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Abstract: This paper discusses the effects of introducing nonlinear interactions and noise-filtering to
the covariance matrix used in Markowitz’s portfolio allocation model, evaluating the technique’s
performances for daily data from seven financial markets between January 2000 and August 2018.
We estimated the covariance matrix by applying Kernel functions, and applied filtering following
the theoretical distribution of the eigenvalues based on the Random Matrix Theory. The results
were compared with the traditional linear Pearson estimator and robust estimation methods for
covariance matrices. The results showed that noise-filtering yielded portfolios with significantly
larger risk-adjusted profitability than its non-filtered counterpart for almost half of the tested cases.
Moreover, we analyzed the improvements and setbacks of the nonlinear approaches over linear
ones, discussing in which circumstances the additional complexity of nonlinear features seemed to
predominantly add more noise or predictive performance.

Keywords: nonlinearity; regularization; high dimensionality; portfolio allocation; machine learning;
covariance estimation; random matrix theory; kernel methods

1. Introduction

Finance can be defined as the research field that studies the management of value—for an arbitrary
investor that operates inside the financial market, the value of the assets that he/she chose can be
measured in terms of how profitable or risky they are. While individuals tend to pursue potentially
larger return rates, often the most profitable options bring along higher levels of uncertainty as well,
so that the risk–return relationship induces a trade-off over the preferences of the economic agents,
making them seek a combination of assets that offer maximum profitability, as well as minimum
risk—an efficient allocation of the resources that generate the most payoff/reward/value.

As pointed out in Miller [1], one of the main milestones in the history of finance was the
mean-variance model of Nobel Prize laureate Harry Markowitz, a work regarded as the genesis
of the so-called “Modern Portfolio Theory”, in which the optimal portfolio choice was presented as the
solution of a simple, constrained optimization problem. Furthermore, Markowitz [2]’s model shows
the circumstances in which the levels of risk can be diminished through diversification, as well as the
limits of this artifice, represented by a risk that investors can do nothing about and therefore must take
when investing in the financial market.

While the relevance of Markowitz [2]’s work is unanimously praised, the best way to estimate its
inputs—a vector of expected returns and a covariance matrix—is far from reaching a consensus. While
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the standard estimators are easy to obtain, recent works like Pavlidis et al. [3] and Hsu et al. [4] argue
in favor of the introduction of nonlinear features to boost the predictive power for financial variables
over traditional parametric econometric methods, and in which existing novel approaches, such as
machine-learning methods, can contribute to better forecasting performances. Additionally, many
studies globally have found empirical evidence from real-world financial data that the underlying
patterns of financial covariance matrices seem to follow some stylized facts regarding the big proportion
of “noise” in comparison to actually useful information, implying that the complexity of the portfolio
choice problem could be largely reduced, possibly leading to more parsimonious models that provide
better forecasts.

This paper focused on those questions, investigating whether the use of a nonlinear and
nonparametric covariance matrix or the application of noise-filtering techniques can indeed help
a financial investor to build better portfolios in terms of cumulative return and risk-adjusted measures,
namely Sharpe and Sortino ratios. Moreover, we analyzed various robust methods for estimating the
covariance matrix, and whether nonlinearities and noise-filtering managed to bring improvements to
the portfolios’ performance, which can be useful to the construction of portfolio-building strategies
for financial investors. We tested different markets and compared the results, and discussed to which
extent the portfolio allocation was done better using Kernel functions and “clean” covariance matrices.

The paper is structured as follows: Section 2 presents the foundations of risk diversification via
portfolios, discussing the issues regarding high dimensionality in financial data, motivating the use
of high-frequency data, as well as nonlinear predictors, regularization techniques, and the Random
Matrix Theory. Section 3 describes the Markowitz [2] portfolio selection model, robust estimators for
the covariance matrix, and the Principal Component Analysis for both linear and Kernel covariance
matrices. Section 4 provides details on the empirical analysis and describes the collected data and
chosen time periods, as well as the performance metrics and statistical tests for the evaluation of the
portfolio allocations. Section 5 presents the performance of the obtained portfolios and discusses their
implication in view of the financial theory. Finally, Section 6 presents the paper’s conclusions, potential
limitations to the proposed methods, and recommendations for future developments.

2. Theoretical Background

2.1. Portfolio Selection and Risk Management

In financial contexts, “risk” refers to the likelihood of an investment yielding a different return
from the expected one [5]; thus, in a broad sense, risk does not necessarily only have regard to
unfavorable outcomes (downside risk), but rather includes upside risk as well. Any flotation from the
expected value of the return of a financial asset is viewed as a source of uncertainty, or “volatility”,
as it is more often called in finance.

A rational investor would seek to optimize his interests at all times, which can be expressed in
terms of maximization of his expected return and minimization of his risk. Given that future returns
are a random variable, there are many possible measures for its volatility; however, the most common
measure for risk is the variance operator (second moment), as used in Markowitz [2]’s Modern Portfolio
Theory seminal work, while expected return is measured by the first moment. This is equivalent
to assuming that all financial agents follow a mean-variance preference, which is grounded in the
microeconomic theory and has implications in the derivation of many important models in finance
and asset pricing, such as the CAPM model [6–8], for instance.

The assumption of rationality implies that an “efficient” portfolio allocation is a choice of weights
w in regard to how much assets you should buy which are available in the market, such that the
investor cannot increase his expected return without taking more risk—or, alternatively, how you
can decrease his portfolio volatility without taking a lower level of expected return. The curve of
the possible efficient portfolio allocations in the risk versus the expected return graph is known as
an “efficient frontier”. As shown in Markowitz [2], in order to achieve an efficient portfolio, the
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investor should diversify his/her choices, picking the assets with the minimal association (measured
by covariances), such that the joint risks of the picked assets tend to cancel each other.

Therefore, for a set of assets with identical values for expected return µ and variance σ2, choosing a
convex combination of many of them will yield a portfolio with a volatility value smaller than σ2, unless
all chosen assets have perfect correlation. Such effects of diversification can be seen statistically from

the variance of the sum of p random variables: V[w1X1 + w2X2 + ...+ wpXp] =
p
∑

i=1

p
∑

j=1
wiwjcov(Xi, Xj);

since
p
∑

i=1
wi = 1 (negative-valued weights represent a short selling), the volatility of a generic portfolio

w1x1 + w2x2 + ... + wpxp with same-risk assets will always diminish with diversification.
The component of risk which can be diversified, corresponding to the joint volatility between the

chosen assets, is known as “idiosyncratic risk”, while the non-diversifiable component of risk, which
represents the uncertainties associated to the financial market itself, is known as “systematic risk” or
“market risk”. The idiosyncratic risk is specific to a company, industry, market, economy, or country,
meaning it can be eliminated by simply investing in different assets (diversification) that will not all
be affected in the same way by market events. On the other hand, the market risk is associated with
factors that affect all assets’ companies, such as macroeconomic indicators and political scenarios; thus
not being specific to a particular company or industry and which cannot be eliminated or reduced
through diversification.

Although there are many influential portfolio selection models that arose after Markowitz’s
classic work, such as the Treynor-Black model [9], the Black-Litterman model [10], as well as advances
in the so-called “Post-Modern Portfolio Theory” [11,12] and machine-learning techniques [13–15],
Markowitz [2] remains as one of the most influential works in finance and is still widely used as a
benchmark for alternative portfolio selection models, due to its mathematical simplicity (uses only a
vector of expected returns and a covariance matrix as inputs) and easiness of interpretation. Therefore,
we used this model as a baseline to explore the potential improvements that arise with the introduction
of nonlinear interactions and covariance matrix filtering through the Random Matrix Theory.

2.2. Nonlinearities and Machine Learning in Financial Applications

Buonocore et al. [16] presents two key elements that define the complexity of financial time-series:
the multi-scaling property, which refers to the dynamics of the series over time; and the structure
of cross-dependence between time-series, which are reflexes of the interactions among the various
financial assets and economic agents. In a financial context, one can view those two complexity
elements as systematic risk and idiosyncratic risk, respectively, precisely being the two sources of risk
that drive the whole motivation for risk diversification via portfolio allocation, as discussed by the
Modern Portfolio Theory.

It is well-known that systematic risk cannot be diversified. So, in terms of risk management and
portfolio selection, the main issue is to pick assets with minimal idiosyncratic risk, which in turn,
naturally, demands a good estimation for the cross-interaction between the assets available in the
market, namely the covariance between them.

The non-stationarity of financial time-series is a stylized fact which is well-known by scholars
and market practitioners, and this property has relevant implications in forecasting and identifying
patterns in financial analysis. Specifically concerning portfolio selection, the non-stationary behavior of
stock prices can induce major drawbacks when using the standard linear Pearson correlation estimator
in calculating the covariances matrix. Livan et al. [17] provides empirical evidence of the limitations
of the traditional linear approach established in Markowitz [2], pointing out that the linear estimator
fails to accurately capture the market’s dynamics over time, an issue that is not efficiently solved by
simply using a longer historical series. The sensitivity of Markowitz [2]’s model to its inputs is also
discussed in Chen and Zhou [18], which incorporates the third and fourth moments (skewness and
kurtosis) as additional sources of uncertainty over the variance. Using multi-objective particle swarm
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optimization, robust efficient portfolios were obtained and shown to improve the expected return in
comparison to the traditional mean-variance approach. The relative attractiveness of different robust
efficient solutions to different market settings (bullish, steady, and bearish) was also discussed.

Concerning the Dynamical Behavior of Financial Systems, Bonanno et al. [19] proposed a
generalization of the Heston model [20], which is defined by two coupled stochastic differential
equations (SDEs) representing the log of the price levels and the volatility of financial stocks, and
provided a solution for option pricing that incorporated improvements over the classical Black-Scholes
model [21] regarding financial stylized facts, such as the skewness of the returns and the excess kurtosis.
The extension proposed by Bonanno et al. [19] was the introduction of a random walk with cubic
nonlinearity to replace the log-price SDE of Heston’s model. Furthermore, the authors analyzed the
statistical properties of escape time as a measure of the stabilizing effect of the noise in the market
dynamics. Applying this extended model, Spagnolo and Valenti [22] tested for daily data of 1071
stocks traded at the New York Stock Exchange between 1987 and 1998, finding out that the nonlinear
Heston model approximates the probability density distribution on escape times better than the basic
geometric Brownian motion model and two well-known volatility models, namely GARCH [23]
and the original Heston model [20]. In this way, the introduction of a nonlinear term allowed for a
better understanding of a measure of market instability, capturing embedded relationships that linear
estimators fail to consider. Similarly, linear estimators for covariance ignore potential associations in
higher dimensionality interactions, such that even assets with zero covariance may actually have a
very heavy dependence on nonlinear domains.

As discussed in Kühn and Neu [24], the states of a market can be viewed as attractors resulting
from the dynamics of nonlinear interactions between the financial variables, such that the introduction
of nonlinearities also has potential implications for financial applications, such as risk management
and derivatives pricing. For instance, Valenti et al. [25] pointed out that volatility is a monotonic
indicator of financial risk, while many large oscillations in a financial market (both upwards and
downwards) are preceded by long periods of relatively small levels of volatility in the assets’ returns
(the so-called “volatility clustering”). In this sense, the authors proposed the mean first hitting time
(defined as the average time until a stock return undergoes a large variation—positive or negative—for
the first time) as an indicator of price stability. In contrast with volatility, this measure of stability
displays nonmonotonic behavior that exhibits a pattern resembling the Noise Enhanced Stability (NES)
phenomenon, observed in a broad class of systems [26–28]. Therefore, using the conventional volatility
as a measure of risk can lead to its underestimation, which in turn can lead to bad allocations of
resources or bad financial managerial decisions.

In light of evidence that not all noisy information of the covariance matrix is due to their
non-stationarity behavior [29], many machine-learning methods, such as the Support Vector
Machines [30], Gaussian processes [31], and deep learning [32] methods have been discussed in
the literature, showing that the introduction of nonlinearities can provide a better display of the
complex cross-interactions between the variables and generate better predictions and strategies for
the financial markets. Similarly, Almahdi and Yang [33] proposed a portfolio trading algorithm using
recurrent reinforcement learning, using the expected maximum drawdown as a downside risk measure
and testing for different sets of transaction costs. The authors also proposed an adaptive rebalancing
extension, reported to have a quicker reaction to transaction cost variations and which managed to
outperform hedge fund benchmarks.

Paiva et al. [34] proposed a fusion approach of a Support Vector Machine and the mean-variance
optimization for portfolio selection, testing for data from the Brazilian market and analyzing the
effects of brokerage and transactions costs. Petropoulos et al. [35] applied five machine learning
algorithms (Support Vector Machine, Random Forest, Deep Artificial Neural Networks, Bayesian
Autoregressive Trees, and Naïve Bayes) to build a model for FOREX portfolio management, combining
the aforementioned methods in a stacked generalization system. Testing for data from 2001 to 2015
of ten currency pairs, the authors reported the superiority of machine learning models in terms
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of out-of-sample profitability. Moreover, the paper discussed potential correlations between the
individual machine learning models, providing insights concerning their combination to boost the
overall predictive power. Chen et al. [36] generalized the idea of diversifying for individual assets for
investment and proposed a framework to construct portfolios of investment strategies instead. The
authors used genetic algorithms to find the optimal allocation of capital into different strategies. For
an overview of the applications of machine learning techniques in portfolio management contexts, see
Pareek and Thakkar [37].

Regarding portfolio selection, Chicheportiche and Bouchaud [38] developed a nested factor
multivariate model to model the nonlinear interactions in stock returns, as well as the well-known
stylized facts and empirically detected copula structures. Testing for the S&P 500 index for three time
periods (before, during, and after the financial crisis), the paper showed that the optimal portfolio
constructed by the developed model showed a significantly lower out-of-sample risk than the one built
using linear Principal Component Analysis, whilst the in-sample risk is practically the same; thus being
positive evidence towards the introduction of nonlinearities in portfolio selection and asset allocation
models. Montenegro and Albuquerque [39] applied a local Gaussian correlation to model the nonlinear
dependence structure of the dynamic relationship between the assets. Using a subset of companies
from the S&P 500 Index between 1992 and 2015, the portfolio generated by the nonlinear approach
managed to outperform the Markowitz [2] model in more than 60% of the validation bootstrap samples.
In regard to the effects of dimensionality reduction on the performance of portfolios generated from
mean-variance optimization, Tayalı and Tolun [40] applied Non-negative Matrix Factorization (NMF)
and Non-negative Principal Components Analysis (NPCA) for data from three indexes of the Istanbul
Stock Market. Optimal portfolios were constructed based on Markowitz [2]’s mean-variance model.
Performing backtesting for 300 tangency portfolios (maximum Sharpe Ratio), the authors showed
that the portfolios’ efficiency was improved in both NMF and NPCA approaches over the unreduced
covariance matrix.

Musmeci et al. [41] incorporated a metric of persistence in the correlation structure between
financial assets, and argued that such persistence can be useful for the anticipation of market volatility
variations and that they could quickly adapt to them. Testing for daily prices of US and UK stocks
between 1997 and 2013, the correlation structure persistence model yielded better forecasts than
predictors based exclusively on past volatility. Moreover, the paper discusses the effect of the “curse
of dimensionality” that arises in financial data when a large number of assets is considered, an issue
that traditional econometric methods often fail to deal with. In this regard, Hsu et al. [4] argues in
favor of the use of nonparametric approaches and machine learning methods in traditional financial
economics problems, given their better empirical predictive power, as well as providing a broader
view of well-established research topics in the finance agenda beyond classic econometrics.

2.3. Regularization, Noise Filtering, and Random Matrix Theory

A major setback in introducing nonlinearities is keeping them under control, as they tend to
significantly boost the model’s complexity, both in terms of theoretical implications and computational
power needed to actually perform the calculations. Nonlinear interactions, besides often being difficult
to interpret and apart from a potentially better explanatory power, may bring alongside them a large
amount of noisy information, such as an increase in complexity that is not compensated by better
forecasts or theoretical insights, but instead which “pollutes” the model by filling it with potentially
useless data.

Bearing in mind this setback, the presence of regularization is essential to cope with the complexity
levels that come along with high dimensionality and nonlinear interactions, especially in financial
applications in which the data-generating processes tend to be highly chaotic. While it is important to
introduce new sources of potentially useful information by boosting the model’s complexity, being
able to filter that information, discard the noises, and maintain only the “good” information is a
big and relevant challenge. Studies like Massara et al. [42] discuss the importance of scalability and
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information filtering in light of the advent of the “Big Data Era”, in which the boost of data availability
and abundance led to the need to efficiently use those data and filter out the redundant ones.

Barfuss et al. [43] emphasized the need for parsimonious models by using information filtering
networks, and building sparse-structure models that showed similar predictive performances but
much smaller computational processing time in comparison to a state-of-the-art sparse graphical model
baseline. Similarly, Torun et al. [44] discussed the eigenfiltering of measurement noise for hedged
portfolios, showing that empirically estimated financial correlation matrices contain high levels of
intrinsic noise, and proposed several methods for filtering it in risk engineering applications.

In financial contexts, Ban et al. [45] discussed the effects of performance-based regularization
in portfolio optimization for mean-variance and mean-conditional Value-at-Risk problems, showing
evidence for its superiority towards traditional optimization and regularization methods in terms of
diminishing the estimation error and shrinking the model’s overall complexity.

Concerning the effects of high dimensionality in finance, Kozak et al. [46] tested many
well-established asset pricing factor models (including CAPM and the Fama-French five-factor model)
introducing nonlinear interactions between 50 anomaly characteristics and 80 financial ratios up to
the third power (i.e., all cross-interactions between the features of first, second, and third degrees
were included as predictors, totaling to models with 1375 and 3400 candidate factors, respectively). In
order to shrink the complexity of the model’s high dimensionality, the authors applied dimensionality
reduction and regularization techniques considering `1 and `2 penalties to increase the model’s sparsity.
The results showed that a very small number of principal components were able to capture almost all
of the out-of-sample explanatory powers, resulting in a much more parsimonious and easy-to-interpret
model; moreover, the introduction of an additional regularized principal component was shown to not
hinder the model’s sparsity, but also to not improve predictive performance either.

Depending on the “noisiness” of the data, the estimation of the covariances can be severely
hindered, potentially leading to bad portfolio allocation decisions—if the covariances are overestimated,
the investor could give up less risky asset combinations, or accept a lesser expected profitability;
if the covariances are underestimated, the investor would be bearing a higher risk than the level
he was willing to accept, and his portfolio choice could be non-optimal in terms of risk and
return. Livan et al. [17] discussed the impacts of measurement noises on correlation estimates and the
desirability of filtering and regularization techniques to diminish the noises in empirically observed
correlation matrices.

A popular approach for the noise elimination of financial correlation matrices is the Random
Matrix Theory, which studies the properties of matrix-form random variables—in particular, the
density and behavior of eigenvalues. Its applications cover many of the fields of knowledge of recent
years, such as statistical physics, dynamic systems, optimal control, and multivariate analysis.

Regarding applications in quantitative finance, Laloux et al. [47] compared the empirical
eigenvalues density of major stock market data with their theoretical prediction, assuming that
the covariance matrix was random following a Wishart distribution (If a vector of random matrix
variables follows a multivariate Gaussian distribution, then its Sample covariance matrix will follow
a Wishart distribution [48]).The results showed that over 94% of the eigenvalues fell within the
theoretical bounds (defined in Edelman [48]), implying that less than 6% of the eigenvalues contain
actually useful information; moreover, the largest eigenvalue is significantly higher than the theoretical
upper bound, which is evidence that the covariance matrix estimated via Markowitz is composed of
few very informative principal components and many low-valued eigenvalues dominated by noise.
Nobi et al. [49] tested for the daily data of 20 global financial indexes from 2006 to 2011 and also
found out that most eigenvalues fell into the theoretical range, suggesting a high presence of noises
and few eigenvectors with very highly relevant information; particularly, this effect was even more
prominent during a financial crisis. Although studies like El Alaoui [50] found a larger percentage of
informative eigenvalues, the reported results show that the wide majority of principal components is
still dominated by noisy information.
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Plerou et al. [51] found similar results, concluding that the top eigenvalues of the covariance
matrices were stable in time and the distribution of their eigenvector components displayed systematic
deviations from the Random Matrix Theory predicted thresholds. Furthermore, the paper pointed
out that the top eigenvalues corresponded to an influence common to all stocks, representing the
market’s systematic risk, and their respective eigenvectors showed a prominent presence of central
business sectors.

Sensoy et al. [52] tested 87 benchmark financial indexes between 2009 and 2012, and also observed
that the largest eigenvalue was more than 14 times larger than the Random Matrix Theory theoretical
upper bound, while only less than 7% of the eigenvalues were larger than this threshold. Moreover, the
paper identifies “central” elements that define the “global financial market” and analyzes the effects
of the 2008 financial crisis in its volatility and correlation levels, concluding that the global market’s
dependence level generally increased after the crisis, thus making diversification less effective. Many
other studies identified similar patterns in different financial markets and different time periods [53,54],
evidencing the high levels of noise in correlation matrices and the relevance of filtering such noise
for financial analysis. The effects of the covariance matrix cleaning using Random Matrix Theory
in an emerging market was discussed in Eterovic and Eterovic [55], which analyzed 83 stocks from
the Chilean financial market between 2000 and 2011 and found out that the efficiency of portfolios
generated using Markowitz [2]’s model were largely improved.

Analogously, Eterovic [56] analyzed the effects of covariance matrix filtering through the Random
Matrix Theory using data from the stocks of the FTSE 100 Index between 2000 and 2012, confirming
the distribution pattern of the eigenvalues of the covariance matrix, with the majority of principal
components inside the bounds of the Marčenko-Pastur distribution, while the top eigenvalue was much
larger than the remaining ones; in particular, the discrepancy of the top eigenvalue was even larger
during the Crisis period. Moreover, Eterovic [56] also found out that the performance improvement of
the portfolios generated by a filtered covariance matrix filtering over a non-filtered one was strongly
significant, evidencing the ability of the filtered covariance matrix to adapt to sudden volatility peaks.

Bouchaud and Potters [57] summarized the potential applications of the Random Matrix Theory
in financial problems, focusing on the cleaning of financial correlation matrices and the asymptotic
behavior of its eigenvalues, whose density was enunciated in Marčenko and Pastur [58]—and especially
the largest one, which was described by the Tracy-Widom distribution [59]. The paper presents an
empirical application using daily data of US stocks between 1993 and 2008, observing the correlation
matrix of the 500 most liquid stocks in a sliding window of 1000 days with an interval of 100 days each,
yielding 26 sample eigenvalue distributions. On average, the largest eigenvalue represents 21% of the
sum of all eigenvalues. This is a stylized fact regarding the spectral properties of financial correlation
matrices, as discussed in Akemann et al. [60]. Similar results were found in Conlon et al. [61], which
analyzes the effects of “cleaning” the covariance matrix on better predictions of the risk of a portfolio,
which may aid the investors to pick the best combination of hedge funds to avoid risk.

In financial applications, the covariance matrix is also important in multi-stage optimization
problems, whose dimensionality often grows exponentially as the number of stages, financial assets
or risk factor increase, thus demanding approximations using simulated scenarios to circumvent the
curse of dimensionality [62]. In this framework, an important requirement for the simulated scenarios
is the absence of arbitrage opportunities, a condition which can be incorporated through resampling
or increasing the number of scenarios [63]. Alternatively, [64] defined three classes for arbitrage
propensity and suggested a transformation on the covariance matrix’s Cholesky decomposition that
avoids the possibility of arbitrage in scenarios where it could theoretically exist. In this way, the
application of the Random Matrix Theory on this method can improve the simulated scenarios in
stochastic optimization problems, and consequently improve the quality of risk measurement and
asset allocation decision-making.

Burda et al. [65] provided a mathematical derivation of the relationship between the sample
correlation matrix calculated using the conventional Pearson estimates with its population counterpart,
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discussing how the dependency structure of the spectral moments can be applied to filter out the noisy
eigenvalues of the correlation matrix’s spectrum. In fact, a reasonable choice of a 500× 500 covariance
matrix (like using the S&P 500 data for portfolio selection) induces a very high level of noise in addition
to the signal that comes from the eigenvalues of the population covariance matrix; Laloux et al. [66]
used daily data of the S&P 500 between 1991 and 1996, and found out that the covariance matrix
estimated by the classical Markowitz model highly underestimates the portfolio risks for a second
time period (approximately three times lower than the actual values), a difference that is significantly
lower for a cleaned correlation matrix, evidencing the high level of noise and the instability of the
market dependency structure over time.

In view of the importance of controlling the complexity introduced alongside nonlinearities, in
this paper we sought to verify whether the stylized behavior of the top eigenvalues persists after
introducing nonlinearities into the covariance matrix, as well as the effect of cleaning the matrix’s
noises in the portfolio profitability and consistency over time, in order to obtain insights regarding
the cost–benefit relationship between using higher degrees of nonlinearity to estimate the covariance
between financial assets and the out-of-sample performance of the resulting portfolios.

3. Method

3.1. Mean-Variance Portfolio Optimization

Let a1, a2, ..., ap be the p available financial assets and rai be the return vector of the i-th
asset ai, where the expected return vector and the covariance matrix are defined, respectively, as
µ = (µ1, µ2, ..., µp) = (E[ra1 ],E[ra2 ], ...,E[rap ]) and Σ = (σij), i, j = 1, 2, ..., p, with σij = cov(rai , raj).
Markowitz [2]’s mean-variance portfolio optimization is basically a quadratic programming

constrained optimization problem whose optimal solution w = (w1, w2, ..., wp)T ,
p
∑

i=1
wi = 1

represents the weights allocated to each one of the p assets, such that the portfolio P = w1a1 +

w2a2 + ... + wpap. Algebraically, the expected return and the variance of the resulting portfolio P are:

E[P ] =
p
∑

i=1
wiE[rai ] = µTw ∈ R

V[P ] =
p
∑

i=1

p
∑

j=1
wiwjcov(rai , raj) = wTΣw ≥ 0

With the non-allowance of a short selling constraint, the quadratic optimization problem is
defined as:

Minimize : 1
2 wTΣw

Subject to : µTw = R, wT1 = 1, w > 0
(1)

which yields the weights that give away the less risky portfolio that provides an expected return equal
to R; therefore, the portfolio P that lies on the efficient frontier for E[P ] = R. The dual form of this
problem has an analogous interpretation—instead of minimizing the risk at a given level of expected
return, it maximizes the expected return given a certain level of tolerated risk.

Markowitz [2]’s model is very intuitive, easy to interpret, and enjoys huge popularity to this very
day, making it one of the main baseline models for portfolio selection. Moreover, it has only two inputs
which are fairly easy to be estimated. Nevertheless, there are many different ways of doing so, which
was the motivation of many studies to tackle this question, proposing alternative ways to estimate those
inputs to find potentially better portfolios. The famous Black and Litterman [10] model, for example,
proposes a way to estimate the expected returns vector based on the combination of market equilibrium
and the expectations of the investors operating in that market. In this paper, we focus on alternative
ways to estimate the covariance matrix, and whether features like nonlinearities (Kernel functions)
and noise filtering (Random Matrix Theory) can generate more profitable portfolio allocations.
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3.2. Covariance Matrices

While Pearson’s covariance estimator is consistent, studies like Huo et al. [67] pointed out that
the estimates can be heavily influenced by outliers, which in turn leads to potentially suboptimal
portfolio allocations. In this regard, the authors analyzed the effect of introducing robust estimation
of covariance matrices, with the results of the empirical experiments showing that the use of robust
covariance matrices generated portfolios with larger profitabilities. Zhu et al. [68] found similar
results, proposing a high-dimensional covariance estimator less prone to outliers and leading to more
well-diversified portfolios, often with a higher alpha.

Bearing in mind the aforementioned findings of the literature, we tested KPCA and the noise
filtering to many robust covariance estimators as well, in order to further investigate the effectiveness
of nonlinearities introduction and the elimination of noisy eigenvalues to the portfolio’s performance.
Furthermore, we intended to check the relative effects of said improvements to Pearson and robust
covariance matrices, and whether robust estimators remained superior under such conditions.

In addition to the Pearson covariance matrix Σ = 1
T

p
∑

i=1
xixT

i , where xi is the return vector (centered

in zero) of the i-th asset and T is the number of in-sample time periods, in this paper we considered four
robust covariance estimators: the minimum covariance determinant (henceforth MCD) method [69],
as estimated by the FASTMCD algorithm [70]; the Reweighted MCD, following [71]’s algorithm; and
the Orthogonalized Gnanadesikan-Kettenring (henceforth OGK) pairwise estimator [72], following
the algorithm of [73].

The MCD method aims to find observations whose sample covariance has a minimum
determinant, thus being less sensitive to non-persistent extreme events, such as an abrupt oscillation
of price levels that briefly come back to normal. Cator and Lopuhaä [74] demonstrated some
statistical properties of this estimator, such as consistency and asymptotic convergence to the Gaussian
distribution. The reweighted MCD estimator follows a similar idea, assigning weights to each
observation and computing the covariance estimates based on the observations within a confidence
interval, making the estimates even less sensitive to outliers and noisy datasets, as well as boosting the
finite-sample efficiency of the estimator, as discussed in Croux and Haesbroeck [75]. Finally, the OGK
approach takes univariate robust estimators of location and scale, constructing a covariance matrix
based on those estimates and replacing the eigenvalues of that matrix with “robust variances”, which
are updated sequentially by weights based on a confidence interval cutoff.

3.3. Principal Component Analysis

Principal component analysis (henceforth PCA) is a technique for dimensionality reduction
introduced by [76] which seeks to extract the important information from the data and to express
this information as a set of new orthogonal variables called principal components, given that the
independent variables of a dataset are generally correlated in some way. Each of these principal
components is a linear combination of the set of variables in which the coefficients show the importance
of the variable to the component. By definition, the sum of all eigenvalues is equal to the total variance,
as they represent an amount of observed information; therefore, each eigenvalue represents the
variation explained of the i-th principal component PCi, such that their values reflect the proportion
of information maintained in the respective eigenvector, and thus are used to determine how many
factors should be retained.

In a scenario with p independent variables, if it is assumed that the eigenvalues’ distribution
is uniform, then each eigenvalue would contribute to 1

p of the model’s overall explanatory power.

Therefore, taking a number k < p of principal components that are able to explain more than k
p of the

total variance can be regarded as a “gain” in terms of useful information retaining and noise elimination.
In the portfolio selection context, Kim and Jeong [77] used PCA to decompose the correlation matrix
of 135 stocks traded on the New York Stock Exchange (NYSE). Typically, the largest eigenvalue is
considered to represent a market-wide effect that influences all stocks [78–81].
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Consider Σ as a covariance matrix associated with the random vector X = [X1, X2..., Xp] with
eigenvalues λ1 ≥ λ2... ≥ λp ≥ 0, where the rotation of the axis in Rp yields the linear combinations:

Y1 = qT
1 X = q11X1 + q12X2 + ... + q1pXp

Y2 = qT
2 X = q21X2 + q22X2 + ... + q2pXp

...

Yp = qT
p X = qp1X1 + qp2X2 + ... + qppXp

or

Y = QTX

where Qi are the eigenvectors from Σ. Thus, the first principal component Y1 is the projection in the
direction in which the variance of the projection is maximized. So, we obtained Y1, Y2...Yp orthonormal
vectors with maximum variability.

To obtain the associated eigenvectors, we solved for det(Σ − λI) = 0 to obtain the diagonal
matrix composed by the eigenvalues. The variance of the ith principal component of Σ is equal to its
i-th eigenvalue λi. By construction, the principal component are pairwise orthogonal—that is, the
covariance between the eigenvectors is cov(QiX, QjX) = 0, i 6= j. Algebraically, the i-th principal
component Yi can be obtained by solving the following expression for ai [82]:

max
qi

{
qi ∑

p
i=1 qi

qT
i qi

cov(Yi, Yj) = 0, ∀ 0 < j < i

}
(2)

In the field of dimensionality reduction, the interest in entropy, the entropy-based distance
metric, has been investigated, where [83] developed kernel entropy component analysis (KECA)
for data transformation and dimensionality reduction, an extension of PCA mixture entropy and n
dimensionality decomposition. [84] shows that by using kernel entropy component analysis in an
application on face recognition algorithm based on Renyi entropy component, certain eigenvalues and
the corresponding eigenvectors will contribute more to the entropy estimate than others, since the
terms depend on different eigenvalues and eigenvectors.

3.4. Kernel Principal Component Analysis and Random Matrix Theory

Let X be a T × p matrix, T being the observations, p the variables, and Σ the covariance matrix
p× p. The spectral decomposition of Σ is given by:

λQ = ΣQ

being λ ≥ 0 the eigenvalues and Q the eigenvectors.
If the values of matrix X are random normalized values generated by a Gaussian distribution,

then if T → ∞ and p → ∞ where Ψ = T
p ≥ 1 the eigenvalues of matrix Σ result in the following

probability density function [61]:

p(λ) =
Ψ
2π

√
(λmax − λ)(λ− λmin)

λ
(3)

where λmax and λmin are the bound given by:

λmax
min =

(
1 +

1
Ψ
± 2

√
1
Ψ

)
(4)
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This result basically states that the eigenvalues of a purely random matrix based on distribution
(3) tend to fall inside the theoretical boundaries; thus, eigenvalues larger than the upper bound are
expected to contain useful information concerning an arbitrary matrix, whilst the noisy information is
dispersed into the other eigenvalues, whose behavior is similar to the eigenvalues of a matrix with no
information whatsoever.

There are many applications of the Random Matrix Theory (RMT) in the financial context. Ref. [85]
used RMT to reduce the noise into data before to model the covariance matrix of assets on Asset
Pricing Theory Models by using the Bayesian approach. The posteriori distribution was adjusted by
Wishart Distribution using MCMC methods.

The procedures proposed by RMT for dispersion matrices noise filter in a finances context require
careful use. The reasons are due to the “stylized facts” present in this type of data as logarithmic
transformations in the attempt for symmetric distributions of returns and the presence of extreme
values. The work of [86] deals with these problems and uses Tyler’s robust M-estimator [87] to estimate
the dispersion matrix to then identify the non-random part with the relevant information via RMT
using [58] bounds.

The covariance matrix Σ can be factored as:

Σ = QΛQ−1 (5)

where Λ is a diagonal matrix composed by p eigenvalues λi ≥ 0, i = 1, 2, ..., p and each one of the
p columns of Q, qi, i = 1, 2, ..., p, are the eigenvectors associated with the i-th eigenvector λi. The
idea is to perform the decomposition of Σ following Equation (5) and to filter out the eigenvalues
which fall inside the boundaries postulated in Equation (4) and reconstruct Σ by multiplying back the
filtered eigenvalue matrix to the eigenvector matrices, and then using the filtered matrix as input to
Markowitz [2]’s model.

Eigenvalues smaller than the upper bound of Equation (4) were considered as “noisy eigenvalues”,
while eigenvalues larger than the upper bound were considered “non-noisy”. For the eigenvalue
matrix filtering, we maintained all non-noisy eigenvalues and replaced all the remaining noisy ones by
their average in order to preserve the stability (positive-definitiveness) and keep a fixed sum for the
matrix’s trace, following Sharifi et al. [88] and Conlon et al. [61].

For eigenvalue matrix filtering, we maintained all non-noisy eigenvalues in Λ and replaced all
the remaining noisy ones λnoise

i by their average (λ̄noise
i ):

λ̄noise
i =

Ω∈noise

∑
i=1

λnoise
i

#Ω ∈ noise

After the filtering process, we multiplied back the filtered eigenvalue matrix to yield the “clean”
covariance matrix:

Σ∗ = QΛ∗Q−1 (6)

where Λ∗ is a diagonal matrix composed of the cleaned eigenvalues.
The nonlinear estimation of the covariance matrix was achieved by means of a Kernel function,

defined as:
κ(xi, xj) = ϕT(xi) · ϕ(xj) ∈ R, i, j = 1, 2, ..., p (7)

where ϕ : Rp ⇒ Rq, p < q transforms the original data to a higher dimension, which can even be
infinite, and the use of the kernel function prevents the need to explicitly compute the functional form
of ϕ(x); instead, κ computes the inner product of ϕ. This is known as the kernel trick. The use of the
Kernel function can circumvent the problem of high dimensionality induced by ϕ(x) without the
need to explicitly compute its functional form; instead, all nonlinear interactions between the original
variables are synthesized in a real scalar. Since the inner product is a similarity measure in Hilbert
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spaces, the Kernel function can be seen as a way to measure the “margin” between the classes in high
(or even infinite) dimensional spaces.

The following application of the Kernel function to the linearly estimated covariance matrix:

Σ =
1
T

p

∑
i=1

xixT
i (8)

allows one to introduce a high number of nonlinear interactions in the original data and transform Σ

into a Kernel covariance matrix:

Σκ =
1
T

p

∑
i=1

ϕ(xi)ϕT(xi) (9)

In this paper, we tested the polynomial and Gaussian Kernels as κ. Both Kernels are widely used
functions in the machine learning literature. The polynomial Kernel:

κ(xi, xj) = [(xi · xj) + d]q, d ∈ R, q ∈ N+ (10)

has a concise functional form, and is able to incorporate all cross-interactions between the explanatory
variables that generate monomials with a degree less than or equal to a predefined q. This paper
considered polynomial Kernels of degrees 2, 3, and 4 (q = 2, 3, 4). Note that the polynomial Kernel
with q = 1 and d = 0 precisely yields the Pearson linear covariance matrix, so the polynomial Kernel
covariance matrix is indeed a more general case of the former.

The Gaussian Kernel is the generalization of the polynomial Kernel for q → ∞, and is one of
the most widely used Kernels in machine learning literature. It enjoys huge popularity in various
knowledge fields since this function is able to induce an infinite dimensional feature space while
depending on only one scattering parameter σ. The expression of the Gaussian Kernel is given by:

κ(xi, xj) = exp

(
−

xi − x2
j

2σ2

)
, σ > 0 (11)

The Kernel Principal Component Analysis (henceforth KPCA) is an extension of the linear
PCA applied to the Kernel covariance matrix. Basically, the diagonalization problem returns linear
combinations from the Kernel function’s feature space Rq, instead of the original input space Rp with
the original variables. By performing the spectral decomposition in the Kernel covariance matrix:

Σκ(pxp) = QΛκQ−1 (12)

and extracting the largest eigenvalues of the Kernel covariance eigenvalue matrix Λκ, we obtained
the filtered Kernel covariance eigenvalue matrix Λ∗

κ , which was then used to reconstruct the filtered
Kernel covariance matrix:

Σ∗
κ(pxp)

= QΛ∗
κ Q−1 (13)

Finally, Σ∗
κ was used as an input for the Markowitz portfolio optimization model, and the resultant

portfolio’s profitability was compared to the portfolio generated by the linear covariance matrix and
other aforementioned robust estimation methods, as well as their filtered counterparts. The analysis
was reiterated for data from seven different markets, and the results are discussed in Section 5.

The pseudocode of our proposed approach is displayed as follows:

1. Estimate Σ for training set data;
2. Perform spectral decomposition of Σ: Σ = QΛQ−1;
3. From the eigenvalues matrix Λ, identify the noisy eigenvalues λnoise

i based on the Random
Matrix Theory upper bound;

4. Replace all noisy by their average: λ̄noise
i to obtain the filtered eigenvalue matrix Λ∗;
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5. Build the filtered covariance matrix QΛ∗Q−1;
6. Use the filtered covariance matrix as input for Markowitz model and get the optimal portfolio

weights from in-sample data;
7. Apply the in-sample optimal portfolio weights for out-of-sample data and obtain

performance measures.

The above procedure was repeated for all seven datasets (NASDAQ 100, CAC 40, DAX-30, FTSE
100, NIKKEI 225, IBOVESPA, SSE 180). For Step 1 (estimation method of the covariance matrix), we
applied eight different methods, namely: linear (Pearson), minimum covariance determinant (MCD),
reweighted minimum covariance determinant (RMCD), Orthogonalized Gnanadesikan-Kettenring
(OGK), Polynomial Kernel functions of degree 2 (K_POLY2), degree 3 (K_POLY3) and degree 4
(K_POLY4), and the Gaussian Kernel function (K_GAUSS).

4. Empirical Analysis

4.1. Performance Measures

The trade-off between risk and return has long been well-known in the finance literature, where
higher expected return generally implies a greater level of risk, which motivates the importance of
considering risk-adjusted measures of performance. Therefore, it is not sufficient to view a portfolio’s
attractiveness only in terms of the cumulative returns that it offers, but instead, whether the return
compensates for the level of risk that the allocation exposes the investor to. The Sharpe ratio [89]
provides a simple way to do so.

Let P be a portfolio composed by a linear combination between assets whose expected return
vector is r, considering w as the weight vector of P and r ft as the risk-free rate at time t. Defining the
mean excess return over the risk-free asset of P along the N out-of-sample time periods as:

µ̄P =
1
N

N

∑
t=1

wT
t rt − r ft (14)

and defining the sample standard deviation of portfolio P as:

σP =

√√√√ 1
N − 1

N

∑
t=1

(wT
t rt − r ft − µ̄P )2 (15)

The Sharpe ratio of portfolio P is given by:

ShRP =
µ̄

σP
(16)

While the Sharpe ratio gives a risk-adjusted performance measure for a portfolio and allows direct
comparison between different allocations, it has the limitation of considering both the upside and the
downside risks. That is, the uncertainty of profits is penalized in the Sharpe ratio expression, even
though it is positive for an investor. Therefore, as discussed in works like Patton and Sheppard [90]
and Farago and Tédongap [91], the decomposition of risk in “good variance” and “bad variance”
can provide better asset allocation and volatility estimation, thus leading to better investment and
risk management decisions. Therefore, instead of using the conventional standard deviation, which
considers both methods of variance, Sortino and Price [92] proposed an alternative performance
measure that became known as the Sortino ratio, which balances the mean excess return only by the
downside deviation. The Sortino ratio for portfolio P is given by:

SoRP =
µ̄

σ−P
(17)
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where σ−P is the downside deviation:

σ−P =

√√√√ 1
N − 1

N

∑
t=1

min(0, (wT
t rt − r ft − µ̄P )2) (18)

Note that the downside deviation represents the standard deviation of negative portfolio returns,
thus measuring only the “bad" side of volatility; for periods that the portfolio yields a better return
than the mean excess return over the risk-free asset, this upside deviation is not accounted for by the
Sortino ratio.

Furthermore, we tested the statistical significance of the covariance matrix filtering improvement
on the portfolio’s performance. That is, instead of just comparing the values of the ratios, we tested to
which extent the superiority of the noise-filtering approach was statistically significant. For each model
and each analyzed market, we compared the Sharpe and Sortino ratios of the non-filtered covariance
matrices with their respective filtered counterparts using Student’s t tests. The null and alternative
hypothesis are defined as follows:{

H0 : ShRnon− f iltered = ShR f iltered

HA : ShRnon− f iltered < ShR f iltered
(19)

{
H0 : SoRnon− f iltered = SoR f iltered

HA : SoRnon− f iltered < SoR f iltered
(20)

Rejection of both null hypotheses implies that the Sharpe/Sortino ratio of the portfolio generated
using the filtered covariance matrix is statistically larger than the portfolio yielded by the non-filtered
matrix. The p-values for the hypothesis tests are displayed in Tables 1–7.

4.2. Data

For the empirical application, we used data from seven markets—namely, the United States,
United Kingdom, France, Germany, Japan, China, and Brazil; the chosen financial indexes representing
each market were, respectively, NASDAQ-100, FTSE 100, CAC 40, DAX-30, NIKKEI 225, SSE 180 and
Bovespa. We collected the daily return of the financial assets that composed those indexes during all
time periods between 1 January 2000 and 16 August 2018, totaling 4858 observations for each asset.
The data was collected from the Bloomberg terminal. The daily excess market return over the risk-free
rate was collected from Kenneth R. French’s data library (http://mba.tuck.dartmouth.edu/pages/
faculty/ken.french/data_library.html).

We split the datasets into two mutually exclusive subsets: we allocated the observations between
1 January 2000 and 3 November 2015 (85% of the whole dataset, 4131 observations) for the training
(in-sample) subset and the observations between 4 November 2015 and 16 August 2018 (the remaining
15%, 727 observations) for the test (out-of-sample) subset. For each financial market and each
covariance matrix method, we estimated the optimal portfolio for the training subset and applied the
optimal weights for the test subset data. The cumulative return of the portfolio in the out-of-sample
periods, their Sharpe and Sortino ratios, information regarding the non-noisy eigenvalues and p-values
of tests (19) and (20) are displayed in Tables 1–7.

5. Results and Discussion

The cumulative returns and risk-adjusted performance metrics are presented in Tables 1–7,
as well as information regarding the non-noisy eigenvalues and the p-values of the hypothesis tests.
Figures 1–7 show the improvement of filtered covariance matrices over their non-filtered counterparts
for each market and estimation method. The results are summarized as follows:

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Table 1. Summary results for assets of the NASDAQ-100 Index: CR is the cumulative return of
the optimal portfolio in the out-of-sample period; λ∗ is the number of non-noisy eigenvalues of the
respective covariance matrix; λ∗variance(%) is the percentage of variance explained by the non-noisy
eigenvalues; λtop is the value of the top eigenvalue; λ

top
variance(%) is the percentage of variance that the

top eigenvalue is responsible for; pSharpe is the p-value of the hypothesis test (19); and pSortino is the
p-value of the hypothesis test (20).

Covariance Method CR (%) Sharpe Sortino
λ∗ λ∗

variance(%) λtop λ
top
variance(%) pSharpe pSortinoMatrix Ratio Ratio

Non-filtered

Pearson 22.3297 0.3252 0.4439
MCD 19.1094 0.2713 0.3690

RMCD 18.6733 0.2632 0.3574
OGK 21.2332 0.3037 0.4138

K_POLY2 28.7582 0.3808 0.5144
K_POLY3 28.7561 0.3884 0.5253
K_POLY4 29.7912 0.4108 0.5561
K_GAUSS 13.7226 0.1703 0.2304

Filtered

Pearson 18.9984 0.2834 0.3847 5 45.38% 20.0680 33.33% 0.9432 0.9874
MCD 23.9648 0.3595 0.4924 5 51.1% 24.6837 40.99% 0.0004 <10−4

RMCD 23.4073 0.3459 0.4730 5 51.19% 24.6470 40.93% 0.0011 <10−4

OGK 23.6193 0.3512 0.4809 5 49.53% 23.7152 39.39% 0.0382 0.0061
K_POLY2 15.831 0.2218 0.3015 5 38.24% 16.1131 26.76% >0.9999 >0.9999
K_POLY3 16.7263 0.2496 0.3389 5 26.23% 9.2748 15.4% >0.9999 >0.9999
K_POLY4 16.186 0.2417 0.3283 5 19.29% 5.7377 9.53% >0.9999 >0.9999
K_GAUSS 21.823 0.2496 0.3435 5 67.89% 24.9393 41.42% 0.0015 <10−4
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Figure 1. Cumulative return improvement of noise-filtered covariance matrices over non-filtered ones
for assets of NASDAQ-100 Index during the out-of-sample period.
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Table 2. Summary results for assets of the FTSE 100 Index: CR is the cumulative return of the optimal
portfolio in the out-of-sample period; λ∗ is the number of non-noisy eigenvalues of the respective
covariance matrix; λ∗variance(%) is the percentage of variance explained by the non-noisy eigenvalues;
λtop is the value of the top eigenvalue; λ

top
variance(%) is the percentage of variance that the top eigenvalue

is responsible for; pSharpe is the p-value of the hypothesis test (19); and pSortino is the p-value of the
hypothesis test (20).

Covariance Method CR (%) Sharpe Sortino
λ∗ λ∗

variance(%) λtop λ
top
variance(%) pSharpe pSortinoMatrix Ratio Ratio

Non-filtered

Pearson −16.8525 −0.2443 −0.3236
MCD −23.9938 −0.3252 −0.4203

RMCD −24.2595 −0.3272 −0.4223
OGK −23.5119 −0.3223 −0.4178

K_POLY2 −2.4443 −0.0377 −0.0483
K_POLY3 −3.0975 −0.0453 −0.0575
K_POLY4 −3.1496 −0.0462 −0.0583
K_GAUSS −5.4357 −0.0772 −0.1022

Filtered

Pearson −15.1099 −0.2246 −0.2986 6 52.52% 22.7137 38.24% 0.0222 0.0051
MCD −22.5761 −0.3148 −0.4096 6 55.87% 25.6111 43.12% 0.1547 0.1491

RMCD −22.8926 −0.3178 −0.4131 6 56.27% 25.8719 43.55% 0.1813 0.1852
OGK −22.3237 −0.3142 −0.4104 6 55.15% 25.2449 42.5% 0.2137 0.2326

K_POLY2 −13.825 −0.2029 −0.2711 5 47.84% 21.2488 35.77% >0.9999 >0.9999
K_POLY3 −12.2619 −0.1812 −0.2413 7 38.27% 13.3597 22.49% >0.9999 >0.9999
K_POLY4 −10.2092 −0.1539 −0.2028 9 33.23% 8.6809 14.61% >0.9999 >0.9999
K_GAUSS 6.9977 0.0657 0.0908 7 75.37% 25.9374 43.66% <10−4 <10−4
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Figure 2. Cumulative return improvement of noise-filtered covariance matrices over non-filtered ones
for assets of FTSE 100 Index during the out-of-sample period.
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Table 3. Summary results for assets of the CAC 40 Index: CR is the cumulative return of the optimal
portfolio in the out-of-sample period; λ∗ is the number of non-noisy eigenvalues of the respective
covariance matrix; λ∗variance(%) is the percentage of variance explained by the non-noisy eigenvalues;
λtop is the value of the top eigenvalue; λ

top
variance(%) is the percentage of variance that the top eigenvalue

is responsible for; pSharpe is the p-value of the hypothesis test (19); and pSortino is the p-value of the
hypothesis test (20).

Covariance Method CR (%) Sharpe Sortino
λ∗ λ∗

variance(%) λtop λ
top
variance(%) pSharpe pSortinoMatrix Ratio Ratio

Non-filtered

Pearson 16.2333 0.2015 0.2882
MCD 17.2074 0.2182 0.3117

RMCD 17.4111 0.2216 0.3165
OGK 17.6784 0.2264 0.3235

K_POLY2 11.8756 0.1423 0.1963
K_POLY3 10.6055 0.1311 0.1793
K_POLY4 9.5146 0.1188 0.1614
K_GAUSS 12.3998 0.1348 0.1928

Filtered

Pearson 17.4651 0.2238 0.3199 3 56.82% 14.1697 48.52% 0.0147 0.0010
MCD 18.9068 0.2475 0.3533 2 58.57% 15.9837 54.73% 0.0022 <10−4

RMCD 19.0796 0.2504 0.3575 2 58.38% 15.9013 54.45% 0.0019 <10−4

OGK 18.6063 0.2423 0.3461 2 56.89% 15.4144 52.78% 0.0578 0.0126
K_POLY2 16.5982 0.2076 0.2969 3 51.5% 12.5296 42.9% <10−4 <10−4

K_POLY3 17.8811 0.2289 0.3274 4 42.31% 8.6342 29.57% <10−4 <10−4

K_POLY4 17.7003 0.2333 0.3311 4 33.88% 6.1270 20.98% <10−4 <10−4

K_GAUSS 11.5206 0.1228 0.1757 4 78.74% 16.0889 55.09% 0.8828 0.9549

−15.0%

−10.0%

−5.0%

0.0%

5.0%

10.0%

15.0%

2016 2017 2018

Time

A
dd

iti
on

al
 c

um
ul

at
iv

e 
re

tu
rn

 o
f n

oi
se

−
fil

te
re

d 
co

va
ria

nc
e 

m
at

ric
es

Pearson

MCD

RMCD

OGK

POLY2

POLY3

POLY4

Gauss

Figure 3. Cumulative return improvement of noise-filtered covariance matrices over non-filtered ones
for assets of CAC 40 Index during the out-of-sample period.
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Table 4. Summary results for assets of the DAX-30 Index: CR is the cumulative return of the optimal
portfolio in the out-of-sample period; λ∗ is the number of non-noisy eigenvalues of the respective
covariance matrix; λ∗variance(%) is the percentage of variance explained by the non-noisy eigenvalues;
λtop is the value of the top eigenvalue; λ

top
variance(%) is the percentage of variance that the top eigenvalue

is responsible for; pSharpe is the p-value of the hypothesis test (19); and pSortino is the p-value of the
hypothesis test (20).

Covariance Method CR (%) Sharpe Sortino
λ∗ λ∗

variance(%) λtop λ
top
variance(%) pSharpe pSortinoMatrix Ratio Ratio

Non-filtered

Pearson 6.3447 0.0772 0.1027
MCD −1.5643 −0.0315 −0.0414

RMCD −0.378 −0.0161 −0.0212
OGK 5.3011 0.0615 0.0815

K_POLY2 −4.6104 −0.0733 −0.0949
K_POLY3 −0.6555 −0.0204 −0.0265
K_POLY4 1.7874 0.0131 0.0171
K_GAUSS −10.2399 −0.1311 −0.1720

Filtered

Pearson 10.2332 0.1346 0.1796 3 55.24% 11.0402 46.1% 0.0014 <10−4

MCD 7.0445 0.0866 0.1149 2 58.39% 12.8292 53.57% <10−4 <10−4

RMCD 7.5928 0.0942 0.1254 2 58.88% 12.9601 54.11% <10−4 <10−4

OGK 9.8916 0.1286 0.1715 2 56.32% 12.3346 51.5% 0.0003 <10−4

K_POLY2 4.3642 0.0484 0.0640 2 46.78% 9.9835 41.69% <10−4 <10−4

K_POLY3 6.7303 0.0830 0.1099 3 38.77% 6.9275 28.93% <10−4 <10−4

K_POLY4 9.7678 0.1297 0.1717 4 35.17% 5.0114 20.93% <10−4 <10−4

K_GAUSS −18.5834 −0.2365 −0.3050 2 71.04% 13.7234 57.3% >0.9999 >0.9999
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Figure 4. Cumulative return improvement of noise-filtered covariance matrices over non-filtered ones
for assets of the DAX-30 Index during the out-of-sample period.



Entropy 2019, 21, 376 19 of 27

Table 5. Summary results for assets of the NIKKEI 225 Index: CR is the cumulative return of the optimal
portfolio in the out-of-sample period; λ∗ is the number of non-noisy eigenvalues of the respective
covariance matrix; λ∗variance(%) is the percentage of variance explained by the non-noisy eigenvalues;
λtop is the value of the top eigenvalue; λ

top
variance(%) is the percentage of variance that the top eigenvalue

is responsible for; pSharpe is the p-value of the hypothesis test (19); and pSortino is the p-value of the
hypothesis test (20).

Covariance Method CR (%) Sharpe Sortino
λ∗ λ∗

variance(%) λtop λ
top
variance(%) pSharpe pSortinoMatrix Ratio Ratio

Non-filtered

Pearson 19.0365 0.2104 0.2976
MCD 17.9163 0.1979 0.2791

RMCD 18.3996 0.1983 0.2803
OGK 17.833 0.1951 0.2757

K_POLY2 8.5753 0.0959 0.1325
K_POLY3 10.6699 0.1233 0.1700
K_POLY4 13.1313 0.1553 0.2145
K_GAUSS 14.5078 0.1586 0.2236

Filtered

Pearson 19.4964 0.2231 0.3161 12 54.88% 57.4396 39.38% 0.1347 0.0540
MCD 18.266 0.2025 0.2855 11 57.24% 63.4158 43.48% 0.3498 0.2938

RMCD 19.0273 0.2119 0.2987 12 58.83% 65.3846 44.83% 0.1235 0.0591
OGK 19.0061 0.2142 0.3023 11 56.5% 62.0915 42.57% 0.0501 0.0111

K_POLY2 15.1032 0.1637 0.2314 11 47.71% 49.6729 34.06% <10−4 <10−4

K_POLY3 16.8414 0.1890 0.2661 13 35.62% 30.0585 20.61% <10−4 <10−4

K_POLY4 18.2374 0.2090 0.2943 14 27.44% 18.6121 12.76% <10−4 <10−4

K_GAUSS 12.6904 0.1385 0.1953 15 72.24% 42.7789 29.33% 0.9570 0.9923
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Figure 5. Cumulative return improvement of noise-filtered covariance matrices over non-filtered ones
for assets of the NIKKEI 225 Index during the out-of-sample period.
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Table 6. Summary results for assets of the SSE 180 Index: CR is the cumulative return of the optimal
portfolio in the out-of-sample period; λ∗ is the number of non-noisy eigenvalues of the respective
covariance matrix; λ∗variance(%) is the percentage of variance explained by the non-noisy eigenvalues;
λtop is the value of the top eigenvalue; λ

top
variance(%) is the percentage of variance that the top eigenvalue

is responsible for; pSharpe is the p-value of the hypothesis test (19); and pSortino is the p-value of the
hypothesis test (20).

Covariance Method CR (%) Sharpe Sortino
λ∗ λ∗

variance(%) λtop λ
top
variance(%) pSharpe pSortinoMatrix Ratio Ratio

Non-filtered

Pearson −24.4861 −0.2945 −0.3765
MCD −18.4543 −0.2139 −0.2762

RMCD −20.8369 −0.2393 −0.3073
OGK −22.9376 −0.2617 −0.3364

K_POLY2 −36.7953 −0.3531 −0.4459
K_POLY3 −35.2879 −0.3460 −0.4335
K_POLY4 −34.3716 −0.3422 −0.4258
K_GAUSS −33.6337 −0.3735 −0.4744

Filtered

Pearson −21.0991 −0.2587 −0.3308 11 50.96% 56.5957 38.99% 0.0011 <10−4

MCD −25.1805 −0.2913 −0.3724 11 49.85% 54.7101 37.69% >0.9999 >0.9999
RMCD −20.685 −0.2379 −0.3053 11 50.78% 56.5502 38.96% 0.4543 0.4344
OGK −21.7307 −0.2520 −0.3235 11 48.66% 52.5361 36.2% 0.2154 0.1482

K_POLY2 −26.5935 −0.3140 −0.3978 12 41.25% 42.7236 29.44% 0.0007 <10−4

K_POLY3 −28.6612 −0.3292 −0.4140 13 28.83% 24.2135 16.68% 0.0870 0.0565
K_POLY4 −28.9269 −0.3338 −0.4186 12 20.18% 14.1161 9.73% 0.2469 0.2801
K_GAUSS −38.4531 −0.4102 −0.5175 12 69.52% 60.1106 41.42% 0.9986 0.9998
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Figure 6. Cumulative return improvement of noise-filtered covariance matrices over non-filtered ones
for assets of the SSE 180 Index during the out-of-sample period.
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Table 7. Summary results for assets of Bovespa Index: CR is the cumulative return of the optimal
portfolio in the out-of-sample period; λ∗ is the number of non-noisy eigenvalues of the respective
covariance matrix; λ∗variance(%) is the percentage of variance explained by the non-noisy eigenvalues;
λtop is the value of the top eigenvalue; λ

top
variance(%) is the percentage of variance that the top eigenvalue

is responsible for; pSharpe is the p-value of the hypothesis test (19); and pSortino is the p-value of the
hypothesis test (20).

Covariance Method CR (%) Sharpe Sortino
λ∗ λ∗

variance(%) λtop λ
top
variance(%) pSharpe pSortinoMatrix Ratio Ratio

Non-filtered

Pearson 9.3348 0.0636 0.0871
MCD 3.4975 0.0206 0.0280

RMCD 1.8602 0.0079 0.0107
OGK 3.0337 0.0167 0.0227

K_POLY2 15.2198 0.1127 0.1521
K_POLY3 16.2334 0.1184 0.1594
K_POLY4 16.6977 0.1194 0.1605
K_GAUSS 32.0362 0.1934 0.2657

Filtered

Pearson −3.5439 −0.0334 −0.0453 2 58.59% 13.5231 54.46% >0.9999 >0.9999
MCD −3.8358 −0.0364 −0.0492 2 55.01% 12.5411 50.51% 0.9994 >0.9999

RMCD −1.6626 −0.0191 −0.0258 2 54.11% 12.2963 49.52% 0.9329 0.9787
OGK −4.5348 −0.0412 −0.0557 2 54.81% 12.5097 50.38% 0.9994 >0.9999

K_POLY2 3.7777 0.0217 0.0296 2 47.88% 10.6994 43.09% >0.9999 >0.9999
K_POLY3 −4.0389 −0.0370 −0.0499 4 43.39% 7.3663 29.67% >0.9999 >0.9999
K_POLY4 −9.6085 −0.0809 −0.1087 4 35.63% 5.2703 21.23% >0.9999 >0.9999
K_GAUSS 31.7689 0.1916 0.2631 2 77.51% 16.0176 64.51% 0.5383 0.5568
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Figure 7. Cumulative return improvement of noise-filtered covariance matrices over non-filtered ones
for assets of Bovespa 100 Index during the out-of-sample period.

For the non-filtered covariance matrices, the overall performance of the linear Pearson estimates
was better than robust estimation methods in most markets, although it was outperformed by all three
robust methods (MCD, RMCD, and OGK) for the CAC and SSE indexes. In comparison to the nonlinear
covariance matrices induced by the application of Kernel functions, the linear approaches performed
better in four out of the seven analyzed markets (CAC, DAX, NIKKEI, and SSE), although in the other
three markets the nonlinear models performed better by a fairly large margin. Between the robust
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estimators, the performance results were similar, slightly favoring the OGK approach. Amongst the
nonlinear models, the Gaussian Kernel generally performed worse than the polynomial Kernels—an
expected result, as the Gaussian Kernel incorporates polynomial interactions that effectively tends
to infinity-degree, which naturally inserts a large amount of noisy information; the only market
where the Gaussian Kernel performed notably better was the Brazilian one, which is considered to be
an “emerging economy” and a less efficient market compared to the United States or Europe; even
though Brazil is the leading market in Latin America, this market’s liquidity, transaction flows, and
informational efficiency are quite smaller compared to major financial markets (For a broad discussion
about the dynamics of financial markets of emerging economies, see Karolyi [93]). Therefore, it is to be
expected that such a market contains more levels of “noise”, such that a function that incorporates a
wider range of nonlinear interactions tend to perform better.

As for the filtered covariance matrices, the Pearson estimator and the robust estimators showed
similar results, with no major overall differences in profitability or risk-adjusted measures—Pearson
performed worst than MCD, RMCD, and OGK for NASDAQ and better for FTSE and DAX. In
comparison to MCD and OGK, the RMCD showed slightly better performance. Similarly to the
non-filtered cases, the polynomial Kernels yielded generally better portfolios in most markets.
Concerning the Gaussian Kernel, even though its filtered covariance matrix performed particularly well
for FTSE and Bovespa, it showed very bad results for the German and Chinese markets, suggesting
that an excessive introduction of nonlinearities may bring along more costs than improvements.
Nevertheless, during the out-of-sample periods, the British and Brazilian markets underwent
exogenous events—namely the effects of the “Brexit” referendum for the United Kingdom and the
advancements of the “Car Wash” (Lava Jato) operation, which led to events like the prison of Eduardo
Cunha (former President of the Chamber of Deputies) in October 2016; and Luis Inácio da Silva (former
President of Brazil) in April 2018—that may have affected their respective systematic levels of risk and
profitability, potentially compromising the market as a whole. In this sense, the fact that the Gaussian
Kernel-filtered covariance matrices in those markets performed better than the polynomial Kernels is
evidence that the additional levels of “complexity” in those markets may demand the introduction
of more complex nonlinear interactions to make good portfolio allocations. These results are also
consistent with the finding of Sandoval Jr et al. [94], which pointed out that covariance matrix cleaning
may actually lead to the worst portfolio performances in periods of high volatility.

Regarding the principal components of the covariance matrices and the dominance of the top
eigenvalue discussed by the literature, the results showed that for all models and markets, the first
eigenvalue of the covariance matrix was much bigger than the theoretical bound λmax, which is
consistent with the stylized facts discussed in Section 2. Moreover, for the vast majority of the cases
(44 out of 54), the single top eigenvalue λtop contained more than 25% of all the variance. This
result is consistent with the finding of previous similar works stated in the literature review section
(Sensoy et al. [52] and others): the fact that a single principal component concentrated over 25% of the
information is evidence that it captures the systematic risk, the very slice of the risk which cannot be
diversified—in other words, the share of the risk that persists, regardless of the weight allocation. The
results persisted for the eigenvalues above the upper bound of Equation (4): in more than half of the
cases (31 out of 54), the “non-noisy” eigenvalues represented more than half of the total variance. The
concentration of information in non-noisy eigenvalues in polynomial Kernels was weaker than the
linear covariance matrices, while for the Gaussian Kernel the percentage of variance retained was even
larger—around 70% of the total variance for all seven markets.

Finally, the columns pSharpe and pSortino show the statistical significance of the improvement of
Sharpe and Sortino ratios brought about by the introduction of noise filtering based on the Random
Matrix Theory. The results indicate that, while in some cases the noise filtering worked very well,
in other cases it actually worsened the portfolio’s performances. Therefore, there is evidence that
better portfolios can be achieved by eliminating the “noisy eigenvalues”, but the upper bound given
by Equation (4) may be classifying actually informative principal components as “noise”. Especially
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concerning Kernel covariance matrices, the effects of the eigenvalues cleaning seemed unstable,
working well in some cases and very bad in others, suggesting that the dynamics of the eigenvalues
in nonlinear covariance matrices follow a different dynamic than linear ones, and the information
that is considered to be “noise” for linear estimates can actually be informative in nonlinear domains.
At the usual 95% confidence level, evidences of statistical superiority of filtered covariance matrices
was present in 25 out of 54 cases for the Sharpe ratio (rejection of null hypothesis in (19)) and 26 out
of 54 for the Sortino ratio (rejection of null hypothesis in (20)). The markets in which more models
showed significant improvement using the Random Matrix Theory were the French and the German;
on the other hand, again, for a less efficient financial market like the Brazilian one, the elimination of
noisy eigenvalues yielded the worst performances (the profitability of all portfolios actually dropped),
again consistent with the finding of Sandoval Jr et al. [94].

6. Conclusions

In this paper, the effectiveness of introducing nonlinear interactions to the covariance matrix
estimation and its noise filtering using the Random Matrix Theory was tested with daily data from
seven different financial markets. We tested eight estimators for the covariance matrix and evaluated
the statistical significance of the noise-filtering improvement on portfolio performance. While the
cleaning of noisy eigenvalues did not show significant improvements in every analyzed market, the
out-of-sample Sharpe and Sortino ratios of the portfolios were significantly improved for almost
half of all tested cases. The findings of this paper can potentially aid the investment decision for
scholars and financial market participants, as well as providing both theoretical and empirical tools
for the construction of more profitable and less risky trading strategies, as well as exploring potential
weaknesses of traditional linear methods of covariance estimation.

We also tested the introduction of different degrees of nonlinearities to the covariance matrices by
means of Kernel functions, with varied results: while in some cases, the Kernel approach managed to
get better results, for others the addition yielded a much worse performance, indicating that the use of
Kernels represent a high boost of the models’ complexity levels, which are not always compensated
by better asset allocations, even when part of the said additional complexity is filtered out. This
implies that the noise introduced by nonlinear features can surpass the additional predictive power
which they aggregate to the Markowitz model. To further investigate this result, future developments
include testing other Kernel functions besides the polynomial and the Gaussian to investigate whether
alternative frameworks of nonlinear dependence can show better results. For instance, the results
shown by different classes of Kernel functions [95] may fit better into the financial markets’ stylized
facts and reveal underlying patterns based on the Kernel’s definition. Tuning the hyperparameters for
each Kernel can also influence the model’s performance decisively.

Although the past performance of a financial asset does not determine its future performance, in
this paper we kept in the dataset only the assets that composed of the seven financial indexes during
the whole period between 2000 and 2018, thus not considering the possible survivorship bias in the
choice of the assets which can affect the model’s implications [96]. As for future advancements, the
difference between the “surviving” assets from the others can be analyzed as well. Other potential
improvements include the replication of the analysis for other financial indexes or markets and other
time periods, incorporation of transaction costs, and comparison with other portfolio selection models
apart from Markowitz’s.

This paper focused on the introduction on nonlinear interactions to the covariance matrix
estimation. Thus, a limitation was the choice of the filtering methods, as the replacement procedure
that we adopted was not the only one that the literature on the Random Matrix Theory recommends.
Alternative filtering methods documented by studies like Guhr and Kälber [97] and Daly et al. [98],
such as exponential weighting and Krzanowski stability maximization, may allow for better modeling
of underlying patterns of financial covariance structures and also lead to better portfolio allocations,
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such that the application of those methods and comparison to our proposed methods can be a subject
of future research in this agenda.
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