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Most models developed to represent transport across epithelia assume that the cell interior constitutes a homogeneous
compartment, characterized by a single concentration value of the transported species. This conception differs significantly from
the current view, in which the cellular compartment is regarded as a highly crowdedmedia of marked structural heterogeneity. Can
the finding of relatively simple dynamic properties of transport processes in epithelia be compatible with this complex structural
conception of the cell interior? The purpose of this work is to contribute with one simple theoretical approach to answer this
question. For this, the techniques of model reduction are utilized to obtain a two-state reduced model from more complex linear
models of transcellular transport with a larger number of intermediate states. In these complex models, each state corresponds to
the solute concentration in an intermediate intracellular compartment. In addition, the numerical studies reveal that it is possible
to approximate a general two-state model under conditions where strict reduction of the complex models cannot be performed.
These results contribute with arguments to reconcile the current conception of the cell interior as a highly complex medium with
the finding of relatively simple dynamic properties of transport across epithelial cells.

1. Introduction

Thetransport ofwater and solutes across epithelia is a relevant
physiological property of higher organisms. To perform
transport, epithelial cells develop a polarized distribution of
membrane molecules, which localize at distinct apical and
basolateral domains of the plasma membrane [1, 2]. The
analysis and interpretation of quantitative data about solute
and water transport across epithelia have constituted a major
objective of cell physiologists. The majority of the models
classically developed to represent solute transport across
epithelia have considered that the interior of the epithelial
cells constitutes a well-stirred, homogeneous compartment,
characterized by a single value of concentration of the
transported species [3–5]. This view implicitly assumes that
the intracellular diffusion coefficient of the species remains
constant and that diffusion occurs freely and rapidly, so
that the intracellular solute concentrations attain a single
equilibrium value at a faster time scale than the overall pro-
cess. This conception differs markedly from the current view
about the structural and functional characteristics of the cell
interior. In this conception, the intracellular compartment is
regarded as a highly crowdedmedia of marked structural and

functional heterogeneity [6–8]. The effects of macromolec-
ular crowding and structural organization on the activity
of macromolecules and smaller dissolved species represent
major topics for the understanding of the cellular behavior
[9]. Realistic approaches to describe diffusion in cellular
media require computational simulations that employ, for
instance, Brownian dynamics [10, 11], finite-elementmethods
[12, 13], or The Virtual Cell framework [14, 15].

Can the finding of relatively simple dynamic properties
of transport processes in epithelia be compatible with the
complex structural conception of the cell interior? The
general objective of this work is to contribute with the basic
aspects of one formal theoretical approach to answer this
question. In particular, this study employs mathematical
modeling to uncover properties that could be employed
to measure structural cellular complexity. Since a detailed
computer simulation of the solute movement throughout the
intracellular medium would, although more realistic, not be
easy to incorporate in a representation of the overall trans-
port process, this study adopts a simpler approach which,
nevertheless, may provide some basic conclusions. In this
way, as an alternative to explicit computational simulations
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of the intracellular media, this study assumes that the unidi-
rectional solute movement can approximately be represented
by a discrete, multicompartment model. To be noted, dis-
crete approaches to describe flow through nonhomogeneous
media have been employed to understand the basic aspects
of percolation [16]. Similarly, the simple approach adopted
here represents an initial attempt to reconcile macroscopic
physiological evidence with microscopic cellular complexity.
The multicompartment representation permits to express
the transition of the solute between adjacent intracellular
compartments via kinetic expressions; the overall dynamics
are, therefore, governed by a system of linear differential
equations. Multicompartmental strategies have been utilized,
for instance, to understand the role of diffusion in brain
processes [17] and to describe sarcomeric calciummovement
[18].

In essence, the findings of this theoretical study suggest
that the basic processes of transcellular transport across an
epithelial cell between the two extracellular compartments
may be reduced to an equivalent two-state linear model. The
strategy of model reduction represents an alternative to study
discrete systems with a high degree of complexity, such as
biochemical networks, and permits to derive models that
retain some of the relevant system properties under specific
conditions. In this respect, linear systems of a relatively
large number of components can be handled in a rather
straightforward fashion. Thus, in macromolecular systems
the reduction of linear intermediate transitions of multistate
diagrams to yield simpler models has provided a tool, for
instance, to understand the finding of simple kinetic behav-
iors in complex membrane transport systems [19]. In epithe-
lial transport, nonlinearity may emerge as a consequence of
interactions between different transported species or from
the existence of feedbackmechanisms, such as those involved
in crosstalk responses [20–22]. The loss of linearity underlies
the emergence of more complex behaviors of multistate
systems and their reductionmay inevitably require the design
of alternative computational strategies [23]. In the present
work, only the basic aspects of transcellular transport across
epithelial cells are considered, which permit to conform a
linear model with an arbitrary number of intermediate intra-
cellular states. In this study, techniques analogous to the ones
utilized for linear macromolecular kinetics are employed to
obtain reduced two-state models from the original multistate
ones [19]. The numerical simulations performed here also
permit to obtain the noteworthy result that, under conditions
where strict model reduction does not occur, an equiva-
lent pseudo-two-state dynamic model can nevertheless be
approximated.These results contribute with some arguments
to reconcile the current conception of the cell interior as a
highly complex media with the finding of relatively simple
dynamic properties of transport across epithelial cells.

2. Models of Transcellular Transport of
Solutes across Epithelial Cells

One of the simplest models of transcellular transport of a
solute across an epithelial cell (e.g., an intestinal cell) is

𝛼 𝛽

(ap) (bl) (ul)

𝑥 𝑧

Figure 1: Scheme of an epithelial cell performing transcellular
transport of a solute. The solute enters the cell at the apical
membrane (ap) via active transport at rate 𝛼 and exits at the
basolateral membrane (bl) to an adjacent unstirred layer (ul), from
which it is extracted at rate 𝛽. One of the simplest situations is
represented, where the cell interior is assumed to be a homogeneous
compartment characterized by a single value of solute concentration
(𝑥).The extracellular unstirred layer is also characterized by a single
value of the solute concentration (𝑧).

depicted in Figure 1. In this scheme, a solute (e.g., glucose)
is being driven inside the cell via an active transport system
of the apical membrane (e.g., the Na-glucose cotransporter).
Under physiological conditions, this transport system is
assumed to operate irreversibly at rate 𝛼. In this model,
the strict homogeneous condition of the cell applies; that
is, the solute concentration 𝑥 is the same throughout the
whole intracellular compartment. The solute is driven out
of the cell at the basal domain via a passive, reversible
transport system (e.g., the glucose transporter (GLUT2)).
In the model considered (Figure 1), the solute accumulates
in the unstirred layer adjacent to the basal membrane at
a concentration 𝑧 and exits this compartment at rate 𝛽.
Models exploring the possible role of unstirred layers at the
extracellular cell surface in transcellular transport have been
developed, for instance, to explain contradictory data about
solute and solvent coupling in epithelia [24]. It is not the
objective of this work to contribute to the discussion of the
importance of unstirred layers in explaining quantitative data
about epithelial solute and water transport, a matter that has
received attention in the past [25], but to consider plausible
models of transcellular transport of a single dissolved solute
for illustrative purposes. An alternative to the meaning of the
intermediate state 𝑧 is to assume that it directly corresponds
to the solute concentration at the apical extracellular com-
partment. In this case, 𝛽would represent its rate of extraction
fromother tissues.The elementary dynamicmodel governing
the transport process described in Figure 1 (Model I) is shown
in more detail in Figure 2(a) and is given by

𝑥

= 𝛼 − 𝑘

1𝑓
𝑥 + 𝑘
1𝑏
𝑧,

𝑧

= 𝑘
1𝑓
𝑥 − (𝑘

1𝑏
+ 𝛽) 𝑧,

(1)

where 𝑥(𝑧) denotes the time derivative of 𝑥(𝑧) and, 𝛼, 𝑘
1𝑓
,

𝑘
1𝑏
, and 𝛽 are (positive) rate parameters. The solution and

basic properties of this model are given in Appendix A, solely
as a reference to the studies performed in this work. It can
be easily concluded from the study of the explicit solution
(Appendix A) or from the stability analysis (not shown) that
the steady state of this model represents an asymptotically
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Figure 2: Different models of transcellular solute transport across an epithelial cell (cf. Figure 1). The dotted lines denote limits of unstirred
layers (cf. Figure 1), the rest of the symbols as in Figure 1. The model in (a) (Model I) corresponds to the situation depicted in Figure 1. (b)
shows a more complex model (Model II), where the solute distributes into two distinctive intracellular compartments (at concentrations 𝑥
and 𝑦). In the general scheme of (c), the solute may distribute along a larger number of intracellular compartments (at concentrations 𝑥 and
𝑦
1
to 𝑦
𝑗
). In particular, this work considers models having from two (Model III) to four (Model V) intermediate states “𝑦.” (d) corresponds

to a simple case of bidimensional intracellular distribution of the solute (Model VI).

stable configuration, a characteristic property of integrated
systems of membrane transport in general [26–29].

A somewhat more complex model can be obtained if one
assumes, for instance, that an unstirred layer additionally
exists at the intracellular surface of the apical membrane
(Figure 2(b)). In this case, the solute accumulates at this layer
at concentration 𝑥 and then diffuses reversibly to the rest
of the cell, where it achieves a uniform concentration 𝑦.
As in the previous case, it is then transported reversibly to
the extracellular space at the level of the basal domain. The
corresponding dynamic model (Model II) is given by

𝑥

= 𝛼 − 𝑘

1𝑓
𝑥 + 𝑘
1𝑏
𝑦,

𝑦

= 𝑘
1𝑓
𝑥 − (𝑘

1𝑏
+ 𝑘
2𝑓
) 𝑦 + 𝑘

2𝑏
𝑧,

𝑧

= 𝑘
2𝑓
𝑦 − (𝑘

2𝑏
+ 𝛽) 𝑧,

(2)

where 𝛼, 𝑘
1𝑓
, 𝑘
1𝑏
, 𝑘
2𝑓
, 𝑘
2𝑏
, and 𝛽 are rate parameters.

Assuming that 𝑦 is a quasistationary intermediate, the model
given by (2) can be reduced to a simple two-state model
formally analogous to Model I (Appendix B).

As mentioned above (Section 1), the present view about
the intracellular compartment is far from the homogeneous,
dilute perspective classically invoked to perform quantita-
tive interpretations of cellular transport properties. A more
realistic conception of the cell interior implies a highly
crowded, heterogeneousmedia where instant equilibration to
a unique intracellular concentration of a specific species may
not represent a realistic approximation. Figure 2(c) depicts
a general model of unidirectional intracellular transport
that assumes the existence of several intermediate internal
compartments for the transported species. These successive
compartments, extending to the rest of the cell starting
from the unstirred layer at the intracellular apical domain,
are characterized by specific concentrations (𝑦

1
to 𝑦
𝑗
) of

the transported species. The transitions between adjacent
compartments are reversible and governed by first-order rate
constants. In this work, we shall further consider models
of the general type of Figure 2(c), ranging from two (i.e.,

𝑦
1
, 𝑦
2
) to four (𝑦

1
, . . . , 𝑦

4
) intermediate states, to perform

some numerical studies (see below). These models shall be
designated as Models III to V, respectively. An extension of
the unidimensional model to more realistic situations would
consider the inclusion of a larger number of intermediate
states. Still further complexity is attainable if one assumes
two-dimensional distribution of the intracellular solute. As
an example, Figure 2(d) shows a situation where the solute is
distributed inside the cell, apart from the unstirred layer at the
apicalmembrane, into the simplest two-dimensional network
of intermediate states (Model VI). More complex configura-
tions in the two- and even three-dimensional domains are
certainly conceivable, but their analysis would require the
employment of alternative procedures, such as Monte Carlo
simulations. Appendix B illustrates the procedures of linear
model reduction [19, 30] employing Models II and VI as
examples. It is shown there that, under some conditions,
complexmodels of the type ofModels II to VI can be reduced
to a simple two-state model qualitatively similar to Model
I (A.1). As examples, (B.1) and (B.2) give the expressions
obtained for the reduced rate constants 𝑟

12
and 𝑟
21

(A.1) for
the cases of Models II and VI, respectively.

In order to illustrate the concepts introduced here, the
next section contains numerical studies of some dynamic
properties of the models. Of particular interest is the finding
that, under conditions not permitting strict reduction, the
models nevertheless exhibit a dynamic behavior approxi-
mately equivalent to a two-state dynamic model governed by
the general equations (A.1).

3. Numerical Results and Discussion

In this section, numerical studies are performed to compare
the dynamic behaviors between the original and the reduced
models, for the different models considered and for different
values of some of the parameters. In essence, the procedure
followed here consists in simulating the time courses of
the model dynamics in response to perturbations from the
steady state. The results shown are not exhaustive and only
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Figure 3: Plots of the time delay Δ
0.75

versus (a) the number of intermediate states “𝑦” inModels I to V for 𝑘 = 1 and versus (b) 𝑘 for the case
of Model II (Δ

0.75
: time elapsed between 𝑡 = 0 and 𝑡 for 𝑧/𝑧∗ = 0.75; 𝑘 = 𝑘

1𝑓
= 𝑘
2𝑏
, cf. Figure 2). The numerical integrations were performed

employing the Runge-Kutta fourth-order method. For every run, for 𝑡 = 0, 𝑧/𝑧∗ = 0.5. For every case, 𝛼 = 10 and the numerical value for
the rest of the parameters was 1.

intended to illustrate some basic properties of the models.
For this reason, the numerical values employed here for the
rate constants are arbitrary and only results of the relative
variations of the variable 𝑧 with respect to the steady-state
value (𝑧∗) are shown. For the choice of the numerical values,
the only restrictive condition assumedwas that the parameter
𝛼 should have a larger value than the rest of the parameters,
since it represents the rate of active transport of the solute (cf.
Figure 1).

The increasing complexity of themodels (i.e., fromModel
I towards Model V, Figure 2) in turn determines modifica-
tions in properties that may have physiological significance,
such as the time delay to achieve the steady state from an ini-
tial perturbed condition. Figure 3 shows the effect of increas-
ing complexity and of the rate constants on the time delay
to achieve the steady state. As expected, the increasing com-
plexity (measured by the number of intermediate states “𝑦,”
Figure 3(a)) determines an increase in the time delay, while
the rise in some of the intermediate rate constants produces
the opposite effect (Figure 3(b)). Since the dynamic behavior
of the complexmodel may be indistinguishable from that of a
two-state model (Figures 1 and 2(a)), either by satisfying the
conditions of model reduction or by approximate behavior
(see below), measurements of the actual values of the time
delays, if possible, may provide clues to infer the degree of
structural complexity of the cellular transport system.

Figures 4 and 5 show the dynamic responses of Models II
and VI (Figure 2), respectively, to perturbations of the steady

state. The figures display the numerical integrations of the
complete models, the corresponding reduced models ((A.1)
and (B.1) for Model II and (A.1) and (B.2) for Model VI),
and the approximations to the complete models (A.6). For
the two models, the numerical integration of (A.1) yielded
similar results to the direct numerical solution of (A.2). As
can be seen in Figures 4 and 5, for parameter values satisfying
the necessary reduction conditions (Appendix B), the strictly
reduced models yield dynamic behaviors undistinguishable
from the original ones (Figures 4(c) and 5(c)). The necessary
conditions formodel reductionmay be somewhat unrealistic,
however, since they imply the quasistationary hypothesis
for the intermediate states (Appendix B). It is, therefore, a
noteworthy result that, for values not satisfying the reduction
conditions (Figures 4(a), 4(b), 5(a), and 5(b)), the numeri-
cal studies nevertheless permitted to approximate two-state
models by the simple procedure of introducing an adjust
factor Ψ to the time constants of the corresponding reduced
models.This property, not further analyzed here, is possibly a
consequence of the linear character of the model. As revealed
by Figures 4(d) and 5(d), for large values of 𝑘 (i.e., far from the
reduction conditions) low values of Ψ are required to obtain
a proper approximation to the original model behavior. The
figures also show that, in order to obtain that approximation,
Ψ tends to unity as 𝑘 tends to zero. Thus, Ψ may represent
a measurement of the degree of complexity of the original
model, since its value depends on how distant the actual
model dynamics are from the reduction conditions.
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Figure 4: (a)–(c) Plots of 𝑧/𝑧∗ versus time for the case ofModel II and for different values of 𝑘. Numerical integrations: Curve I, (2); Curve II,
(A.1) and (B.1). Direct numerical solutions: curve superposed to Curve I, (A.2); Curve III, (A.6). (d) Plot of 𝜓 versus 𝑘. Numerical methods:
numerical values of the rest of the parameters and definition of 𝑘 are the same as in Figure 3. For each value of 𝑘, the numerical value for the
adjust factor 𝜓 (Appendix A) was obtained by trial and error in order to attain the best approximation to Curve I. The curve 𝜓 versus 𝑘 (d)
was obtained as the best fit to a sample of values of 𝜓 for the corresponding values of 𝑘, throughout the whole range of values of 𝑘 considered.

Similar results to the ones displayed in Figures 4 and 5
were obtained for Models III to V (not shown). In particular,
in every case it was possible to empirically approximate a
two-state model to the complete one when strict conditions
for model reduction did not apply. Simulations performed
for different values of the intermediate rate parameters
(although conserving the rule that 𝛼 should be larger
than the rest of the parameters), also permitted to obtain
reasonable approximations to Model II employing (A.6) (not

shown). These results suggest that, at least for the case of
some processes of epithelial transport of solutes, it is possible
to describe these processes by a relatively simple model of the
general type given by (A.1). However, the results of this work
also suggest that, under these circumstances, it is not possible
to conclude that the actual underlying process strictly
corresponds to the simple model described in Figure 1,
characterized by a unique intracellular concentration of the
solute. The actual intracellular distribution of the solute may
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Figure 5: Similar to Figure 4, but for Model VI. In this case, Curve I corresponds to the numerical integration of the complete model shown
in Figure 2(d) (explicit equations not shown in the text). In addition, (A.1) and (B.2) were employed to obtain Curve II.

be approximated by a more complex configuration, such
as the ones represented by Models II to VI (Figure 2), or
still more complex. As mentioned in Section 1, it must be
emphasized that a discrete multicompartment description of
the intracellular compartment can only be considered as an
initial approach to represent this highly complex medium, an
approach thatmay nevertheless be operative for the consider-
ation of some specific issues, such as the one addressed in this
study.

4. Conclusions

The results of this theoretical study permit to suggest that
complex models of transepithelial transport of solutes may
nevertheless exhibit dynamic properties undistinguishable
from those of simple models. At least in the realm of
linear models of transport, it was shown here that mod-
els incorporating several intermediate states of the solute
in the intracellular compartment may, under the proper
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conditions, be reduced to simple two-state models that
assume the existence of a unique concentration value for
the intracellular solute. Even if those reduction conditions
are not accomplished, the numerical studies also permitted
to obtain approximate two-state dynamic models to mimic
the original complex ones. Taken together, the results of
this work permit to ascertain that, at least for the case of
the elementary processes of epithelial transport of solutes,
it may be possible to reconcile the finding of relatively
simple transcellular transport dynamics with the current
conception of the cell interior as a highly complex structural
media.

This work has, therefore, focused on the case of the
transport of solutes across epithelial cells to illustrate that
complex models of transport can exhibit dynamic behaviors
undistinguishable from those of simple ones. The occasional
emergence of relatively simple dynamic properties may be
a property encountered for the case of many other complex
biological processes, such as transitions between macro-
molecular states [19] and reactions in biochemical networks
[23]. As illustrated in this work, at least in some cases, a
possible means to understand the emergence of relatively
simple behaviors in complex dynamical systems can be
obtained in a rather straightforward fashion by employing
standard techniques of reduction of dynamic models.

Appendices

A. Solution of the General Two-State Model of
Transepithelial Solute Transport

As a reference to this study, this section resumes the basic
properties of the general two-state model of transepithelial
solute transport. This model is given by

𝑑𝑥

𝑑𝑡

= 𝛼 − 𝑟
12
𝑥 + 𝑟
21
𝑧,

𝑑𝑧

𝑑𝑡

= 𝑟
12
𝑥 − (𝑟

21
+ 𝛽) 𝑧,

(A.1)

where 𝛼 and 𝛽 have the same meanings for all the models
(Figures 1 and 2) and where the 𝑟’s are, in general, reduced
rate constants (see Appendix B). For the particular case of the
simplest model ((1), Model I), 𝑟

12
= 𝑘
1𝑓

and 𝑟
21
= 𝑘
1𝑏
.

The solution of the system given by (A.1) can be obtained
employing standard procedures. For the case of 𝑧, the
solution reads

𝑧 (𝑡) = 𝑧
∗
+ 𝐶
1
exp (𝑚

1
𝑡) + 𝐶

2
exp (𝑚

2
𝑡) , (A.2)

where 𝑧∗ is the steady-state value of 𝑧[𝑧∗ = 𝛼/𝛽] and where

𝑚
1,2
=

[−Φ ± (Δ)
1/2
]

2

,

with Φ = (𝑟
12
+ 𝑟
21
+ 𝛽) ,

Δ =Φ
2
− 4𝑟
12
𝛽.

(A.3)

Since Φ > (Δ)
1/2, 𝑚

1
and 𝑚

2
are necessarily negative.

Hence, from any initial value of 𝑧, the system given by A.1
converges asymptotically to the steady-state value 𝑧∗.

For the case that 𝑧(0) = 𝑧∗/2,

𝐶
1
= − (

𝑧
∗

2

) (1 + 𝐾) , 𝐶
2
= (

𝑧
∗

2

) 𝐾,

With 𝐾 =

[𝑚
1
(1 + 𝑚

1
) + 𝑟
12
𝛽]

{Φ [𝑚
2
(1 + 𝑚

2
) − 𝑚

1
(1 + 𝑚

1
)]}

.

(A.4)

In the numerical studies, an approximate solution to the
dynamics of a complete (i.e., nonreduced) model can be
obtained by introducing an adjust factorΨ to the parameters
𝑚
1
and𝑚

2
of the corresponding reduced model:

𝜇
1
= Ψ𝑚

1
, 𝜇

2
= Ψ𝑚

2
. (A.5)

The approximate solution reads

𝑧 (𝑡) = 𝑧
∗
+ 𝐶
1
exp (𝜇

1
𝑡) + 𝐶

2
exp (𝜇

2
𝑡) , (A.6)

where 𝐶
1
and 𝐶

2
are the same as in the corresponding

reduced model (A.2).

B. Reduction of Linear Dynamic Models of
Transepithelial Transport

This section summarizes the procedure to reduce dynamic
models of transcellular transport, for the case that some
states of the transported species are transient intermediates.
The method described in this section is based upon the
techniques originally developed byHill [30] for the reduction
of linear sequences of transitions in biochemical systems
and further extended to more complex configurations [19].
Instead of deriving general expressions, the procedure is
illustrated employing Models II and VI as examples (Figures
2(b) and 2(d)). The method described here can be adapted
in a straightforward manner to handle more complicated
schemes. For a more detailed exposition of the reduction
technique, the reader may consult [19].

For the case of Model II, if 𝑦 is a transient intermediate
((2)), we may assume that, at any time, 𝑑𝑦/𝑑𝑡 = 0. This
requires that 𝑘

1𝑏
≫ 𝑘
1𝑓

and 𝑘
2𝑓
≫ 𝑘
2𝑏
. From this condition,

(2) can be transformed into a systemof the formof (A.1), with
the reduced constants 𝑟

12
and 𝑟
21
given in this case by

𝑟
12
=

𝑘
1𝑓
𝑘
2𝑓

(𝑘
1𝑏
+ 𝑘
2𝑓
)

, 𝑟
21
=

𝑘
1𝑏
𝑘
2𝑏

(𝑘
1𝑏
+ 𝑘
2𝑓
)

. (B.1)

Analogously, the more complex models (Models III to
VI) can be reduced to the general two-state model given
by (A.1) under the condition that all the states “𝑦” are
transient intermediates. For example, for the case of Model
VI (Figure 2(d)) this is achieved if the rate constants 𝑘

1𝑓
and

𝑘
2𝑏

are significantly smaller than the other constants. The
expressions for the reduced rate constants 𝑟

12
and 𝑟

21
that

can be obtained for Model VI under this condition are the
following (cf. Figure 2(d)):

𝑟
12
=

𝐷
12

𝐷

, 𝑟
21
=

𝐷
21

𝐷

(B.2)
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with

𝐷
12
=𝑘
1𝑓
𝑘
2𝑓
[𝑘
11
𝑙
21
(𝑘
21
+ 𝑙
−11
)

+ 𝑙
11
𝑘
21
(𝑙
21
+ 𝑘
−11
)] ,

𝐷
21
=𝑘
1𝑏
𝑘
2𝑏
[𝑘
−11
𝑙
−21
(𝑘
21
+ 𝑙
−11
)

+𝑙
−11
𝑘
−21
(𝑙
21
+ 𝑘
−11
)] ,

𝐷 = (𝑘
1𝑏
𝑘
2𝑓
) (𝑘
21
+ 𝑙
−11
) (𝑙
21
+ 𝑘
−11
)

+ 𝑘
1𝑏
[𝑘
−11
𝑙
−11
(𝑘
−21
+ 𝑙
−21
) + 𝑙
−11
𝑙
21
𝑘
−21

+𝑘
−11
𝑘
21
𝑙
−21
]

+ 𝑘
2𝑓
[𝑘
21
𝑙
21
(𝑘
11
+ 𝑙
11
)

+𝑘
11
𝑙
−11
𝑙
21
+ 𝑘
−11
𝑘
21
𝑙
11
] .

(B.3)
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