

Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

Archives of Medical Research 53 (2022) 643-643

LETTER TO THE EDITOR Probiotics for the Prevention of COVID-19 Sequelae

Dear Editor,

The review article written by Kurian SJ, et al. (1) elegantly summarized the role of probiotics in mitigating the severity of coronavirus disease 2019 (COVID-19). Specifically, the authors explained how (1) probiotics can inhibit the cytokine storm associated with COVID-19 by stimulating innate immunity and, at the same time, preventing the over-stimulation of adaptive immunity. Therefore, we agree with the authors' recommendation to investigate the effects of probiotics among high-risk patients with COVID-19 and those with a severe course of COVID-19, in clinical trials, where probiotics might influence their prognosis. Nevertheless, examples of specific strains of probiotics that might benefit patients with COVID-19 were not mentioned.

Recently, we came across the findings of a new study (2) which could expand our understanding of the role of probiotics in the management of COVID-19. The study (2) aimed to evaluate the functional role of the microbiota in the long-term consequences of COVID-19, in which the researchers characterized the gut microbiota retrieved from patients with COVID-19 and compared with healthy controls, and also determined the effects of human fecal microbiota transfer from patients with COVID-19 to germ-free mice. In the study (2), it was observed that the gut microbiota of patients with COVID-19 comprised a significantly higher level of multidrug-resistant Enterobacteriaceae compared to that of healthy individuals. In addition, microbiota transfer from subjects with COVID-19 induced impaired lung defense and deterioration of brain cognitive functions in mice without SARS-CoV-2, suggesting microbiota as the culprit.

The findings of the aforementioned study indicate the potential use of probiotics that can decolonize antimicrobial-resistant Enterobacteriaceae in patients with COVID-19 to mitigate the long-term sequelae ("long COVID"). Indeed, probiotics, including the *Lactobacillus* and *Bifidobacterium* species, have been used as dietary supplements to decrease potential gut pathogenic *Enterobacteriaceae*. For instance, the use of *L. rhamnosus* GG supplementation in HIV-infected individuals has been shown to result in a reduction in Enterobacteriaceae in the gut with an associated decrease in intestinal inflammation (3). With the newest understanding of the role of gut microbiota in patients with COVID-19, future clinical trials involving probiotics in patients with COVID-19 should investigate the probiotic strains with Enterobacteriaceaedecolonizing effect to determine their efficacy in terms of preventing COVID-19 sequelae.

Competing Interest

All authors declare no conflicts of interest.

Supplementary Materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.arcmed.2022. 08.004.

References

- Kurian SJ, Unnikrishnan MK, Miraj SS, et al. Probiotics in Prevention and Treatment of COVID-19: Current Perspective and Future Prospects. Arch Med Res 2021;52:582–594.
- de Almeida VM, Engel DF, Ricci MF, et al. Preprint. ResearchSquare; 2022. p. rs.3.rs–1756189.
- Arnbjerg CJ, Vestad B, Hov JR, et al. Effect of Lactobacillus rhamnosus GG Supplementation on Intestinal Inflammation Assessed by PET/MRI Scans and Gut Microbiota Composition in HIV-Infected Individuals. J Acquir Immune Defic Syndr 2018;78:450–457.

CHIA SIANG KOW

School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia

School of Pharmacy, Monash University Malaysia, Bandar Sunway,

Selangor, Malaysia

DINESH SANGARRAN RAMACHANDRAM

School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia

SYED SHAHZAD HASAN

School of Applied Sciences, University of Huddersfield, Huddersfield, UK

School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia

Address reprint requests to: Chia Siang Kow, School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia E-mail: chiasiang 93@hotmail.com

Received for publication July 23, 2022; accepted August 10, 2022 (ARCMED-D-22-00877).