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Abstract
Mitochondrial DNA (mtDNA) mutations are a common cause of genetic disease with pathogenic
mtDNA mutations being detected in approximately 1 in 250 live births1-3 and at least 1 in 10,000
adults in the UK affected by mtDNA disease4. Treatment options for patients with mtDNA
disease are extremely limited and are predominantly supportive in nature. MtDNA is transmitted
maternally and it has been proposed that nuclear transfer techniques may be an approach to
prevent the transmission of human mtDNA disease5,6. Here we show that transfer of pronuclei
between abnormally fertilised human zygotes results in minimal carry-over of donor zygote
mtDNA and is compatible with onward development to the blastocyst stage in vitro. By
optimising the procedure we found the average level of carry-over following transfer of two
pronuclei is <2.0%, with many of the embryos containing no detectable donor mtDNA. We
believe that pronuclear transfer between zygotes, as well as the recently described metaphase II
spindle transfer, has potential to prevent the transmission of mtDNA disease in humans.

MtDNA mutations are maternally transmitted7. MtDNA is present in all cells in multiple
copies and in patients with mtDNA disease either all mtDNA copies are mutated (termed
homoplasmy) or there is a mixture of wild-type and mutated mtDNA (termed
heteroplasmy)8. Studies of human pedigrees with transmitted mtDNA mutations have
shown that clinical disease is only seen in those patients with high loads of mutated mtDNA
in affected tissues (usually greater than 60% mutated mtDNA)9,10. There has been very
limited success in developing effective treatment for mtDNA disease and genetic
counselling combined with prenatal or pre-implantation genetic diagnosis is increasingly
being offered to women who carry pathogenic mtDNA mutations11. However, these
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techniques will only be of value to women who have low levels of mtDNA mutations in
oocytes.

Following the granting of a research licence by the Human Fertilisation and Embryology
Authority (UK), and informed consent by the donors, we used abnormally fertilised
(unipronuclear or tripronuclear) human zygotes (one cell embryos) generated from a human
IVF programme to study the feasibility of pronuclear transfer to prevent mtDNA disease
transmission from mother to child. Unipronuclear and tripronuclear zygotes are not normally
used in fertility treatment. Our studies involved the transfer of one or two pronuclei between
abnormally fertilised zygotes (Figure 1, Supplementary Figure 1). Following treatment with
cytoskeletal inhibitors (nocodazole and cytochalasin B), pronuclei were removed from a
donor zygote within a karyoplast containing a small volume of cytoplasm. Karyoplasts were
placed under the zona pellucida of a recipient zygote and were fused using inactivated viral
envelope proteins of the Hemagglutinating Virus of Japan (HVJ-E). Reconstituted zygotes
were cultured for 6-8 days to monitor development in vitro.

We first confirmed that pronuclear transfer between human zygotes was associated with a
change in the nuclear genotype of the embryo by analysing microsatellite markers. In all
embryos studied, informative markers confirmed that the reconstituted pronuclear transfer
embryo contained donor embryo nuclear genotype (see Supplementary Table 1). We then
determined if pronuclear transfer was compatible with onward development in vitro. This
was complicated by the fact that abnormally fertilised zygotes have limited potential for
development to the blastocyst stage in vitro (17%) compared with normally fertilised
embryos (32%). Nonetheless, following pronuclear transfer, zygotes showed onward
development with 10 out of 44 (22.7%) of one pronuclear transfer zygotes and 8 out of 36
(22.2%) of two pronuclear transfer zygotes developing to >8 cell stage. We found no
difference in embryo development at any stage whether we transferred one or two pronuclei.
Following two pronuclear transfer, 8.3% of abnormally fertilised embryos developed to the
blastocyst stage (Figure 1h and i). This is approximately 50% of the blastocyst rate for
unmanipulated abnormally fertilised embryos; as there is no reliable morphological indicator
to distinguish between the male and female pronucleus in the human zygote, it is likely that
the decline in blastocyst formation is partly due to absence of either a maternal or paternal
genome.

Having established that pronuclear transfer is compatible with onward development of
human embryos, we next determined the carry-over of donor mtDNA genotype in the
reconstituted pronuclear transfer embryos (Figure 2). We sequenced the non-coding mtDNA
control region from both the pronuclear donor and pronuclear recipient embryos (Figure 2b)
and identified polymorphic mtDNA variants which were unique to donor or recipient
embryo, thereby allowing the determination of mtDNA carry-over in the pronuclear transfer
embryo. Hot last cycle-PCR RFLP assays were developed specifically for these mtDNA
variants (Figure 2c) and used to analyse mtDNA extracted from whole embryos. We found
that there was variation in the amount of mtDNA genotype from the donor zygote which is
transferred to the two pronuclear transfer embryo (8.1% ±7.6; mean ± SD n=8) (Figure 2d).

There are many factors which could affect the carry-over of mtDNA following pronuclear
transfer. We therefore studied the mtDNA copy number present in human oocytes. Similar
to the results in mice and previous studies of human oocytes at various stages of
development12 13 14, we found marked variation in the mtDNA copy number (Figure 2e)
and this may contribute to variation in level of mtDNA carry-over. Previous studies have
investigated heteroplasmy levels in blastomeres obtained from donated heteroplasmic
embryos and have reported variation of 0-19% between individual blastomeres from the
same embryo11,15. We therefore determined whether the proportion of donor mtDNA
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genotype also varied between blastomeres in the reconstituted embryos following transfer of
two pronuclei (Figure 3a, b). In 1/8 embryos there was no detectable donor mtDNA in any
blastomere. In the other seven embryos which contained donor zygote mtDNA, there was
variation in level of donor mtDNA genotype between blastomeres (Figure 3b). Although this
variation is similar to previous reports on heteroplasmic human embryos11,15, we wished to
minimise the carry-over of donor zygote mtDNA and therefore explored techniques to
reduce the amount of cytoplasm contained within the pronuclear karyoplast. We focused on
careful manipulation of the pronuclear karyoplast and we were able to remove the pronuclei
with a minimal amount of cytoplasm (Figure 3c). Using hot last cycle-PCR RFLP assays we
demonstrated that the mtDNA carry-over was significantly lower (P<0.005), with 4/9
embryos containing undetectable levels of mtDNA carry-over (Figure 3d, e). The average
mtDNA carry-over in all remaining embryos was <2% (mean 1.68 ± 1.81% mean ± SD
n=9). These embryos also revealed much less variation in mtDNA carry-over between
individual blastomeres (Fig 3e). These levels of mtDNA are equivalent to those seen in
unaffected individuals in epidemiological studies1.

Very recently a related technique, metaphase II spindle transfer between unfertilised
metaphase II oocytes, has been reported using non-human primate oocytes16. This resulted
in the birth of live offspring in which the authors were unable to detect donor mtDNA using
a less sensitive assay than we have used (lower limit of detection was 3% compared with
<0.5%). Whilst our optimised techniques of pronuclear extraction resulted in <3% carry-
over, we were nonetheless interested to determine whether the technique of metaphase II
spindle transfer might offer the possibility of further reducing the level of mtDNA carry-
over. We therefore measured the mtDNA copy number in karyoplasts containing the
metaphase II spindle from freshly harvested human oocytes donated to research. We found
no significant difference in the mtDNA copy number between metaphase II spindle
karyoplasts (13222 ± 5733 mean ± SEM, n=21) compared with double pronuclear
karyoplasts (18316 ±4336 mean ± SEM n=12). The wide variation within both groups of
karyoplasts is likely due to the vastly different copy numbers observed in human oocytes
(Figure 2f). We conclude from this that both approaches would be effective in greatly
reducing the risk of mtDNA disease.

Our studies show that in human zygotes, pronuclear transfer has the potential to “treat”
human mtDNA disease at a genetic level. The recent development of metaphase II spindle
transfer has confirmed in non-human primates that this closely related method also holds
great promise. The comparative value of both techniques has not been established in the
same animal model or human oocytes, but both have potential advantages. The metaphase II
spindle is smaller and technically easier to remove. However, it is not surrounded by a
membrane and without the use of a DNA stain, it would be difficult to eliminate the
possibility that some chromosomes may not be aligned on the metaphase plate or associated
with the spindle as has been previously reported in human oocytes from older women 17 and
in response to exposure to ambient conditions18. Studies in mice have shown that
pronuclear transfer limits mtDNA transfer to subsequent generations19. In addition, the
pronuclei are easier to visualise than the metaphase II spindle but they are also larger and
their manipulation may induce more cellular trauma. Our studies in human zygotes have
been particularly challenging since working with abnormally fertilised zygotes is technically
more difficult than using normally fertilised (two pronuclear) zygotes and is less likely to
yield normal embryos due to abnormal chromosomal constitution20. Despite these problems
we observed development of the manipulated embryos at approximately 50% of the
abnormal embryos which have not been manipulated and shown either no detectable or very
low levels of mtDNA carry-over.
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In view of the lack of available treatment for these patients and their families21, preventing
the transmission of mtDNA disease is a priority. Whilst mtDNA mutations are common,
pronuclear or metaphase II spindle transfer is unlikely to be of value for asymptomatic
individuals or those with mild mtDNA disease in the family. However, in some families,
mtDNA disease can affect multiple family members with catastrophic consequences22 – for
these families pronuclear transfer may be an option that mothers who carry mtDNA
mutations would consider. MtDNA mutations which are maternally inherited are either
homoplasmic or heteroplasmic and high loads of mutated mtDNA are necessary before there
is clinical disease (usually >60% of total mtDNA)8. We have shown that we can generate
human embryos with donor mtDNA carry-over at levels well below the disease threshold
and indeed unlikely to be detected except with very sensitive genetic techniques. With
inherited mtDNA mutations there is little evidence of increasing levels of mutated mtDNA
in tissues with time, in fact the opposite occurs with loss of mutation in some tissues23, and
thus the very low levels of mtDNA carry-over detected in some embryos will not cause
mtDNA disease.

We believe the data presented in this paper on human zygotes and their development show
that pronuclear transfer has the potential to prevent the transmission of mtDNA disease in
humans. Manipulation of human oocytes and zygotes has the potential to cause
chromosomal or epigenetic abnormalities24 in the developing embryo which require further
study to ensure the safety of different techniques. We believe our study in human zygotes
and embryos represents a major advance towards preventing transmission of disease in
patients with mtDNA mutations.

METHODS SUMMARY
Human embryos and manipulations

Abnormally fertilised human zygotes and metaphase II oocytes were obtained from patients
undergoing fertility treatment at the Newcastle Fertility Centre at Life following informed
consent. The projects were licensed by the Human Fertilisation and Embryology Authority
(HFEA) and approved by the Newcastle and North Tyneside Local Ethics Committee.
Pronuclear transfer was performed using abnormally fertilised human zygotes generated
following in vitro fertilisation (IVF) or intracytoplasmic sperm injection (ICSI). Abnormal
zygotes were identified on day 1 of development by the presence of one pronucleus
(unipronucleate) or three pronuclei (tripronucleate) 18-19 hours after insemination.
Karyoplasts containing pronuclei and surrounding cytoplasm were removed from the donor
zygote using a biopsy pipette and transferred to a recipient zygote. Following fusion, the
reconstituted zygotes were either cultured for 6-8 days to monitor development to the
blastocyst stage or were cultured before being disaggregated for analysis of mtDNA in
individual blastomeres.

Analysis of mtDNA
To determine the carry-over of donor zygote mtDNA we sequenced the non-coding control
region and determined differences between donor and recipient mtDNA sequences. We
devised last hot cycle-PCR RFLP assays to differentiate between donor and recipient
mtDNA. Following cell lysis, extracted DNA was amplified, digested and separated on
polyacrylamide gels. The relative amount of each genotype was determined by
quantification of individual bands. MtDNA copy number was determined in oocytes, early
embryos and karyoplasts by real-time PCR using a probe to the MT-ND1 gene of the
mitochondrial genome.
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METHODS
Human oocytes and embryos

Abnormally fertilised human zygotes and metaphase II oocytes were obtained from patients
undergoing fertility treatment at the Newcastle Fertility Centre at Life following informed
consent. The projects were licensed by the Human Fertilisation and Embryology Authority
(HFEA) and approved by the Newcastle and North Tyneside Local Ethics Committee.
Pronuclear transfer was performed using abnormally fertilised human zygotes generated
following in vitro fertilisation (IVF) or intracytoplasmic sperm injection (ICSI). Abnormal
zygotes were identified on day 1 of development by the presence of one pronucleus
(unipronucleate) or three pronuclei (tripronucleate) 18-19 hours after insemination. For
metaphase II spindle removal, freshly harvested metaphase II oocytes from consenting
women were denuded of cumulus cells using hyaluronidase (1X HYASE, Vitrolife). Mature
oocytes (metaphase II) oocytes used for the study of mtDNA copy number included in vitro
matured oocytes, and oocytes that failed to undergo fertilisation following ICSI

Pronuclear and metaphase II spindle karyoplast removal
Zygotes were transferred to G1v5 Plus medium (Vitrolife) containing cytochalasin B (5μg/
ml) and nocodazole (10μg/ml) at 37°C with 7% CO2 immediately before manipulation or
for 30 minutes prior to manipulation for improved karyoplast removal. Zygotes were
incubated in G1v5 Plus medium (Vitrolife) containing cytochalasin B (5μg/ml) and
nocodazole (10μg/ml) at 37°C with 7% CO2 during the procedure. Manipulations were
performed using an inverted microscope (Nikon Eclipse TE2000-U) equipped with a
micromanipulation system (Integra Ti, Research Instruments, UK). Zygotes were
immobilised with a holding pipette and a small ablation made in the zona pellucida using a
microsurgical laser (Saturn Active, Research Instruments). A customised biopsy pipette with
an inner diameter (ID) of 25μm (Rochford Medical, UK) was inserted under the zona
pellucida. The pronucleus and surrounding cytoplasm were then aspirated into the biopsy
pipette as a membrane-bound karyoplast. For transfer of a single pronucleus, we removed a
pronuclear karyoplast from either a unipronucleate or tripronucleate donor zygote and
transferred this to a recipient zygote containing only one pronucleus. The recipient zygote
was either a unipronucleate zygote, which required no manipulation prior to transfer, or a
tripronucleate zygote from which two pronuclei had been removed. Thus, the reconstituted
zygotes contained two pronuclei. In experiments involving transfer of two pronuclei, we
removed pronuclei either as two individual pronuclear karyoplasts or a single karyoplast
containing both pronuclei. These karyoplasts were then transferred to an enucleated
recipient zygote such that the reconstructed zygote contained two pronuclei. For metaphase
II spindle removal, oocytes were incubated in G1 medium (Vitrolife) containing 2.5μg/ml
cytochalasin B for 10 minutes prior to manipulation and throughout the procedure as above.
The spindle was visualized using polarized light birefringence (Oosight Meta Imaging
System, Cambridge Research and Instrumentation, CRi). Oocytes were immobilised with a
holding pipette and the zona pellucida thinned using a microsurgical laser (Saturn Active,
Research Instruments). A biopsy pipette with an ID of 18-20μm was inserted through the
zona pellucida and the spindle and surrounding cytoplasm removed from the oocyte as a
membrane-bound karyoplast.

Pronuclear karyoplast fusion
Pronuclear karyoplasts were transferred within a biopsy pipette to a 1μl drop of HVJ-E
(GenomONE™-CFEX HVJ Envelope Cell Fusion Kit, Cosmo Bio Co) and a small volume
of the suspension approximately equal to the volume of the karyoplast aspirated into the
pipette. The pipette was then moved to a drop containing a recipient zygote. The pipette was
inserted into the zygote through a small ablation in the zona pellucida and the HVJ-E and
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pronuclear karyoplast aspirated into the perivitelline space ensuring good contact between
the karyoplast and plasma membrane. Fusion of the pronuclear karyoplast with the recipient
zygote was confirmed visually and usually occurred within 10 minutes up to 1 hour after
transfer. Manipulated zygotes were transferred to G1v5 Plus medium (Vitrolife) and
cultured at 37°C with 7% CO2. Embryos were transferred to G2v5 Plus medium (Vitrolife)
on day 3 of development and cultured at 37°C with 7% CO2 up to day 7. Embryos for
mitochondrial DNA analysis were then transferred to sterile 0.5ml microfuge tubes and
stored at −80°C until DNA extraction.

Manipulations to obtain individual blastomeres
Pronuclear transfer embryos were disaggregated into individual blastomeres by
micromanipulation or removal of the zona pellucida using Acid tyrode's solution. For
micromanipulation, the embryo was placed in G-PGD medium (Vitrolife) and immobilised
with a holding pipette. A hole was made in the zona pellucida using the microsurgical laser
and individual blastomeres removed with a biopsy pipette. For removal of the zona
pellucida, the embryo was placed briefly in Acid tyrode's solution until the zona pellucida
had dissolved and was then transferred to G-PGD medium. Individual blastomeres were
disaggregated by continual pipetting and transferred to sterile 0.5ml microfuge tubes for
analysis.

Embryo and blastomeres lysis
Individual embryos or blastomeres were lysed for 2 hours in a lysis buffer (50mM Tris-HCl,
pH 8.5, 1mM EDTA, 0.5% Tween-20 and 200μg/ml proteinase K) at 55°C. The enzyme
was then inactivated by incubation at 95°C for 10 minutes.

MtDNA sequencing
The non-coding control region of the mitochondrial genome was amplified using two rounds
of PCR amplification as described previously25 with the following modification: secondary
PCR reactions were performed with 4 sets of overlapping M13-tailed primers (primer
nucleotide positions: D1F: 15758-15777 and D1R: 019-001, D2F: 16223-16244 and D2R:
129-110, D3F: 16548-16569 and D3R: 389-370, D4F: 323-343 and D4R: 771-752) with an
annealing temperature of 58°C. PCR products were purified using ExoSapIT (Amersham
Biosciences) then sequenced on an ABI3170 Genetic Analyser (Applied Biosystems) with
BigDye Terminator cycle sequencing chemistries (v3.1, Applied Biosystems). Sequences
were directly compared to the revised Cambridge Reference Sequence for human mtDNA26
(GenBank Accession number: AC_000021.2) using SeqScape software (v2.1.1, Applied
Biosystems).

Amount of donor zygote mtDNA carry-over in pronuclear transfer embryos
Level of donor zygote mtDNA carry-over was determined by last hot cycle PCR-restriction
fragment length polymorphism (RFLP) analysis. Separate assays were developed for each
discriminatory mtDNA sequence variant identified and were performed as described
previously27,28, with modifications as listed in Supplementary Table 2. Fragments
containing the sequence variants of interest were amplified by PCR using primers listed in
the table and a last hot cycle performed with 5μCi -dCTP (3,000 Ci/mmol). Equal amounts
(1,000 counts) of precipitated labelled products were digested overnight with 10 U of assay-
specific restriction enzyme (New England Biolabs, Hitchin, UK). Restriction fragments
were separated by 12% non-denaturing polyacrylamide gel electrophoresis, dried onto a
support, exposed to a Phosphorimager screen (Molecular Dynamics, Eugene, Oregon) and
analysed with ImageQuant software (Molecular Dynamics). Carry-over donor zygote
mtDNA was calculated as the percentage of total mtDNA in the recipient embryo.
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Quantitative Real-Time PCR
Quantitative real-time PCR was performed using a previously designed TaqMan probe for
the MT-ND1 gene (MT-ND1L3506-3529) and PCR primers (forward primer, L3485-3504,
reverse primer, H3532-3553)29,30 The reaction mixture consisted of 1μl single cell lysate,
9.5μl nanopure water, 12.5μl TaqMan Universal MasterMix (2.5μl 10 × buffer A, 5μl
10mM MgCl2, 0.5μl each dNTP (10mM), 0.25μl 1U/μl AmpErase uracil-N-glycosylase
(UNG), 0.13μl 5U/μl AmpliTaq Gold DNA polymerase, 2.62μl nanopure water; Applied
Biosystems, UK), 300nM forward and reverse primer and 100nM fluorgenic probe. Each
reaction was completed in triplicate and performed using the ABI PRISM 7000 Sequence
Detection System (Applied Biosystems, UK). Amplification conditions were: 50°C for
2mins, 95°C for 10mins, followed by 40 cycles of 95°C for 15sec and 60°C for 1min. A
template encompassing the MT-ND1 region was amplified by PCR (forward primer,
L3017-3036, reverse primer, H4057-4037) and the gel purified PCR product (QIAEX II Gel
Extraction kit, Qiagen) used as a standard control. The concentration of the control template
was determined using a spectrophotometer and this value used to calculate the copy number.
Serial dilutions of the MT-ND1 template were amplified in triplicate in the same experiment
as the samples and a standard curve generated by plotting the logarithm of the copy number
against the mean threshold cycle (Ct). The standard curve was then used to calculate the
mtDNA copy number for each sample.

Genotyping nuclear DNA
Ovarian follicular cells and sperm were used for donor and recipient nuclear genotype
analysis. DNA extraction from follicular cells was performed using the QIAamp® DNA
Mini kit according to the manufacturer's instructions (Qiagen). Sperm DNA was extracted in
200μl 5% washed Chelex beads (Sigma), 2μl proteinase K and 7μl 10mM DTT. Following
a 4-hour incubation at 56°C, the enzyme was inactivated by incubation at 95°C for 10
minutes. The Chelex beads were removed from the DNA samples by centrifugation at
13,000 rpm for 3 minutes. Whole genome amplification from 4 individual embryos cultured
to the 2-8-cell stage, was performed using the REPLI-g® Mini kit (Qiagen, Crawley, UK).
Briefly, embryos lacking the zona pellucida were lysed in 2.5μl lysis buffer (200mM NaOH,
50mM DTT) for 10 minutes at 65°C. Lysis was terminated with 2.5μl 200mM Tricine.
Genome amplification was achieved in a 50μl reaction for 16 hours at 30°C according to the
manufacturer's instructions. The reaction was terminated by incubation at 65°C for 3
minutes. Follicular cell and sperm genomic DNA, and whole genome amplified embryo
DNA were analysed for 16 polymorphic microsatellite markers using the PowerPlex® 16
System (Promega). PCR reactions were carried out in a volume of 12.5μl containing 1ng of
DNA, 1X Gold Star buffer, 1X PowerPlex® 16 primer pair mix and 2 units of AmpliTaq
Gold DNA polymerase (Applied Biosystems). Amplification was performed in a GeneAmp
PCR system 9700 thermal cycler (Applied Biosystems) as per manufacturer's instructions.
One microlitre of PCR product was diluted in 9μl of Hi-Di™ Formamide (Applied
Biosystems) and 1μl of ILS600 size standard (Promega), denatured at 95°C for 3 minutes
and immediately cooled on ice for 3 minutes. The same treatment was carried out with 1μl
of PowerPlex® 16 System Allelic Ladder (Promega). Amplified fragments were detected
using a 3130xl Genetic Analyser (Applied Biosystems) and data analysed using
GeneMapper v4.0 software (Applied Biosystems).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Pronuclear transfer using abnormally fertilised human zygotes
a-g, Transfer of two pronuclei between human zygotes. a, Schematic diagram showing
recipient zygote (one pronucleus which is removed) and donor zygote (three pronuclei, two
of which are removed and fused with the recipient zygote). b, Recipient zygote containing a
single pronucleus (marked with arrow) which is removed by a biopsy pipette to leave an
enucleated zygote d. c, Donor zygote with three pronuclei (marked with arrows) and two of
these pronuclei removed as karyoplasts e. f, Enucleated recipient zygote with two pronuclear
karyoplasts from the donor zygote (arrows) prior to fusion. g, Recipient zygote 20 minutes
after transfer already showing fusion of the karyoplast membranes (arrow). h, Development
of unmanipulated abnormally fertilised zygotes (n=76; black bars), one pronuclear (n=44;
grey bars) and two pronuclear (n=36; white bars) transfer embryos. i, Day 7 hatched
blastocyst containing two donor pronuclei. Scale bars are 50μm.
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Figure 2. MtDNA analysis of pronuclear transfer embryos
a, Schematic diagram showing the potential transfer of donor zygote mtDNA to the recipient
zygote. b, Sequence electropherograms of mtDNA non-coding control region in donor and
recipient zygotes with the sequence variant used for last hot cycle PCR-RFLP assay
highlighted. c, Scheme of RFLP designed using the sequence variant. d, Last hot cycle-PCR
RFLP analysis of donor mtDNA carry-over detected in two pronuclear transfer embryos
with products separated by 12% nondenaturing polyacrylamide gel electrophoresis. U:
undigested, C1 and C2: controls (C1: donor embryo for E3, recipient embryo for E1 and E2;
C2: donor embryo for E1 and E2, recipient embryo for E3). e, MtDNA copy number in
human mature oocytes.
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Figure 3. MtDNA analysis of individual blastomeres disaggregated from pronuclear transfer
embryos
a, Last hot cycle PCR RFLP of individual blastomeres from a pronuclear transfer embryo
showing variable levels of mtDNA donor genotype in individual blastomeres. The arrow
indicates the band representing carry-over mtDNA. b, Analysis of levels of donor mtDNA
carry-over in individual blastomeres from 8 embryos prior to modifications to minimise
levels of donor mtDNA in pronuclear karyoplasts. In some embryos not all blastomeres
could be collected. Figures represent the percentage mtDNA carry-over in individual
blastomeres following pronuclear transfer. nd: non-detectable. c, Image of pronuclear
karyoplasts after additional manipulation showing minimal amount of donor cytoplasm
when compared with Figure 1e. Scale bar 25μm. d, Last hot cycle PCR RFLP of individual
blastomeres from a pronuclear transfer embryo showing no detectable levels of mtDNA
donor genotype in individual blastomeres. The arrow indicates the band representing carry-
over mtDNA. e, Analysis of levels of donor mtDNA carry-over in individual blastomeres
from 9 embryos following improvements to pronuclear karyoplast removal. In some
embryos, not all blastomeres could be collected. Figures represent the percentage of mtDNA
carry-over in individual blastomeres following pronuclear transfer. nd: non-detectable.
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