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High-sensitivity intravascular 
photoacoustic imaging of lipid–
laden plaque with a collinear 
catheter design
Yingchun Cao1,*, Jie Hui2,*, Ayeeshik Kole1,3, Pu Wang1, Qianhuan Yu4, Weibiao Chen4, 
Michael Sturek1,3 & Ji-Xin Cheng1,5

A highly sensitive catheter probe is critical to catheter-based intravascular photoacoustic imaging. 
Here, we present a photoacoustic catheter probe design on the basis of collinear alignment of the 
incident optical wave and the photoacoustically generated sound wave within a miniature catheter 
housing for the first time. Such collinear catheter design with an outer diameter of 1.6 mm provided 
highly efficient overlap between optical and acoustic waves over an imaging depth of >6 mm in D2O 
medium. Intravascular photoacoustic imaging of lipid-laden atherosclerotic plaque and perivascular 
fat was demonstrated, where a lab-built 500 Hz optical parametric oscillator outputting nanosecond 
optical pulses at a wavelength of 1.7 μm was used for overtone excitation of C-H bonds. In addition to 
intravascular imaging, the presented catheter design will benefit other photoacoustic applications such 
as needle-based intramuscular imaging.

Cardiovascular disease has been the leading cause of death in the United States and many other developed coun-
tries over the past century1. Atherosclerosis, a major form of cardiovascular disease, is caused by the chronic 
accumulation of lipids and fibrous elements within the wall of an artery. This plaque can grow and become clini-
cally symptomatic if it significantly encroaches and obstructs the lumen of the artery. A plaque may also rupture 
and result in acute coronary syndrome or even sudden death2,3. Therefore, the early detection of plaques that 
are vulnerable for rupture is essential in the diagnosis, treatment, and prevention of cardiovascular diseases. 
Currently, there are no clinically reliable imaging tools to accurately identify vulnerable atherosclerotic plaques, 
which are characterized post-mortem by a large lipid core and thin fibrous cap4. Non-invasive modalities such 
as X-ray angiography, magnetic resonance, and computed tomography angiography have been used to visualize 
obstructive stenosis in coronary arteries. However, vulnerable plaques prone to rupture are often non-obstructive 
or moderately obstructive, thus evading detection by these modalities5. Intravascular ultrasound (IVUS) can 
provide important morphologic information of arteries including lumen geometry, plaque burden, and vessel 
structure. However, the sensitivity and specificity for differentiation of plaque composition is limited, partly due 
to the lack of chemical contrast with IVUS6,7. Intravascular optical coherence tomography8,9 have been reported, 
but these two optical imaging modalities fail to provide necessary imaging depth and chemical specificity for 
vulnerable plaque detection. Near infrared spectroscopy10 provide chemical selectivity but it lacks the spatial 
resolution to define the lipid core size and its detection sensitivity is compromised by scattered photons.

Catheter-based intravascular photoacoustic (IVPA) imaging11–14, on the basis of converting the overtone 
vibrational absorption in an arterial tissue into thermoelastic waves detectable with an ultrasonic transducer15–17, 
is an emerging modality with potential of bridging the aforementioned gaps. IVPA imaging offers the following 
advantages. First, the optical absorption-induced contrast provides a unique approach to differentiate chemical 
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composition of arteries. Second, the imaging depth of IVPA is extended beyond the ballistic regime owing to the 
diffused photon absorption and 2–3 orders of magnitude lower acoustic scattering in tissues compared to opti-
cal scattering18. Third, by sharing the same detector, IVUS is inherently compatible with IVPA imaging. Such a 
hybrid modality provides complementary information of the tissue.

A clinically feasible IVPA catheter should be of small diameter, flexible, capable of imaging through blood, and 
acquiring images with high sensitivity and chemical specificity at an acceptable frame rate. These requirements 
collectively render the design and fabrication of a high-performance IVPA probe to be one of the most challeng-
ing tasks in the photoacoustic imaging field. A number of groups have reported IVPA catheters with diameter 
approaching the clinical requirement of about 1 mm11–14,19–24. Specifically, the Emelianov group reported two 
designs of IVPA catheters, one based on side fire fiber and the other based on mirror reflection11. Both designs 
were based on a front-to-back arrangement of the light delivery element and ultrasonic transducer. The Chen 
group introduced another design of IVPA catheter based on parallel arrangement of side-firing fiber and trans-
ducer, where two different frequencies, 35 MHz and 80 MHz, of the transducer were performed to demonstrate 
an outstanding axial resolution of 35 μ m22. The Xing group introduced an intravascular confocal photoacoustic 
probe with dual-element ultrasound transducer20. The Song group reduced the diameter of IVPA catheter probe 
to 1.1 mm by carefully arranging the positions of the optical and acoustic elements19. In their most recent work, 
the authors further reduced the probe diameter to 0.9 mm21. Despite these advances, sufficient arterial imag-
ing depth has not been shown for these single-element transducer based IVPA catheters, largely because the 
optical and ultrasonic waves were cross overlapped in a very limited space. Although the overlap range can be 
altered by changing the coupling angle25, it is hard to maintain the photoacoustic sensitivity constant along the 
millimeter-scale imaging depth. Furthermore, the IVUS and IVPA images in these non-collinear designs are not 
truly co-registered along the imaging depth, which may lead to poor localization of artery and plaque features. 
Assembly of the non-collinear design is also nontrivial, as all the components must be constrained to a limited 
space. To maximize the overlap of incident optical field and generated acoustic wave, our team recently demon-
strated a coaxial design based on a ring-shaped transducer26. However, the outer diameter of the probe (2.9 mm) 
needed to be further reduced for clinical compatibility.

Here, we report an IVPA catheter probe based on a collinear alignment of optical and acoustic waves to over-
come the drawbacks in aforementioned IVPA catheters. In our approach, an optical beam delivered through a 
365-μ m-core multimode fiber (MMF) with a low numerical aperture of 0.22 allowed quasi-uniform illumination 
along the imaging depth. An outer diameter of 1.6 mm was reached for the catheter tip through careful arrange-
ment of the optical and acoustic elements. This collinear design ensured an efficient overlap between optical and 
photoacoustic waves over 6 mm imaging depth. The capability of our collinear design catheter probe was evalu-
ated through ex vivo high-speed IVPA imaging of a diseased porcine carotid artery and a human coronary artery, 
with optical excitation via a lab-built optical parametric oscillator (OPO) outputting optical pulses at 1.7 μ m 
wavelength and 500 Hz repetition rate.

Results
Collinear IVPA catheter.  The design of the collinear catheter probe is shown in Fig. 1. A section of MMF is 
used for delivery of light to the probe. The distal end of the MMF is polished to 45° for ultrasonic wave reflection, 
while the optical wave still propagates forward after the polished end when the optical fiber is submerged in an 
aqueous environment. A single-element ultrasonic transducer is placed parallel to the MMF, with its sensing area 
facing the polished fiber plane. Therefore, the optical and ultrasonic paths are collinear after encountering the 

Figure 1.  Collinear IVPA catheter probe. (A) Main components of the collinear catheter before assembly. 
(B) Assembled IVPA catheter probe. (C) Zoom-in view of the catheter tip with illustration of collinear overlap 
between optical and ultrasonic waves. (D) Photograph of the fabricated catheter probe with a diameter of 
1.6 mm, and the detailed structure of the catheter tip (inset).
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polished surface (shown in Fig. 1C). A 45° rod mirror right after the delivery fiber is served to redirect both the 
optical and ultrasonic waves perpendicularly for side-view illumination and imaging. It should be noted that the 
ultrasound trace after the rod mirror is designed to be perpendicular to its receiving plane within the catheter 
housing to prevent direct ultrasound wave venting from the transducer as shown in Fig. 1C, which may cause 
errant image reconstruction. This design ensures that optical and acoustic waves are collinear within a large tissue 
depth. The components involved are installed in a well-designed housing with an outer diameter reasonably com-
patible in clinical settings, thus greatly simplifying the catheter assembly process. A photograph of the lab-fabri-
cated catheter probe is shown in Fig. 1D, with its outer diameter measured to be 1.6 mm. The detailed procedure 
of the catheter fabrication can be found in the Methods section.

Architecture of the IVPA imaging system.  The schematic IVPA imaging system is shown in Fig. 2. A 
lab-built potassium titanyl phosphate (KTP)-based OPO emitting at 1.7 μ m with a repetition rate of 500 Hz and 
pulse width of ~13 ns was used as the optical excitation source for photoacoustic imaging27. Light is coupled to the 
catheter via a MMF and an optical rotary joint. The pulse energy on the catheter tip was controlled to be ~120 μ J, 
corresponding to an energy density of ~30 mJ/cm2 at the tissue surface, which is below the 1.0 J/cm2 ANSI safety 
standard for skin at 1.7 μ m28. 3-D imaging of the system was enabled by a rotational scanning system and a 
pullback stage. Sequential photoacoustic and ultrasound signals were generated and detected with a proper time 
delay. The detailed information of the scanning system and data acquisition can be found in Methods section. The 
current imaging speed of our system is 1 frame per second, which is 50 times faster than traditional IVPA imaging 
systems based on 10-Hz Nd:YAG lasers11,12,14,22. The collinear catheter based imaging system was subsequently 
characterized for performance evaluation and validated with ex vivo artery imaging.

Characteristics of spatial resolution and imaging depth.  The spatial resolution of our catheter was 
evaluated by photoacoustically imaging a carbon fiber with 7-μ m diameter. The carbon fiber serves as a perfect 
target to determine the spatial resolution of IVPA imaging due to its strong optical absorption and well-defined 
thin diameter. The carbon fiber was positioned parallel to the catheter probe with a variable distance controlled 
by a translation stage. The experiments were performed in deuterium oxide (D2O) medium because of its lower 
optical absorption at 1.7 μ m compared to water29. Figure 3A shows the reconstructed cross-sectional photoacous-
tic image of carbon fiber with a rotational catheter scanning. The inset shows the zoom-in view of the carbon 
fiber image. The generated photoacoustic signals along the axial and lateral directions centered at the carbon 
fiber position are plotted in Fig. 3B,C to determine the spatial resolution. The axial and lateral resolutions are 
derived from the full width at half maximum of Gaussian fit of these results. An axial resolution of 81 μ m and 
lateral resolution of 372 μ m were obtained at a radial distance of 2.2 mm. Spatial resolutions for photoacoustic 
imaging at different axial distances were obtained similarly by changing the position of the carbon fiber as dis-
played in Fig. 3D. The axial resolutions are found to fluctuate around 80 μ m, which are primarily determined by 
the bandwidth of the transducer, while lateral resolutions are found to varying from 350 μ m to 430 μ m, which 
may be due to the non-focus property of ultrasonic transducer. The magnitude of the photoacoustic signals at 
different axial distances is plotted as well in Fig. 3E. It shows approximately an exponential decay along the axial 
direction. Notably, the overlap range between optical beam and ultrasonic wave is found to be over 6 mm, which 
has not been achieved for non-collinear catheter designs previously reported. This imaging depth is sufficient for 
intravascular applications.

Chemical specificity validation with a lipid-mimicking phantom.  A lipid-mimicking phantom com-
posed of a butter rod and a portion of porcine intramuscular fat were employed for photoacoustic imaging to 
evaluate the sensitivity and validate the chemical specificity of our system. Similar to pathologic lipid deposition 

Figure 2.  Architecture of the IVPA imaging system. OPO, optical parametric oscillator; DAQ, data 
acquisition; PC, personal computer.
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in atherosclerosis, both butter and intramuscular fat are abundant in CH2 groups, which exhibit strong absorp-
tions at their first overtone transitions around 1.7 μ m. Porcine intramuscular fat serves as a reliable model of 
pathologic lipid deposition, thus validating the feasibility of our photoacoustic catheter probe to perform intra-
vascular imaging. The procedure of phantom preparation can be found in Methods section. Both photoacoustic 
and ultrasound images of the phantom were shown in Fig. 4. We observed that both butter and fat can be iden-
tified from both photoacoustic and ultrasound images, with strong association between them on position and 
morphology. The signal-to-noise ratios for butter and fat in photoacoustic image were calculated to be 38 and 18, 
respectively, while the signal-to-noise ratios are 30 and 46 for butter and fat in ultrasound mode. The photoacous-
tic signals are specific for the density of CH2 bond in these two targets, while the ultrasound signals are related to 
the overall structural properties. These results from the lipid-mimicking phantom validate the performance of 
photoacoustic and ultrasonic imaging of lipid with our catheter, indicating our imaging system can be used for 
reliable IVPA and IVUS imaging of an artery.

Figure 3.  Characterization of spatial resolutions and imaging depth. (A) Cross-sectional photoacoustic 
image of a single 7-μ m carbon fiber. (B) Axial resolution and (C) lateral resolution obtained at an axial distance 
of 2.2 mm. (D) Axial and lateral resolutions at different axial distances. (E) Magnitude of photoacoustic signal 
produced by the single carbon fiber at different axial distances.
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IVPA imaging of lipid-laden carotid artery excised from Ossabaw swine.  The performance of our 
IVPA imaging system was validated by ex vivo imaging of a diseased carotid artery. A segment of the artery 
with suspected plaque (shown as artery stenosis in Fig. 5D) was selected as the imaging target. Co-registered 
IVPA/IVUS images were obtained as shown in Fig. 5A–C. From the IVUS image in Fig. 5B, the characteristic 
three-layer appearance and luminal area of the carotid artery can be visualized, with the suspected plaque region 
and inner and outer boundaries of the artery inscribed, which agree well with gross inspection at the plaque 
position (Fig. 5D). Strong photoacoustic signal within the plaque region shown in Fig. 5A indicates a possible 
lipid-rich core of the plaque. The co-registered image in Fig. 5C shows the overlap between the photoacoustic 
and ultrasonic signal at the plaque area. The imaged cross-sectional region was further sectioned and stained for 
histology, as shown in Fig. 5E. The lumen size and arterial structure were verified by the histology. The plaque 
position was highlighted by a red box. The lipid deposition, which might have been leached out during the his-
tology process, is suggested by the blank area. Some debris of the lipid core can still be visualized in the zoom-in 

Figure 4.  IVPA imaging of a lipid-mimicking phantom comprised of a butter rod and a piece of porcine 
intramuscular fat. (A) IVPA image in green color map. (B) IVUS image in gray color map. (C) Merged 
photoacoustic and ultrasound image. The 1 mm scale bar applies to all panels. The shapes and positions of butter 
and fat are highlighted in yellow ellipses in panel (A).

Figure 5.  Co-registered IVPA/IVUS imaging of a swine carotid artery ex vivo. (A) IVPA image. (B) IVUS 
image. (C) Merged IVPA/IVUS image. (D) Gross photograph of the artery segment with obstruction traced in 
the inset. Scale is shown by the ruler beside. (E) Histology of the cross section of the artery at the IVPA imaging 
position. The lipid deposition is suggested by the blank area highlighted in the box defined by yellow dashed 
lines. The 1 mm scale bar applies to all panels except (D).
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view indicated by black lines. The torn region of the artery in Fig. 5E is most likely an artifact due to improper 
cryosectioning during histology.

IVPA imaging of fresh coronary artery excised from human patient.  We further validated the capa-
bility of our collinear catheter design by ex vivo imaging a perfused fresh right coronary artery from a human 
patient. The artery segment was imaged with a 3-D scanning system composed by an optical rotary joint and a lin-
ear pullback stage. At a particular longitudinal position, we identified a region of interest with strong photoacous-
tic signal in the arterial wall, which could possibly indicate lipid depositions as shown in Fig. 6. Furthermore, we 
observed intense photoacoustic signal peripheral from the vessel wall with an imaging depth of 4.3 mm, suggested 
that our collinear IVPA imaging system is able to penetrate through the entire arterial wall to reach the surround-
ing perivascular fat that was retained on the excised vessel.

Discussion
Compared to conventional non-collinear catheter designs, where optical and ultrasonic waves only overlap par-
tially within a limited range11,12,14,19,20, the biggest advantage of our collinear catheter design is that the generated 
ultrasonic wave shares the same path with the optical excitation beam, which provides a highly efficient overlap 
between optics and acoustics along the entire imaging depth. This development results in optimal photoacoustic 
sensitivity over an imaging depth over 6 mm experimentally, allowing reliable access of the deeper component 
information in the entire arterial wall, including perivascular fat. Even so, the photoacoustic signal along an 
A-line still decays exponentially as shown in Fig. 3E. This decay can originate from a number of reasons including 
optical beam divergence, optical absorption/scattering in imaging environment, the reduced collection angle of 
photoacoustic wave at an increased depth due to its divergent property and the unfocused ultrasound transducer, 
and acoustic loss in medium. Some approaches to reduce signal decay include integrating a gradient-index lens 
in the catheter to improve the optical beam focusing, introducing external wavefront shaping method to focus 
the light beam deeper inside the tissue30, and using a quasi-focused transducer to enhance the acoustic receiving 
efficiency.

The diameter of our current fabricated catheter probe is 1.6 mm, mainly limited by the size of the rod mir-
ror (1 mm diameter). With a reduced diameter of 0.5 mm for the rod mirror, the catheter probe can be further 
reduced to ~1 mm in diameter, which is similar to the size of commercially available IVUS catheter probes31.

The imaging speed of our current system is 1 frame per second, which is based on the 500 Hz repetition rate 
OPO and one revolution per second rotation speed of the catheter. Considering the lateral resolution of ~425 μ m 
at an axial distance of 5 mm, the number of A-lines for each cross-sectional image can be reduced to 75, which 
would allow a maximum imaging speed over 6 frames per second. We also intend to develop a similar laser 
system at a higher repetition rate of 2 kHz, which will further improve our imaging speed to approach that of 
commercial in vivo intravascular imaging systems31.

In conclusion, we demonstrated a miniature IVPA catheter probe with collinear overlap between the opti-
cal and acoustic fields. This design enabled high-quality IVPA imaging of the entire artery wall from lumen to 
perivascular fat. The lab-fabricated collinear catheter was evaluated for spatial resolution characterization with 
a 7-μ m carbon fiber and chemical composition validation by using a lipid-mimicking phantom. The axial and 
lateral resolutions were found to be around 80 μ m and 400 μ m, respectively, over an imaging depth larger than 
6 mm. With a co-registered IVPA/IVUS imaging system based on a lab-built 500 Hz OPO at 1.7 μ m, the cathe-
ter was used to image a diseased carotid artery and a human coronary artery ex vivo, resulting in IVPA/IVUS 
images showing a lipid-rich plaque that corresponds with gross inspection. These results collectively help the 
photoacoustic imaging community to move towards the realization of in vivo IVPA imaging in the clinic.

Methods
Ethics statement.  All the experiment protocols in this study were approved by the Institutional Biosafety 
Committee of Purdue University, and in accordance with the approved guidelines. The experiments involving 
human coronary artery were approved by Human Research Protection Program of Purdue University, and the 
informed consent was obtained from all subjects.

Figure 6.  IVPA/IVUS imaging of a perfused fresh human right coronary artery dissected from an 
explanted heart. (A) IVPA image. (B) IVUS image. (C) Merged IVPA/IVUS image. The 1 mm scale bar applies 
to all panels.
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Fabrication of a collinear catheter.  The collinear IVPA catheter was fabricated according to the follow-
ing procedures: (1) a catheter housing with structure shown in Fig. 1A was 3-D printed with micro-resolution 
stereolithography process (Proto Labs, Inc.); (2) a custom-designed single-element transducer with dimensions 
of 0.5 ×  0.6 ×  0.2 mm3, center frequency of 42 MHz and bandwidth of 60% (Blatek, Inc.) was fitted in the square 
hole, with its sensing area facing the reflection plane; (3) a section of MMF with core/cladding diameter of 
365/400 μ m, NA of 0.22 (FG365LEC, Thorlabs, Inc.) was polished to 45° at one end and 90° at the other end with 
a fiber polisher (NANOpol, ULTRA TEC Manufacturing, Inc.). The 45°-polished fiber end was then inserted into 
the housing until matching with the acoustic reflection plane. The MMF was rotated precisely to ensure the col-
linearity between the optical and acoustic waves; (4) a rod mirror with diameter of 1 mm (Edmund Optics, Inc.) 
was inserted into the distal end of the catheter housing, and tuned to ensure the optical beam illuminate radially; 
(5) the components were glued, a torque coil was employed to enclose the optical fiber and electrical wire of the 
transducer, and a fiber connector was installed on the distal end of the catheter. The relative positions among 
each components are optimized by monitoring the photoacoustic signal in real time under aqueous environment.

Scanning system and data acquisition.  An optical rotary joint together with a slip ring were used to 
control the rotational scanning of the catheter (Fig. 2). An additional pullback stage installed with the rotary joint 
was used to enable 3-D imaging. The trigger signal provided by the Q-switch of OPO was used to synchronize 
the data acquisition of IVPA and IVUS signals. A time delay of 10 μ s was applied to ultrasound pulser via a delay 
generator (37000-424, Datapulse, Inc.). Both IVPA and IVUS signals are sequentially detected by the same trans-
ducer installed in the catheter and received by a pulser/receiver (5073 PR, Olympus, Inc.) with an amplification 
factor of 39 dB. A data acquisition (DAQ) card (ATS9462 PCI express digitizer, AlazerTech, Canada) with 16-bit 
digitization and 180 MS/s sampling rate was used to digitize and transfer the generated signals via a LabView 
software.

Lipid-mimicking phantom preparation.  The 2.5% agarose gel made from agar powder and D2O approx-
imately mimics the tissue environment. A butter rod with a diameter of ~1.5 mm and a small piece of intra-
muscular fat were embedded in the agarose gel as imaging targets. A central hole in the phantom was reserved 
for catheter insertion. The phantom was fully submerged in D2O during imaging experiment to ensure a lower 
optical loss at 1.7 μ m.

Carotid artery specimen.  The atherosclerotic carotid artery was harvested from a miniature Ossabaw 
swine, which was fed with high-fat/cholesterol/fructose diet, and then fixed in 10% formalin. Before imaging 
experiment, a segment of artery with suspected plaque was selected and cut as a region of interest with the aid of a 
microscope. The artery segment was then held by agarose gel and submerged under D2O for imaging experiment.

Human coronary artery sample.  The right coronary artery was harvested from an explanted human heart 
at the time of transplant. We excised the vessel from the ostium to 6 cm distally, leaving approximately 5 mm 
of surrounding perivascular fat attached. The ostium was cannulated with an 8 F introducer sheath and side 
branches were ligated to allow for pressure perfusion. The artery was then pinned in a Sylgard®  184 Silicone 
Elastomer tray and submerged in phosphate-buffered saline at room temperature and was perfused to mimic 
physiologic pressure during imaging.
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