both male and female germ cells during gonad development; however, in adult animals, it is found
only in the testes [9,13].

In the testis, TEX101 has been detected in cells from seminiferous tubules, but not from interstitial
tissues, including the Leydig cells [9,13]. The intensity of TEX101 immunofluorescence observed in
seminiferous epithelium was nearly identical among various stages, but it is varied among cell types
in seminiferous tubules. Spermatogonia attached to the basal lamina of the seminiferous tubules
showed negative staining compared with more advanced cells (Stage V). However, TEX101-positive
cells attached to the basal lamina were identified as leptotene or zygotene spermatocytes (Stage X).
Sertoli cells were TEX101-negative at all stages [9,114].

When spermatogenesis in the testis is complete, the TEX101 protein remains on the cell surfaces
of step 10–16 spermatids and testicular sperm, including the tail portion. However, TEX101 is shed
from epididymal sperm in the caput epididymis [114]. In the cauda epididymis, TEX101 is no longer
detectable on the male germ cells (Figure 2).

3.4. Molecules Associate with TEX101 in Male Germ Organ

In general, protein molecules perform their physiological actions via interactions with other
proteins [120,121]. The elucidation of the functional and physical networks among proteins has
fundamental importance for understanding their functions and their regulatory mechanisms [122].
Using IP followed by LC-MS/MS analyses, we identified several molecules associated directly or
indirectly with TEX101 within testicular seminiferous tubules (Table 3).

Table 3. Possible proteins associated with TEX101 within the testis.

Protein Name Antibody Used for the Experiments Reference
Annexin A2 TES101 [11]

Ly6k TES101 [11]
Cellubrevin TES101 [11]

DPEP3 TES101, Ts4 [72]
5′-nucleotidase (CD73) TES101, Ts4 [115]

Annexin A2 is a member of the annexin superfamily with Ca2+-dependent phospholipid-binding
ability [123]. This molecule is widely expressed in many types of cells (e.g., epithelial, endothelial,
trophoblast, immune, and tumor cells), and it is involved in a variety of biological functions,
including membrane organization, membrane trafficking, and Ca2+ ion channels [123]. In the
testis, Annexin A2 is found on Sertoli cells and elongated spermatids, and it is essential for the
maintenance of the blood–testis barrier and the suitable release of spermatids [124].

Ly6k is a member of the LU protein superfamily, similar to TEX101. The relationship between
TEX101 and Ly6k is described below.

Cellubrevin is a member of the soluble N-ethylmaleimide-sensitive factor attachment protein
receptors family, which regulates membrane trafficking and fusion [125]. Our previous study
using ultrahigh-resolution immunofluorescence microscopy revealed that cellubrevin plays a role in
membrane trafficking of de novo TEX101 to the cell surface [11].

DPEP3 belongs to the membrane-bound DPEP family [92], which is a group of enzymes that
converts leukotriene D4 to leukotriene E4 and dissolves cystinyl-bis-glycine [126]. This molecule is
present only in the testis as a GPI-labeled protein [92]. Although its biological function in vivo remains
to be clarified, Dpep3-deficient mice are fertile [127].
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CD73 (the so-called ecto-5′-nucleotidase) is a GPI-anchored protein that has the enzymatic activity
of the dephosphorylation of extracellular adenosine 5′-monophosphate to adenosine via the purinergic
signaling pathway [128]. The expression of CD73 is broadly observed in various tissues (e.g., brain,
heart, lung, liver, kidney, colon, and placenta) and some types of immune cells, such as T cells,
neutrophils, monocytes, and dendritic cells [129,130]. Although CD73 and adenosine are believed to
suppress the immune response in the tumor microenvironment [131], their precise function within the
testis remains unclear.

3.5. TEX101 Function during Fertilization

Male and female mice with TEX101 gene disruption produce spermatozoa and oocytes with normal
morphology, respectively [26], suggesting that TEX101 is not essential for the morphological formation
of both male and female gametes. However, the TEX101-deficient male mice were infertile [26].
Although the in vitro fertilization ability of sperm from TEX101-null mouse seems normal, sterility is
mainly caused by a defect in the migrating ability of sperm into the oviduct [26], as observed in
ADAM3-null mice [132]. In the testis, TEX101 expression is restricted during prespermatogenesis
and spermatocyte to testicular spermatozoa [9,13,96]; therefore, TEX101 may function as a molecular
chaperone in the essential fertilization process. Thus far, TEX101 has been presumed to serve
as a molecular chaperone solely for ADAM3, making it similar to CALMEGIN, CALRS, PDILT,
or ADAM1a [26,133–136]. However, it should be noted that a defect in TEX101 expression also reduces
the expression of Ly6k (a TEX101-associated GPI-AP) in TGCs [137] (Figure 3). The experimental
evidence implies that TEX101 and Ly6k both contribute to the expression of post-translational
counterpart proteins on the cell membrane.
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Figure 3. Molecular status of Ly6k with/without TEX101 in the testicular germ cells (TGCs). The left
diagram indicates TEX101/Ly6k complex formation of wild-type (Tex101+/+) mouse. After translation,
GPI remodeling of these molecules is completed from endoplasmic reticulum (ER) to Golgi apparatus;
then, these molecules are expressed as a TEX101/Ly6k complex (represented by black square) on
lipid bilayers including a transportation vesicle and plasma membrane. In addition, (a part of) both
TEX101 and Ly6k are released into extracellular space. In TEX101-null TGCs (the right diagram),
Ly6k expression is drastically decreased. Black cross marks indicate the disruption of the molecules.
The potential status of Ly6k protein expression without TEX101 is boxed (originated from [137]).
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To date, although several GPI-APs have been reported in TGCs as described above, TEX101 and
Ly6k are known to be essential for the production of functionally intact sperm [26,138] among these
proteins. These results are based on data in which both TEX101- and Ly6k-null mice showed phenotypes
nearly identical to those of gene-disrupted mouse lines, such as Adam3−/− [132,139]. However, the
precise molecular mechanisms that cause infertility among these spermatozoa remain unknown.
Indeed, our polysome analysis results suggested that Adam3 signaling occurs in adult testes; however,
translation activity was not detected [137]. In fact, almost no appropriate molecular probe for ADAM3
detection at the protein level exists, particularly with respect to morphological analyses; this limits our
understanding of the molecular relationship between ADAM3 and its related molecules. In addition,
the physiological role of TEX101 in female gametogenesis remains unclear. Therefore, we argue
that researchers should be more cautious in asserting scientific conclusions regarding the molecular
significance of ADAM3-related molecules at the protein level.

4. Conclusions and Future Aspects

In this review, we represented current knowledge of GPI-APs in the testis, mainly with respect to
TEX101. Since GPI-APs do not possess an intracellular domain, the mechanism of GPI-AP cell–cell
signal transduction, including its relation to ion channels, remains controversial. The specific roles of
membrane-bound GPI-APs and their soluble form also remain unknown.

The functions of various biomolecules including GPI-APs have been elucidated since the
development of gene-deficient model mice in the late 20th century. It is generally believed that
biomolecule function can be fully explored only through gene-disruption model analysis; however,
these techniques also have many limitations.

Biomolecules have existed “in vivo” for an extremely long time before scientists discovered them.
Biomolecules also evolved “in vivo” for an extremely long time before scientists discovered them;
therefore, their synthesis would be expected to be meaningful. However, “Does the existence of a
molecule in an organism mean that it (its existence) is functional?”. Efforts to unravel this philosophical
question continue for scientists, and it is easy to imagine that scientists will spend a large amount of
time in this area, even in GPI-AP studies of testes.
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