
sensors

Article

Follower: A Novel Self-Deployable Action Recognition Framework

Xu Yang 1,2 , Dongjingdian Liu 2, Jing Liu 2, Faren Yan 2, Pengpeng Chen 1,2 and Qiang Niu 1,2,*

����������
�������

Citation: Yang, X.; Liu, D.; Liu, J.;

Yan, F.; Chen, P.; Niu, Q. Follower:

A Novel Self-Deployable Action

Recognition Framework. Sensors 2021,

21, 950. https://doi.org/10.3390/

s21030950

Received: 14 December 2020

Accepted: 27 January 2021

Published: 1 February 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 China Mine Digitization Engineering Research Center, Ministry of Education, Xuzhou 221116, China;
yang_xu@cumt.edu.cn (X.Y.); chenp@cumt.edu.cn (P.C.)

2 School of Computer Science and Technology, China University of Mining and Technology,
Xuzhou 221116, China; dongjingdianliu@cumt.edu.cn (D.L.); ts18170012a31@cumt.edu.cn (J.L.);
08183005@cumt.edu.cn (F.Y.)

* Correspondence: niuq@cumt.edu.cn

Abstract: Deep learning technology has improved the performance of vision-based action recognition
algorithms, but such methods require a large number of labeled training datasets, resulting in weak
universality. To address this issue, this paper proposes a novel self-deployable ubiquitous action
recognition framework that enables a self-motivated user to bootstrap and deploy action recognition
services, called FOLLOWER. Our main idea is to build a “fingerprint” library of actions based on a
small number of user-defined sample action data. Then, we use the matching method to complete
action recognition. The key step is how to construct a suitable “fingerprint”. Thus, a pose action
normalized feature extraction method based on a three-dimensional pose sequence is designed.
FOLLOWER is mainly composed of the guide process and follow the process. Guide process extracts
pose action normalized feature and selects the inner class central feature to build a “fingerprint”
library of actions. Follow process extracts the pose action normalized feature in the target video and
uses the motion detection, action filtering, and adaptive weight offset template to identify the action
in the video sequence. Finally, we collect an action video dataset with human pose annotation to
research self-deployable action recognition and action recognition based on pose estimation. After
experimenting on this dataset, the results show that FOLLOWER can effectively recognize the actions
in the video sequence with recognition accuracy reaching 96.74%.

Keywords: action recognition; human pose estimation; dynamic time planning; template matching

1. Introduction

Recognizing human actions can have many potential applications, including video
surveillance, human–computer interfaces, sports video analysis, and video retrieval. Ac-
tion recognition approaches mainly include the following three categories: based on
wearable sensors [1], based on wireless signals [2], and based on vision [3–5]. Among them,
vision-based methods have the best performance with the breakthrough of deep learning
technology.

Vision-based human action recognition approach can be divided into traditional ma-
chine learning action recognition algorithm [3,6,7], deep-convolution-based action recogni-
tion algorithm [4,8,9] and human-skeleton-based action recognition algorithm [5,10–14].
Traditional machine learning action recognition algorithms use hand-crafted representa-
tions to extract action features. After feature normalization and feature coding, machine
learning algorithms such as Support Vector Machines (SVM) [15] are used to achieve action
recognition. The representative of these algorithms is iDT [7], which is widely considered
as useful work. However, it cannot automatically extract features, and the computational
cost of calculating optical flow is enormous [4]. Action recognition algorithms based on
deep convolution features use deep convolutional networks to automatically extract the
spatiotemporal information of actions in video images. According to the organization of
spatiotemporal information, they can be divided into action recognition algorithms based

Sensors 2021, 21, 950. https://doi.org/10.3390/s21030950 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2651-3432
https://doi.org/10.3390/s21030950
https://doi.org/10.3390/s21030950
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21030950
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/3/950?type=check_update&version=1


Sensors 2021, 21, 950 2 of 19

on spatiotemporal convolution [4,16–18] and algorithms based on two-stream convolution
networks [8,19,20]. Although these algorithms have achieved good performance in the
experimental environment, they are susceptible to interference from the background envi-
ronment. Simultaneously, the model needs to collect a lot of scene data for training, and
the trained model cannot effectively identify new actions incrementally. Human skeleton-
based action recognition algorithms usually use human pose information in the video
to characterize human actions, which can effectively filter scene interference. However,
due to the restriction of video-based human pose estimation algorithms [21–23] and the
lack of video action datasets containing human pose annotations [5], previous human-
skeleton-based algorithms just rely on manually annotated data [5,11] or human skeleton
data obtaining from expensive motion capture equipment such as Kinects and RGB-D
cameras [10], unable to effectively recognize action based on monocular video cameras.

To address these issues, we propose a novel self-deployable ubiquitous action recogni-
tion framework that enables a self-motivated user to bootstrap and deploy action recogni-
tion, called FOLLOWER. Our main idea is, based on a small number of user-defined sample
action data, to establish an action fingerprint library, and then use the matching method to
complete action recognition. FOLLOWER is mainly divided into guide process and follow
process. The guide process uses the idea of central feature selection to build an action
fingerprint library. The follow process uses an adaptive weight offset template matching
to complete action recognition. However, there are some challenges in implementing this
method:

• How can the standardized description of movement characteristics in different scenes
and different body postures be solved?

• How can an action finger be accurately and efficiently recognized?

To address the first challenge, we design an action feature descriptor named pose
action normalized feature, which can regulate different body postures based on end-to-end
video 3D human pose estimation. Pose action normalized feature is mainly composed
of the normalized joints series and key angle change series, which characterizes the ac-
tion features of different granularities. To address the second challenge, we propose a
similarity measure of action sequences called normalized joints Dynamic Time Warping
(DTW)distance based on the dynamic time warping algorithm. We use it to calculate the
importance of each candidate in the action class and select the most representative central
pose action normalized feature as the action feature to build an action fingerprint library,
with a dynamic entry mechanism to support user-defined action expansion. To address
the third challenge, we use the key angle change series to quickly detect motion in video
sequences and filter action to avoid unnecessary calculations. To solve the misjudgment of
actions, we design an adaptive weight template matching algorithm, which can calculate
the weight offset of normalized joints DTW distance for each action in action fingerprint.
It can correct the similarity between the action to be recognized and actions in the action
fingerprint to recognize complex types of actions available. To verify the algorithm’s
effectiveness, we construct a dataset containing 14 kinds of actions for testing. Under
various test scenarios, the recognition accuracy rate can reach 96.74%. Therefore, the main
contributions of this article include:

• We first propose a self-deployable action recognition framework with a skeleton-based
action recognition method realizing user-defined action detection and recognition
under few-shot data with strong generalization ability.

• We implement action recognition based on real unlabeled video via an action feature
description operator pose action normalized feature (PANF) effectively overcoming
scene information interference, which improve the practical value of motion recogni-
tion algorithms based on monocular video cameras.

• We design a new template matching algorithm with low time complexity calculating
offset weights to improve the effect, which can be applied to other template matching
tasks.



Sensors 2021, 21, 950 3 of 19

• We construct a video action dataset containing human pose annotations, which con-
tributes to the research on self-deployable action recognition and skeleton-based
action recognition algorithms in videos. Moreover, we tested FOLLOWER on the
dataset, and the recognition accuracy rate can reach 96.74%.

2. Framework Design
2.1. Overview

FOLLOWER is mainly divided into guide process and follow process. As shown in
Figure 1, the top pipeline of the figure represents the guide process. Based on processing
a small number of user-defined action video sequences with tags, FOLLOWER extracts
guide pose action normalized feature and establishes an action fingerprint library based on
normalized joints DTW. The action fingerprint library is not restricted by categories, which
can be customized by users. The bottom pipeline of the figure shows the follow process.
FOLLOWER extracts the pose action normalized feature of the real-time video sequence
and matches the central pose action normalized feature of each action in the established
action fingerprint library to identify the action. The middle pipeline in the figure shows the
extraction process from video frames to pose action normalized features, mainly composed
of the 3D human pose estimation and pose action normalized feature estimation.

Central Feature 

Selection 

Action Filtering Template Matching Output

 Fingerprint 

Library

Figure 1. Framework architecture.

2.2. Pose Action Normalized Feature

Pose action normalized feature is a 3D human pose-based action recognition feature
description operator, which can effectively remove the scene interference to the body
posture differences. Pose action normalized feature is mainly composed of the normalized
joints series and key angle change series. For an action video sequence G of length t, it can
be expressed as:

G = {g1, g2, . . . , gt} (1)

where gi represents a frame containing the human body. After the 3D pose estimation, G
obtains the 3D pose sequence p:

P =
{{

p0,1 , p1,1 , . . . pv−1,1

}
,
{

p0,2 , p1,2 , . . . pv−1,2

}
, . . . ,

{
p0,t , p1,t , . . . pv−1,t

}}
(2)

where pi,j represents the position coordinate (x, y, z) of the joint point i in the frame j. v is
the number of joint points; in this paper, v = 17. After transformation, P can get v joint
series Ji, which can be expressed as:

Ji = {pi,1, pi,2, . . . , pi,t} (3)

After the pose action normalized feature estimation process, FOLLOWER can get the
pose action normalized feature set F, which can be expressed as:

F(G) = {N(J), K(a)} (4)



Sensors 2021, 21, 950 4 of 19

N(J) = {Norm(J0), Norm(J1), . . . , Norm(Jv−1)} (5)

K(a) = {max(a0)−min(a0), max(a1)−min(a1), . . . , max(ak−1)−min(ak−1)} (6)

Pose action normalized feature set F is mainly composed of the normalized joints
series N and key angle change series K, used to build action fingerprint library and match
actions. K represents the fine-grained features of actions in time series and N represents
the global coarse-grained features of actions. Function Norm is the normalized change of
the joint and a is a set of key angle sequence.The length of a is k, and each angle in ai is
calculated by corresponding 3D pose Pi in P.

2.2.1. 3D Human Pose Estimation

To guarantee performance and efficiency, 3D human pose estimation is composed of
the human detector Yolo-v3 [24], 2D human pose estimation Pruned HRnet, and 2D to 3D
pose estimation Video Pose 3D [25]. Pruned HRnet is a lightweight model we designed to
improve the real-time performance of the algorithm, which is obtained based on HRnet
using the channel pruning method with self-determined pruning parameters. Yolo-v3 and
Video Pose 3D use pre-training model directly.

As shown in Figure 2, we utilize a video action sequence G to generate 3D pose series
P. Yolo-v3 generates the detection box H of the human body. H generates 2D human pose
S through Prund HRnet. VideoPose3D performs 3D pose estimation through adjacent
multi-frame sequences, and finally obtains 3D pose series P.

Yolo-v3 Pruned HRnet Video Pose 
3D

Video G

Human box H 2D pose S

3D pose P

Figure 2. 3D human pose estimation.

To lighten the algorithm, we prun the original HRnet model. In the original HRnet
[26], to achieve reliable high-resolution representations, the algorithm connects multiple
high-resolution subnetworks in parallel. It performs various multi-scale fusions, which
leads to a complicated model structure, and effective pruning is complicated.

The essential components of HRnet can be divided into BasicBlock, Bottleneck, and
Multi-scale Fusions layer. The multi-scale fusion layer contains more information and
fewer parameters, so it is not pruned during the pruning process. The structures of
BasicBlock and Bottleneck are shown in Figure 3, both of which are residual structures.
The convolution operation before the Add operation does not involve pruning because it
involves multi-scale fusions. The rest of the layers include pruning, and the pruning area
is shown in the red box in Figure 3.



Sensors 2021, 21, 950 5 of 19

(a) Bottleneck pruning area (b) Basicblock pruning area

Figure 3. HRnet basic network structure pruning area.

The pruning strategy draws on the network slimming algorithm [27]. The batch-
normalization layer (BN layer) coefficient γ is directly used as the criterion for measuring
the importance of the channel. The function of the BN layer is generally expressed as:

y = γ× x−Mean(x)√
Var(x) + ε

+ β (7)

Each channel C corresponds to a set of γ and β. γ represents scale parameters, β
represents shift parameter, and ε represents normalization parameter. The higher the value
of γ is, the more important C is. Given a pruning rate 999,999,999, each γ in the BN layer
that needs to be pruned is collected and sorted to obtain the sequence L, whose length is m.
The global threshold is θg:

θg = Lm×p (8)

For a BN layer to be pruned, the γ sequence is B, and its local threshold of γ is θlocal :

θlocal =

{
max(B) max(B) ≤ θg

θg max(B) > θg
(9)

Within a BN layer, C has a γ that is smaller than θlocal , which is the target of pruning.
The pruning rate λ is selected by plotting the scatterplot of the pruning rate λ and the

performance indexes acc and ap of the model after pruning on the COCOVal2017 data set
[28], making sure to maximize pruning rate λ with particular acc and ap.

We sample 50 candidates λ interval in the interval [0, 1]and obtain 50 candidates
Pruned HRnet by pruning. After testing, we obtain the corresponding acc and ap, and the
corresponding set is Lacc and Lap. Let the abscissa be x, and the ordinate is y:

x = λ (10)

y =
acc

max(Lacc)
+

ap
max

(
Lap
) (11)

By drawing a scatterplot of y versus x, we find that the distribution of scatters is in the
form of a convex function, so the model corresponding to the inflection point is selected as
Prund HRnet. Simultaneously, according to the size of the model, we conducted pruning
training with a higher pruning rate and achieved a higher degree of model compression.

We select w32-256x192-HRnet and w48-384x288-HRnet in the original model and sam-
ple 50 candidate pruning rates 999,999,999 equally in the interval [0, 1] to prune the models.



Sensors 2021, 21, 950 6 of 19

Candidate models are quickly tested on the validation set to obtain the corresponding
performance indicators of acc and ap. The scatter plot is shown in Figure 4.

��� ��� ��� ��� ��� ��� ��� ��� ��	 ��
 ���



���
���
���
���
���
���
���
���
��	
��

���
���
���
���
���
���
���
���
��	
��

���

�

w32 best per:0.42
w48 best per:0.36 w32 extreme per:0.8

w48 extreme per:0.78

�������
�
�
��	��	�
�		

Figure 4. Candidate model selection.

We selected four candidate models for training: w48-best, w48-extreme, w32-best, and
w32-extreme. After training, we have a model that balances accuracy and computational
complexity as the 2D pose estimation model.

2.2.2. Pose Action Normalized Feature Estimation

Pose action normalized feature estimation mainly includes coordinate transform,
scale transform, and key angle calculation. Among them, coordinate transform and scale
transform correspond to the function Norm.

The visual representation of the 3D pose is shown in Figure 5. There are 17 joints in
one pose.

The coordinates of each joint generated by 3D human pose estimation are absolute
coordinates relative to Hi. As the Hi coordinate system changes, the value of the joint
coordinates also changes. Therefore, coordinate transform is needed to obtain coordinate
descriptions that are not related to Hi. In FOLLOWER, the revised human body central
point is selected as the coordinate origin:

Oti = Mid(Mid(Mid(J1,ti, J4,ti), Mid(J11,ti, J14,ti)), J7,ti) (12)

Mid is the midpoint calculation function.
Affected by human body shape and shooting location, the human body posture

generated by 3D human body posture estimation will have great differences in scale.
Therefore, this paper designs a human body scale description method based on the human
body scale. As shown in Figure 5, the pose is divided into 11 blocks with the staff r:

r =
e−1

∑
i=0

Dist
(

JSi ,1, JEi ,1
)
/11 (13)

S and E represent the coordinate pair set of connection relationship between the joints,
whose length is e. The line between Si and Ei represents a set of skeletons. From this, we
can get the normalized function of the joint:

Norm(Ji) = {(Ji,1 −O1)/r, (Ji,2 −O2)/r, . . . , (Ji,t −Ot)/r} (14)

At the same time, we consider that some key angle information can also describe
human limb movements. Based on this, as shown in Figure 5, we selected nine key angles
as features to represent the changes in the progress of the legs, arms, and torso, which is
used for motion threshold analysis and action filtering.



Sensors 2021, 21, 950 7 of 19

Figure 5. Human pose information.

2.3. Guide Process

In the guide process, for a new action, the algorithm firstly extracts the pose action
normalized feature corresponding to each guider in the standard guider action set G to
construct the candidate pose action normalized feature set C. Then, according to the
similarity between action sequences based on normalized joints DTW distance, we select
the center feature in the action class to obtain the most representative center pose action
normalized feature as the feature of the action. Finally, the algorithm stores the center pose
action normalized feature in the action fingerprint library for the follow process.

2.3.1. Normalized Joints DTW

For FOLLOWER, calculating the similarity measure between two action video se-
quences G1 and G2 is the core of establishing an action fingerprint library and matching
actions. We designed the DTW distance based on the normalized joint sequence set in pose
action normalized feature, normalized joints DTW, as the index of the similarity measure.

Let the normalized joints series of G1 and G2 be N1 and N2, respectively, which are
both composed of v normalized joint series. Since the normalized joint series is a time series
of coordinate position information, the DTW algorithm is used to calculate the similarity
of two-time sequences, which can be unequal in length. The calculation formula of DTW
distance is shown in the literature [29].

Considering the interference of noise in practical applications, before performing the
DTW calculation, the original N1 and N2 need to be equally downsampled to obtain the
time series D1 and D2 with the equally divided sampling parameter sp. sp is the length of
each group of joint series in D1 and D2. Calculating the average DTW of joint series in v
groups D1 and D2, we calculate normalized joints DTW distance as follows:

NJDTW(F1, F2) =
v−1

∑
i=0

DTW(D1, D2)/v (15)

F1 and F2 represent the pose action normalized feature of G1 and G2. For the two
action video sequences G1 and G2, the smaller is the normalized joints DTW distance, the
higher is the degree of similarity.

2.3.2. Action Fingerprint Library

Our identification method is to match actions in the action fingerprint library. Suppose
there are n kinds of actions, each of which has m guiders. If candidate pose action normal-
ized features are directly stored as features in the action fingerprint library for matching,



Sensors 2021, 21, 950 8 of 19

space and time complexity is at least O(mn). Besides, if there are noises in some guider
actions during recording, the accuracy of action recognition will also be affected. Therefore,
we propose a method for selecting the center feature in the action class, which dynamically
selects the most representative guider pose action normalized feature in each action as the
central pose action normalized feature of this class when a new guider action is recorded
in the fingerprint library. The action fingerprint library only stores central pose action
normalized feature of each class, so matching complexity is O(n).

For the candidate pose action normalized feature set of action C, whose length is m,
the sum of the normalized joints DTW distance of each candidate Ci and another candidate
pose action normalized feature Cj is used as the criterion for measuring the importance of
Cj. The smaller is the value, the more likely the candidate pose action normalized feature
is to obtain a lower normalized joints DTW distance than another candidate pose action
normalized features. The candidate pose action normalized feature with minimum of
normalized joints DTW distance is selected as the representative of this action. Thus, we
can get the selection function of the central feature:

min
i

m−1

∑
j=0

NJDTW
(
Ci, Cj

)
(16)

The obtained Ci is stored in the action fingerprint library as the central feature of the
action.

To reduce the entry time of the fingerprint library, the action fingerprint library stores
the list of the sum of the normalized joints DTW distance of each Ci and other Cj, which
is represented by U, and the index corresponding to the center pose action normalized
feature ci. When recording a new candidate pose action normalized feature Cm, the update
algorithm for ci and U is as follows:

ci =


ci Uci + NJDTW(Cm, Cci ) ≤

m−1
∑

j=0
NJDTW

(
Cm, Cj

)
m Uci + NJDTW(Cm, Cci ) >

m−1
∑

j=0
NJDTW

(
Cm, Cj

) (17)

Uj =


Uj + NJDTW

(
Cm, Cj

)
j < m

m−1
∑

j=0
NJDTW

(
Cm, Cj

)
j = m (18)

The algorithm’s time complexity is O(m), which is convenient for users to add guider-
data by themselves.

2.4. Follow Process

In the follow process, FOLLOWER continuously captures the video sequence of vt
frames as the sequence to be recognized. It takes the latest pt frame as a priori video for
motion detection based on the key angle change series threshold. If a motion is detected,
the system takes the captured video sequence as follower data and extracts its pose action
normalized feature as X to represent the pose action normalized feature to be recognized,
whose length is at least vt frames. Through the action filtering process based on key angle
changes and the adaptive weight offset template matching process based on normalized
joints DTW distance, FOLLOWER selects the class with the smallest distance from X as the
predicted class within the action fingerprint library.

2.4.1. Motion Detection

Before action recognition, the algorithm needs to determine whether the currently
acquired video frame sequence contains motion. Let the previous pt frame of the series
be the priority video Vpr, calculate the corresponding key angle change sequence Kpr, and



Sensors 2021, 21, 950 9 of 19

take the difference between the maximum angle change and the minimum angle change as
the motion estimation value:

prv = max
(
Kpr
)
−min

(
Kpr
)

(19)

The higher is the value of prv, the greater is the amplitude of motion. Let the motion
threshold be prp. When the value of prv is lower than the motion threshold prp, the
algorithm considers that the motion has not started, and thus does not perform action
recognition. When the value of prv exceeds the motion threshold prp, the algorithm begins
to capture the sequence of video frames for recognition and recognizes the sequence of
video frames after the end of the motion. The judgment for the end of the motion is to
perform motion detection after intercepting the vt frames until the value of prv is lower
than the motion threshold prp. Kpr can be calculated by Equation (6).

2.4.2. Action Filtering

Before the action matching, the key angle change series information of the action in
the fingerprint library is compared with the key angle change series information of the
follower action, which can filter out some actions with significant differences on the global
level. The algorithm first sorts key angle change series in descending order and obtains
the corresponding subscript sequence Sa. Sa reflects the arrangement of the changing
intensity of the key angle. For different actions, the order of Sa arrangement is different.
Considering that, in actual applications, different users have a certain difference in the
overall understanding of actions, filtering directly with Sa is likely to lead to misjudgment;
thus, we design the filtering parameter f p. If they are inconsistent, the algorithm considers
that follower does not belong to the category corresponding to guider and skips the
category directly without performing action matching. The filtering parameter f p of
different actions is different, requiring the user to adjust according to the specific action.
Actions that are easily misjudged, the value of f p is higher.

2.4.3. Adaptive Weight Offset Template Matching

Action fingerprint library can get candidate action set for action matching after action-
filtering, let their pose action normalized feature set as Y. We count the normalized
joints DTW distance between X and each pose action normalized feature Yi in set Y. The
action corresponding to the subscript i of the minimum value is the prediction of the
follower data. In the actual test, we find that, being affected by factors such as motion
complexity, the normalized joints DTW distance calculated by different actions are not
evenly distributed. To describe this difference, we design the function Mc, which is the
average of the normalized joints DTW distance between the center pose action normalized
feature Ai of each class and all center pose action normalized feature Aj in the action
fingerprint library:

Mc(i) =
n−1

∑
j=0

NJDTW
(

Ai, Aj
)
/n (20)

The smaller is the Mc value of a class, the more likely is the normalized joints DTW
distance that can be calculated by this class with other sequences to take a smaller value,
thus different sequences have a higher probability of being judged as this class.

Based on this, we modify the template matching algorithm and design an adaptive
bias weighting function ABW based on Mc values to solve the difference in class probability
distributions caused by differences in Mc values. ABW is an exponential function with a
base less than 1, which decreases monotonically according to the value of Mc. Let Mcmean
be the average value of Mc values of all classes, maxv be the maximum value of Mc after
normalization, and its corresponding weight offset be maxp, expressed as follows:

Mcmean =
n−1

∑
i=0

Mc(i)/n (21)



Sensors 2021, 21, 950 10 of 19

maxv = max(Mcl)/Mcmean (22)

maxp =
vw

maxv
(23)

where vw is the parameter to adjust the function ABW and Mcl is the list of all Mc values.
maxv and maxp can determine the base of ABW function, expv:

expv = maxp
1

maxv (24)

From this, the expression of the ABW function can be obtained as:

ABW(i) = expv
Mc(i)

Mcmean (25)

Let the similarity between X and each pose action normalized feature Yi in Y be
ABWDTW(i):

ABWDTW(i)=ABW(i)×NJDTW(X, Yi) (26)

The subscript of the category label corresponding to the video sequence to be recog-
nized is pi:

min
pi

(ABWDTW(pi)) (27)

To reduce the start-up time of real-time recognition, the algorithm performs Mc
calculation in advance after the generation of the action fingerprint library and saves the
corresponding weight in a local file, which can be used directly in action matching.

2.5. Framework Parameters

There are six user-defined parameters in FOLLOWER: number of sampled frames
pt and motion threshold prp in motion detection, sampling parameters sp in NJDTW
calculation, number of follower action recognition sampling frames vt, filtering parameters
in action filtering f p, and adjustment parameter vw of function ABW. Users can directly use
the default values we provide or adjust these parameters to adapt to different application
scenarios. The specific information is as follows.

pt is adjusted according to the sampling frequency of the video. In general, the
pt value increases as the sampling frequency of the video increases, which can capture
significant motion.

prp affects the sensitivity of motion detection. The smaller is the prp, the easier it is to
detect motion. The appropriate value of prp is adjusted according to the motion estimation
value prv of the fixed sequence and the motion sequence.

sp represents the granularity of the action, whose value affects the grain size of
recognition in action matching. If the sp value is too large, the probability of noise will
increase, and, if it is too small, the characteristics of the action will be lost.

vt represents the length of the action. The larger is the vt, the longer is the duration of
the action that can be recognized. When adjusting the vt parameter, the value of sp should
be considered. If there is too much difference between them, the action feature will also
be lost. vt is related to the video’s frame rate of the video; the higher is the frame rate, the
higher is the value of vt that should be selected.

f p is related to the complexity of the movement and degree of pose change. Ac-
tions with a smaller degree of posture change and more elaborate action steps are easily
misjudged, whose corresponding f p value may be higher.

vw is used to adjust the ABW function, which can adjust the weight offset. The lower
is the weight of vw, the higher is the degree of bias, which is suitable for the action feature
library with a significant difference in Mc value. When vw is equal to maxv, the value of
the function ABW is fixed at one, which means that the adaptive weight offset template
matching downgrade to conventional template matching algorithm.



Sensors 2021, 21, 950 11 of 19

3. Dataset

We collected single person action video datasets containing 14 kinds of actions for
nine persons with different body types, which can be used for temporal action localization.
As shown in Figure 6, the experiment devices are ordinary smartphones. In a single video,
an action is continuously performed more than 10 times. The duration of each action is
between 2 and 3 s, and there is a 1–3 s interval between each action. The dataset information
is shown in Table 1.

The dataset mainly includes three scenes. The scenes of Volunteers 1–4 are the same,
but their postures are quite different. The scenes of the Volunteers 5–8 are the same, but
the object positions of the scene are changed during the acquisition process. The scene of
Volunteers 9 is quite different from other volunteers.

Personnel 1 Personnel 2 Personnel 3 Personnel 4

Personnel 5 Personnel 7 Personnel 8Personnel 6

Personnel 9

(a) Volunteer and scenes schematic

Lift right hand Lift left hand Push left hand sideways Push right hand forward Push left hand forwardPush right hand sideways

Right lunge Raise on right hand Right hand drawing Λ Left lungeLift right leg Raise on left hand

Left hand drawing Λ Lift left leg

(b) Action schematic

Figure 6. Dataset schematic.



Sensors 2021, 21, 950 12 of 19

Table 1. Dataset information.

Label Action Quantity

A Lift right hand 100

B Lift left hand 94

C Push right hand sideways 90

D Push left hand sideways 87

E Push right hand forward 93

F Push left hand forward 94

G Right lunge 92

H Raise on right hand 88

I Right hand drawing “
∧

” 94

J Lift right 89

K Left lunge 92

L Raise on left hand 89

M Left hand drawing “
∧

” 94

N Lift left leg 91

We manually cropped the first four actions of each video to create a video action
classification dataset, which is used to test the action classification algorithm and build the
action fingerprint library.

Based on the 3D human pose estimation algorithm in the method, we simultaneously
extracted the 2D human pose and 3D human pose from all videos constructing a video-
based action pose dataset that can be used for action recognition research based on pose
estimation.

4. Experiment

We evaluated FOLLOWER on the dataset we collected with different parameters
and guider data to showcase: (i) effectiveness of the functional component designed in
FOLLOWER; (ii) accurateness of FOLLOWER in different action fingerprint library; and
(iii) analysis of critical factors affecting the algorithm.

4.1. Implementation Details

Environment. In these experiments, we implemented our FOLLOWER in a massive
batch of experiments with different action fingerprint library construction methods. We
conducted experiments on a personal computer, with the Intel Core i7 8th Gen as CPU and
the NVIDIA GTX 1070 as GPU. The deep learning framework was PyTorch with CUDA10.1
and Cudnn7.

Parameter. Since the pace of actions of each person was not consistent during data
collection, there is an absolute difference in the number of continuous frames of actions.
We adjusted the parameter vt of different action video to reduce the misidentification of
actions caused by action positioning errors, as shown in Table 2.

To prevent the action from being erroneously filtered out during the action filtering
process, the f p value of each action is not less than 8, as shown in Table 3.

The other value in the following experiments are fixed: sp = 30, prp = 2.5, and pt = 6.
vw is the core parameter of the action classification algorithm, whose value was

obtained in the following experiments.
Evaluation Metrics. We used error recognition rate and recognition accuracy to

evaluate our algorithm. The error recognition rate is the sum of the error detection rate and
the error classification rate. The error detection rate is generated by the error segmentation
of the action caused by the motion detection algorithm. The error classification rate is



Sensors 2021, 21, 950 13 of 19

the ratio of an incorrectly identified number to the total number. Recognition accuracy is
the ratio of a correctly identified number to the total number. Therefore, the sum of error
detection rate and detection accuracy may not be 1, as error segmentation may lead to
more recognized actions than the number of actual actions.

Table 2. Parameter vt of action.

Volunteer Number Action Label vt

1
A∼K, M∼N 65

L 70

2
A∼F, H∼L, N 45

G 70
M 65

3 A∼N 80

4 A∼N 70

5 A∼N 70

6 A∼N 70

7 A∼N 70

8 A∼N 70

9 A∼N 65

Table 3. Parameter f p of actions

Label Action f p

A Lift right hand 8

B Lift left hand 8

C Push right hand sideways 8

D Push left hand sideways 8

E Push right hand forward 8

F Push left hand forward 8

G Right lunge 8

H Raise on right hand 8

I Right hand drawing
∧

9

J Lift right leg 9

K Left lunge 8

L Raise on left hand 8

M Left hand drawing
∧

9

N Lift left leg 9

4.2. Effectiveness of Functional Component

We intercepted the first action sequence in each video of Volunteers 1–4 as guide data
to build action fingerprint library to test the effectiveness of the functional component
designed in FOLLOWER.

Purned HRnet. We retrained four candidate models selected based on Figure 4 on the
COCO2017 dataset, which is used to learn 2D pose estimation. The training epoch is the
same as the initial epochs of 210 rounds. The comparison results are shown in Table 4.



Sensors 2021, 21, 950 14 of 19

Table 4. COCOVal2017 dataset test results.

Model Scale Params GFLOPs acc ap ap50 ap75 ar

HRNet-W32 256× 192 28.5M 7.1 0.883 0.765 0.935 0.837 0.841
HRNet-W48 384× 288 63.6M 32.9 0.887 0.781 0.936 0.849 0.86

w32-best 256× 192 17.9M 4.4 0.882 0.763 0.936 0.837 0.841
w48-best 384× 288 43.8M 21 0.888 0.781 0.936 0.849 0.859

w32-extreme 256× 192 7.5M 2.2 0.863 0.732 0.926 0.813 0.809
w48-extreme 384× 288 18.8M 9.8 0.885 0.775 0.935 0.847 0.853

Params and GFLOPs represent the computational cost of the model, where smaller
values are better. To ensure the accuracy and computational cost of the model, we finally
chose the w48-extreme model as the 2D pose estimation model, for which the Params
compression ratio is 70.44% and the GFLOPs compression ratio is 70.21% with higher acc
and ap than the original HRNet-W32.

Motion Detection. Influenced by personnel understanding of action and frequency
of movement, we tested motion detection for each person separately. Error detection rate
was used to assess the effect. As shown in Figure 7, the overall error detection rate is 5.21%
under the control of default parameters. Motion detection algorithm can capture motion.

Figure 7. Motion detection.

Action Filtering. After segmenting the video action segment, we tested action filtering
in units of actions. The measured index was the matching speedup ratio ar, which is
calculated from the number of filtered actions n f divided by the number of action matches
without filtering na:

ar = na/n f (28)

The test results are shown in Table 5. The overall matching speedup ratio is 1.76, and
the acceleration ratio of each action is not less than 1.4. It means that the action filtering
algorithm can effectively improve the speed of recognition.

Adaptive Weight Offset Template Matching. Different from regular template match-
ing, we used vw to adjust the matching value. To prove the effectiveness of adaptive weight
offset template matching, we sampled vw every 0.5 in the interval of [1.2, maxv] to test
the follow process and determine the best value of vw. The results are shown in Figure 8.
The star mark corresponds to the best performance of adaptive weight offset template
matching, and the square corresponds to the performance of regular template matching.
We can find that the performance of the adaptive weight offset template matching with
suitable vw is better than regular template matching.



Sensors 2021, 21, 950 15 of 19

Table 5. Action filtering acceleration effect.

Label na n f ar

A 1344 864 1.56

B 1246 799 1.56

C 1190 595 2

D 1162 585 1.99

E 1316 658 2

F 1302 651 2

G 1372 883 1.55

H 1190 595 2

I 1274 639 1.99

J 1190 804 1.48

K 1470 945 1.56

L 1232 616 2

M 1246 651 1.91

N 1218 794 1.53

Overall 17,752 10,079 1.76

��� ��
 ��� ��
 ��� ���
��

��



����

����

���


�
��
��
��
�

�����������
�
�

����
������	�	�

��������


(a) Accuracy with different vw

��� ��
 ��� ��� ��� ���
��

����

����

����

���


��
��

���
��

��
��

���
�

���������������

�����������
�	�

��������


(b) Error recognition with different vw

Figure 8. Template matching with different vw.

4.3. Comparison Test with Different Action Fingerprint Library

To thoroughly test the performance of the algorithm, we used multiple sets of guiders
to build action fingerprint library to test our algorithm. Unlike deep learning methods,
our “train data” are far fewer than the test data. For each action class in action fingerprint
library, we only used four segmented guider data to test nearly 90 action samples. The
performance is shown in Table 6.

Comparison with different scenes. We built action fingerprint libraries based on
similar scenes, and each scene contains information about multiple people. Experiment
Guiders 1–4 correspond to Scene 1 with different postures and experiment Guiders 5–8
correspond to Scene 2 with some scene interference. The recognition results of both are
above 92%. Although the accuracy is lower than the optimal value of its containing
personnel single-person fingerprint library, recognition effect is more stable than single
datum. The result of a database containing multiple postures is better than that of multiple
scenarios, which means that we can focus on collecting multi-posture data in practical
applications.



Sensors 2021, 21, 950 16 of 19

Table 6. Performance with different action fingerprint library.

Experiment maxv vw Guider Follower Error Recognition Accuracy

Guider1 1.69 1.5 1 1–9 7.15% 94.41%

Guider 2 2.11 1.6 2 1–9 5.28% 96.27%

Guider 3 1.85 1.85 3 1–9 9.95% 91.61%

Guider 4 2.22 2 4 1–9 9.56% 92.00%

Guider 5 3.95 3.4 5 1–9 15.93% 85.63%

Guider 6 2.22 2.15 6 1–9 4.82% 96.74%

Guider 7 1.59 1.25 7 1–9 10.18% 91.38%

Guider 8 3.46 1.4 8 1–9 6.06% 95.49%

Guiders 1–4 2.18 2.05 1–4 1–9 6.92% 94.63%

Guiders 5–8 3.78 3.3 5–8 1–9 8.70% 92.85%

Comparison with different personalities. We separately used the data of Volunteers
1–8 to build action fingerprint libraries, each of which involves only one person data. As
the shown by the results for experiment Guiders 1–8, the recognition accuracy can reach
up to 96.74%. Nevertheless, there is a problem of unstable recognition. In particular, the
recognition effect of the fingerprint library based on the action of Volunteer 5 is inferior,
only 85.63%. We checked the data of Volunteer 5 and found that there are missing frames
and picture damage, which affect the final recognition result. Combined with Figure 9, we
can easily find the action classes that affect the recognition results. It can be found that the
problems that affect the stability of recognition are mainly concentrated on these actions,
which can guide us to correct the fingerprint database by replacing the guider data of these
actions.

(a) Heatmap of recognition accuracy

(b) Heatmap of error recognition rate

Figure 9. Heatmap of performance.

4.4. Ablation Study

To further understand the influence of each component on the recognition result, we
conducted ablation experiments based on the fingerprint library of Guiders 1–4. First, we
manually segmented the first four actions of each action video of Volunteers 1–8 to test the



Sensors 2021, 21, 950 17 of 19

recognition effect of action filtering and matching without detection. Then, we analyzed
the effects of filtering and matching with detection. Finally, to analyze the impact of scene
interference, we only tested the data corresponding to Scene 1.

As shown in Table 7, we can find that detection limits the display of recognition
accuracy. The addition of filtering can filter out some actions that affect the recognition
result, effectively improving the recognition effect. Besides, in the scene comparison test,
the recognition effect is not much different, which further illustrates the recognition stability
of our algorithm.

Table 7. Ablation test.

Detection Filtering Matching Guider Follower Error Detection Accuracy

× X X 1–4 1–8 2.01% 97.99%

X × X 1–4 1–9 8.08% 93.47%

X × × 1–4 1–9 5.21% 94.79%

X X X 1–4 1–4 5.91% 95.27%

X X X 1–4 1–9 6.92% 94.63%

5. Potential Applications

To better demonstrate our framework, we show the FOLLOWER’s practical value
through a usage example in this section. FOLLOWER can be applied to the field of smart
home remote control, where users can bind control instructions and custom operations to
achieve user-defined control. Compared with the traditional approach, FOLLOWER only
requires a monocular camera with low deployment cost.

First, users can make arbitrary actions as guidance data. FOLLOWER only needs to
collect 3–4 action datasets to complete the action fingerprint library data preparation. Then,
FOLLOWER extracts the pose information of the mentor data and stores it in the pose
database to construct the action fingerprint library.

In the actual work, the user only needs to perform corresponding actions in front of
the camera. The FOLLOWER automatically recognizes the user action information and
then triggers the corresponding control signal to achieve intelligent control of the furniture.
FOLLOWER supports the action recognition of different users in different scenarios, so
users can share the control experience by sharing the action fingerprint library.

6. Conclusions

This paper presents the design of a unified description method of human actions in
video sequences based on 3D pose estimation. Combining dynamic time warping, motion
detection, action filtering, and adaptive weight offset template matching, we bring about
incremental motion detection and recognition under a small amount of data guidance
and parameter control. Adaptive weight offset template matching can be applied to
other template matching application scenarios. At the same time, we propose a single-
person action recognition dataset containing 3D pose markers, which contributes to the
development of action recognition research based on pose estimation.

Author Contributions: Conceptualization, X.Y. and D.L.; methodology, X.Y. and D.L.; software, J.L.;
validation, X.Y. and D.L.; formal analysis, F.Y.; investigation, P.C.; resources, Q.N.; data curation, X.Y.
and D.L.; writing—original draft preparation, X.Y.; writing—review and editing, Q.N.; visualization,
X.Y.; supervision, Q.N.; project administration, Q.N.; funding acquisition, Q.N. All authors have read
and agreed to the published version of the manuscript

Funding: This work was supported by the Fundamental Research Funds for the Central Universities
(2018BSCXA16).

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2021, 21, 950 18 of 19

Reference
1. Guan, Y.; Plötz, T. Ensembles of Deep LSTM Learners for Activity Recognition Using Wearables. Proc. ACM Interact. Mob.

Wearable Ubiquitous Technol. 2017, 1, 1–28. [CrossRef]
2. Zheng, Y.; Zhang, Y.; Qian, K.; Zhang, G.; Liu, Y.; Wu, C.; Yang, Z. Zero-Effort Cross-Domain Gesture Recognition with Wi-Fi. In

Proceedings of the 17th Annual International Conference on Mobile Systems, Applications, and Services; Association for Computing
Machinery: New York, NY, USA, 2019; pp. 313–325. [CrossRef]

3. Wang, H.; Schmid, C. Action recognition with improved trajectories. In Proceedings of the IEEE International Conference On
Computer Vision, Sydney, Australia, 1–8 December 2013; pp. 3551–3558.

4. Tran, D.; Wang, H.; Torresani, L.; Ray, J.; LeCun, Y.; Paluri, M. A closer look at spatiotemporal convolutions for action recognition.
In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018;
pp. 6450–6459.

5. Presti, L.L.; La Cascia, M. 3D skeleton-based human action classification: A survey. Pattern Recognit. 2016, 53, 130–147. [CrossRef]
6. Chaudhry, R.; Ravichandran, A.; Hager, G.; Vidal, R. Histograms of oriented optical flow and binet-cauchy kernels on nonlinear

dynamical systems for the recognition of human actions. In Proceedings of the 2009 IEEE Conference on Computer Vision and
Pattern Recognition, Miami Beach, FL, USA, 20–21 June 2009; pp. 1932–1939.

7. Wang, H.; Kläser, A.; Schmid, C.; Liu, C.L. Action Recognition by Dense Trajectories. In Proceedings of the 24th IEEE Conference
on Computer Vision and Pattern Recognition (CVPR 2011), Colorado Springs, CO, USA, 20–25 June 2011; pp. 3169–3176. Available
online: https://hal.inria.fr/inria-00583818 (accessed on 27 January 2021).

8. Simonyan, K.; Zisserman, A. Two-stream convolutional networks for action recognition in videos. In Advances in Neural
Information Processing Systems; MIT Press: Cambridge, MA, USA, 2014; pp. 568–576.

9. Zhang, D.; He, L.; Tu, Z.; Zhang, S.; Han, F.; Yang, B. Learning motion representation for real-time spatio-temporal action
localization. Pattern Recognit. 2020, 103, 107312. [CrossRef]

10. Du, Y.; Fu, Y.; Wang, L. Skeleton based action recognition with convolutional neural network. In Proceedings of the 2015 3rd
IAPR Asian Conference on Pattern Recognition (ACPR), Kuala Lumpur, Malaysia, 3–6 November 2015; pp. 579–583.

11. Du, Y.; Wang, W.; Wang, L. Hierarchical recurrent neural network for skeleton based action recognition. In Proceedings of the
IEEE Conference On Computer Vision And Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1110–1118.

12. Yan, S.; Xiong, Y.; Lin, D. Spatial temporal graph convolutional networks for skeleton-based action recognition. In Proceedings of
the Thirty-Second AAAI Conference On Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018.

13. Chen, X.; Wang, G.; Guo, H.; Zhang, C. Pose guided structured region ensemble network for cascaded hand pose estimation.
Neurocomputing 2020, 395, 138–149. [CrossRef]

14. Tang, Y.; Tian, Y.; Lu, J.; Li, P.; Zhou, J. Deep progressive reinforcement learning for skeleton-based action recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018;
pp. 5323–5332.

15. Chen, P.H.; Lin, C.J.; Schölkopf, B. A tutorial on ν-support vector machines. Appl. Stoch. Model. Bus. Ind. 2005, 21, 111–136.
[CrossRef]

16. Tran, D.; Bourdev, L.; Fergus, R.; Torresani, L.; Paluri, M. Learning spatiotemporal features with 3d convolutional networks.
In Proceedings of the IEEE International Conference On Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 4489–4497.

17. Qiu, Z.; Yao, T.; Mei, T. Learning spatio-temporal representation with pseudo-3d residual networks. In Proceedings of the IEEE
International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 5533–5541.

18. Diba, A.; Fayyaz, M.; Sharma, V.; Karami, A.H.; Arzani, M.M.; Yousefzadeh, R.; Van Gool, L. Temporal 3d convnets: New
architecture and transfer learning for video classification. arXiv 2017, arXiv:1711.08200.

19. Wang, L.; Xiong, Y.; Wang, Z.; Qiao, Y.; Lin, D.; Tang, X.; Van Gool, L. Temporal segment networks: Towards good practices for
deep action recognition. In European Conference On Computer Vision; Springer: Berlin/Heidelberg, Germany, 2016, pp. 20–36.

20. Lan, Z.; Zhu, Y.; Hauptmann, A.G.; Newsam, S. Deep local video feature for action recognition. In Proceedings of the IEEE
Conference On Computer Vision And Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 1–7.

21. Wei, S.E.; Ramakrishna, V.; Kanade, T.; Sheikh, Y. Convolutional pose machines. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4724–4732.

22. Cao, Z.; Hidalgo, G.; Simon, T.; Wei, S.E.; Sheikh, Y. OpenPose: Realtime multi-person 2D pose estimation using Part Affinity
Fields. arXiv 2018, arXiv:1812.08008.

23. Chen, C.H.; Ramanan, D. 3d human pose estimation= 2d pose estimation+ matching. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7035–7043.

24. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
25. Pavllo, D.; Feichtenhofer, C.; Grangier, D.; Auli, M. 3d human pose estimation in video with temporal convolutions and

semi-supervised training. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA,
USA, 16–20 June 2019; pp. 7753–7762.

26. Sun, K.; Xiao, B.; Liu, D.; Wang, J. Deep high-resolution representation learning for human pose estimation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 5693–5703.

27. Liu, Z.; Li, J.; Shen, Z.; Huang, G.; Yan, S.; Zhang, C. Learning efficient convolutional networks through network slimming.
In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2736–2744.

http://doi.org/10.1145/3090076
http://dx.doi.org/10.1145/3307334.3326081
http://dx.doi.org/10.1016/j.patcog.2015.11.019
https://hal.inria.fr/inria-00583818
http://dx.doi.org/10.1016/j.patcog.2020.107312
http://dx.doi.org/10.1016/j.neucom.2018.06.097
http://dx.doi.org/10.1002/asmb.537


Sensors 2021, 21, 950 19 of 19

28. Chen, X.; Fang, H.; Lin, T.Y.; Vedantam, R.; Gupta, S.; Dollár, P.; Zitnick, C.L. Microsoft coco captions: Data collection and
evaluation server. arXiv 2015, arXiv:1504.00325.

29. Müller, M. Dynamic time warping. In Information Retrieval For Music And Motion; Springer: Berlin/Heidelberg, Germany, 2007;
pp. 69–84.


	Introduction
	Framework Design
	Overview
	Pose Action Normalized Feature
	3D Human Pose Estimation
	Pose Action Normalized Feature Estimation

	Guide Process
	Normalized Joints DTW
	 Action Fingerprint Library 

	Follow Process
	Motion Detection
	Action Filtering
	Adaptive Weight Offset Template Matching

	Framework Parameters

	Dataset
	Experiment
	Implementation Details
	Effectiveness of Functional Component
	Comparison Test with Different Action Fingerprint Library
	Ablation Study

	Potential Applications
	Conclusions
	References

