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The complex yet not fully understood pathophysiology of Parkinson’s disease includes an important molecular component
consisting of oxidative status changes, thus leading to oxidative stress occurrence. While no particular evidence has been
reported that describes the relationship between oxidative stress and the molecular mechanisms behind Parkinson’s disease
development, animal model studies has shown that oxidative stress induction could modulate Parkinson’s disease
symptomatology. Despite the inability to perfectly replicate human disease in animals and despite that Parkinson’s disease has
not been reported in any animal species, animal modeling is one of the most important tools in understanding the complex
mechanisms of human disorders. In this way, this study is aimed at detailing this particular relationship and describing the
molecular mechanisms underlying Parkinson’s disease in animal models, focusing on the potential advantages and
disadvantages of zebrafish in this context. The information relevant to this topic was gathered using major scientific database
research (PubMed, Google Scholar, Web of Science, and Scopus) based on related keywords and inclusion criteria. Thus, it was
observed that oxidative stress possesses an important role in Parkinson’s disease as shown by numerous animal model studies,
many of which are based on rodent experimental models. However, an emerging impact of the zebrafish model was observed in
the research of Parkinson’s disease pathological mechanisms with regard to disease development factors and the cause-effect
relationship between oxidative stress and comorbidities (such as depression, hyposmia, fatigue, sleep disturbances, and cognitive
deficits) and also with regard to the pharmacological potential of antioxidant molecules in Parkinson’s disease treatment.

1. Introduction

Oxidative stress (OS) greatly impacts the human body lead-
ing to well-known pathologies, such as diabetes, atheroscle-
rosis, Alzheimer’s disease, and Parkinson’s disease (PD) [1,
2]. The main cause of OS occurrence is due to the imbalance
between reactive oxygen species (ROS) production and the
ability of the biological systems to transform ROS into harm-
less oxygen species (such as water), or to detoxify the inter-
mediate metabolites or to repair the oxidative damage [1, 3].

The concept of OS implication in mental illness was pre-
viously described [4, 5]; however, it is controversial. It is gen-

erally known that, with several exceptions, the occurrence of
mental illnesses consists of the interaction between genetic or
developmental events and environmental factors [6, 7].
Based on the context that mitochondrial dysfunction is facil-
itated by several different mechanisms and also on the fact
that high levels of ROS are needed in the nervous system
due to autophagy and mitophagy functions [8], OS occur-
rence in both the normal and pathological brain functions
is currently accepted as a normal yet controlled mechanism.

Considering all these aspects, PD can be defined as a
complex neuropsychiatric disorder occurring mostly in
elders, which is commonly characterized by dopaminergic
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system malfunction leading to muscular tonus loss [9]. The
exact cause of PD is unknown, but several hypotheses point
at genetic inheritance, drugs, and environmental factors,
such as pesticides, heavy metals, cigarette smoking, and caf-
feine [10, 11]. The administration of several chemical com-
pounds can influence the entire cell metabolism leading to
a cascade of events as shown in Figure 1.

The emerging use of the zebrafish model in neurological
and neurodegenerative human diseases (such as PD, autism,
Huntington’s disease, and Alzheimer’s disease) was described
by Xi et al. [12] and Brennan [13]. Despite that some disease
phenotypes which are caused by orthologue genes can be
very different, particularly when comparing fish and humans
[14], it was shown that more than 70% of all human disease
genes have functional homologs in Danio rerio [15, 16]. In
this way, the fast growing and easy-to-breed zebrafish could
be a reasonable choice when contemplating to keep thou-
sands of animals at low costs [16, 17]. While zebrafish was
originally considered as a bridge connection in the experi-
mental gap between fly/worm and mouse/human in studying
embryo development, it was shown that as the new research
methodologies and genetic tools were updated, the zebrafish
animal model was reported to be well suited to both develop-
mental and genetic analysis [18] as well as complex human
disorders [19, 20].

In this context, experimental animal models are needed
to provide additional evidence on PD etiology, mechanisms,
and possible therapeutic interventions. Thus, in this study,
we aimed to describe the influence of OS on the Parkinsonian
nervous system, as previously shown also by our research
group on rodent models [12–15]. Furthermore, considering
the emerging use of zebrafish in the novel worldwide research
endeavours, we aimed to compare and elaborate the zebrafish
neurophysiology model in PD research with regard to disease
development factors, cause-effect relationship of OS and
comorbidities (focussing on sleep disturbances), and the
pharmacological potential of antioxidant molecules.

2. Materials and Methods

The search strategy included the use of major scientific data-
bases (PubMed, Google Scholar, Web of Science, and Scopus)
for research of scientific articles published between 1990 and
2020. The following search keywords were used: “oxidative
stress,” “Parkinson’s disease,” “animal model,” “rat,” “mice,”
“zebrafish,” “1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP),” “rotenone,” “paraquat,” and “neurotoxin.” The
process of scientific article selection considered only reports
written in English language, and the selection was conducted
by four separate researchers (Robea M.-A., Balmus I.-M.,
Savuca A., and Ciobica A.) whose differences in opinion were
resolved by common consent. After the initial scientific data-
base research, all the scientific articles were reviewed consid-
ering some inclusion criteria, such as the reports that (1)
included information/research data on the oxidative changes
occurring in Parkinson’s disease, or described the molecular
pathways of Parkinson’s disease in relation to human pathol-
ogy, or presented significant results on Parkinson’s disease
treatments (in relation to oxidative balance pathways) and

(2) included relevant information on the Parkinson’s disease
animal models (in relation to oxidative balance pathways), or
described the molecular pathways of Parkinson’s disease
symptoms’ means of modulation in animals, or presented
significant results and correlations on the Parkinson’s disease
treatments (in relation to oxidative balance pathways and
antioxidant potential). Exclusion criteria were formulated
to avoid duplicate studies (i.e., studies on the same antioxi-
dant molecule), studies not related to oxidative stress and
Parkinson’s disease pathological pathways, and irrelevant
animal model studies in Parkinson’s disease research
(Figure 2).

3. Parkinson’s Disease and Oxidative Stress

PD is a progressive neurodegenerative disease, which pre-
dominantly occurs in the elderly population [24–26]. Char-
acterized by loss of neurons from the substantia nigra, PD
leads to inhibition of dopamine production and accumula-
tion of Lewy bodies (LB) formed by α-synuclein aggregates,
a presynaptic neuronal protein [11, 27–29]. The result of
these neuromolecular changes is translated into several clin-
ical symptoms, such as bradykinesia, resting tremor, rigidity,
and postural instability [27, 29–31]. Several nonmotor symp-
toms, such as depression, hyposmia, fatigue, sleep distur-
bances, and cognitive deficits such as dementia are often
considered comorbidities of PD [11, 27, 29, 32].

Dopamine (DA) synthesis starts with tyrosine and two
key enzymes (tyrosine hydrolase and amino acid decarboxyl-
ase), whereas its degradation is provided by the action of
three key enzymes (monoamine oxidase B, catechol-O-
methyl-transferase, and dopamine β-hydroxylase) resulting
in two final metabolites and norepinephrine [14, 33]. How-
ever, excess DA induces neuronal damage and cell death
through ROS generation. Furthermore, ROS accumulation
could lead to DNA mutations and to loss of dopaminergic
neurons from the substantia nigra [33–35].

Considering that ROS can be produced by different bio-
logical structures, many ROS functions have been described
mainly according to their reactivity. Mitochondria and
metabolism are some of the most important sources of
ROS, thus enzymes such as nitric oxide synthase, mono-
amine oxidase, and xanthine oxidase produce daily huge
amounts of the following reactive oxygen and nitrosative spe-
cies: superoxide (O∙–

2 ), hydroxyl (OH∙), peroxyl (ROO∙),
nitric oxide (NO∙), nitrogen dioxide (NO2

∙), dinitrogen triox-
ide (N2O3), nitrosonium cation (NO+), nitroxyl anion
(HNO), and lipid peroxyl (LOO∙) [9, 10, 36, 37].

Olanow and Tatton [34] and Asanuma et al. [38] both
reported an increase in lipid peroxidation and a decrease in
the activity of antioxidant enzymes, such as catalase (CAT),
glutathione (GSH), and glutathione peroxidase (GPx), in
PD patients. Furthermore, dysregulated metal ion homeosta-
sis has been often reported in PD development, particularly
iron [39]. High iron levels were discovered in the substantia
nigra pars compacta which were presumed to lead to
hydroxyl radical (OH) generation due to iron’s redox insta-
bility [23, 40, 41].
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OS implication in PD is supported by postmortem
studies and by numerous reports which suggested its active
role in PD pathological processes [42]. A link between OS,
mitochondrial dysfunction, and glutathione levels was sug-
gested by Di Monte et al. [43] by the implications of DA
metabolization by monoamine oxidase (MAO) during
which the formation and accumulation of H2O2 occurs.
Simultaneously, the glutathione resources are depleted
while glutathione peroxidase catalyses the reduction of
H2O2 in H2O [37, 38]. Furthermore, as a consequence of
substantia nigra glutathione depletion and mitochondrial

dysfunction, NO∙ production increases and leads to α-synu-
clein (α-syn) accumulation [10, 12, 29].

In physiological conditions, oxidised glutathione
(GSSG) is reduced by glutathione reductase in reduced glu-
tathione (GSH) using NADPH. However, the GSH deple-
tion could be caused by impaired synthesis of GSH, which
is a result of mitochondrial dysfunction since there is not
an adequate quantity of ATP to sustain the GSH produc-
tion [43, 44]. To support this hypothesis, Hauser et al.
[45] proved that GSH is reduced approximately 40-50%
in PD patients.
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Figure 1: Parkinson’s disease mechanism of action in the central nervous system and the pharmacokinetic effects of several agents that induce
Parkinson-like symptoms. MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) crosses the blood-brain barrier to be metabolized in 1-
methyl-4-phenylpyridinium (MPP+) by monoamine oxidase B in the astrocytes. Afterwards, the transportation system of the synaptic
cleft assists the intraneuronal MPP+ transfer and transports it further into the mitochondria where it impairs the mitochondrial
respiration chain leading to reactive oxygen species production and dopaminergic neuron loss [21]. Similar to MPTP, paraquat could
increase reactive oxygen species production, but in contrast to MPTP, it could lead to Lewy body (LB) formation [22]. 6-
Hydroxidopamine could also enter the dopaminergic neurons and lead to reactive oxygen species production in the absence of the Lewy
body inclusions [23]. Following diffusion to intraneuronal space, rotenone inhibits mitochondrial complex I and promotes the formation
of Lewy body inclusions [22, 23]. Abbreviations: 6-OHDA—6-hydroxydopamine; ADP—adenosine diphosphate; ANT—adenine
nucleotide translocase; ATP—adenosine triphosphate; BBB—blood-brain barrier; DA—dopamine; LB—Lewy bodies; L-DOPA—levodopa;
MAO-B—monoamine oxidase B; MPP+—1-methyl-4-phenylpyridinium; MPTP—1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine;
OXPHOS—oxidative phosphorylation; ROS—reactive oxygen species; TH—tyrosine; VDAC—voltage-dependent anion channel.
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Similarly, an important pathological mechanism under-
lying PD pathogenesis could be supported by nitric oxide
action due to its capacity to impair synaptic activity, memory
functionality, and neuronal plasticity [34, 41]. This aspect
was suggested by Ravenstijn et al. [66] while showing that
7-nitroindazole could exhibit an inhibitory effect on nitric
oxide synthase from the substantia nigra pars compacta lead-
ing to malonate, 3-nitropropionic acid, or MPTP-induced
lesion attenuation [46].

As we previously described, mitochondrial dysfunction
plays a major role in symptom persistence and disease pro-
gression [47, 48]. The decreased rate of ATP production leads
to OS and further to cell death [49]. Mitochondrial complex I
is often the target in neurodegenerative PD since it plays a
crucial role in the mitochondrial respiratory chain [19, 48].

4. Parkinson’s Disease Animal Models: Rodents
versus Zebrafish

Recent studies showed that mitochondrial dysfunction is a
key feature of PD pathogenesis [27, 34, 41, 47, 50].
According to numerous reports, there are several chemical
compounds which could influence the activity of mito-
chondrial complex I. In this way, the modulation of mito-
chondrial activity could lead to the occurrence of PD-like
symptomatology in both rodent and zebrafish models.
Thus, rotenone, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyri-
dine (MPTP), paraquat, 6-hydroxydopamine (6-OHDA),
pyrethroids, and organophosphates [23, 51–53] were
successfully used to increase the ROS levels and therefore to
promote dopaminergic neuron degeneration [54]. This could
be the reason why many PD animal models (mainly rodents)
are based on the acute/chronic administration of some of the
mentioned chemicals and also the evidence which ties OS to
PD molecular pathways. Table 1 summarises several animal
model studies on PD-like impairments, chemical inductors,
and comparisons between the zebrafish and rodent models.

Accumulation of α-syn is a clear sign of PD and one of
the main causes to its development [73]. Synucleins, a family
of proteins naturally occurring in the nervous system, are
known to contribute to vesicle synapse maintenance or DA
activity [65–68]. Zebrafish possesses three genes which
encode β-, γ1-, and γ2-synucleins [66, 67]. Milanese et al.
[14] showed that if the β- and γ1-synucleins are knocked
out, zebrafish exhibits hypokinesia and low levels of DA. Zeb-
rafish synucleins (zSynC) share a high similarity with human

synucleins, wherein zSynC is 70% identical and 82% similar
to human β-synuclein [74].

Furthermore, Prabhudesai et al. [75] suggested that α-syn
accumulation in the zebrafish nervous system leads to neu-
ron apoptosis and death. Their hypothesis was confirmed
since CLR01, a molecular tweezer, could increase the survival
rate of embryos and suppress α-syn aggregation in a trans-
genic zebrafish model carrying human wild type α-syn [75].

Previous studies demonstrated that overexpression of α-
syn in a hypothalamic neuronal cell line could lead to
increased ROS, mitochondrial impairment, and LB [50, 73,
76]. Also, it was suggested that cholesterol metabolites result-
ing from ROS degradation could promote the aggregation of
α-syn [76].

Due to several limitations of the classical chemical-
inducing animal models, genetically engineered animal
models are now generally preferred. However, the studies
on the pathological mechanisms underlying PD development
consider more appropriate the use of the chemical-inducing
models, since the interplay between the dopaminergic neu-
ron functions and brain redox activity remains a fine game
of regulatory potentials. Thus, the study of OS was performed
on animal models, such as Drosophila, zebrafish, mice, or
rats, predominantly using common neurotoxicants (MPTP,
6-OHDA, rotenone, and paraquat) [23, 37, 77, 78]. Thus,
the main mechanisms related to Parkinson’s disease in the
zebrafish central nervous system are schematically presented
in Figure 3, together with several agents that induce Parkin-
son’s disease and some treatment alternatives.

5. MPTP

One of the most common chemical agents which can
modulate PD symptomatology in animal models is 1-
methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) [43,
83]. Following its monoamine oxidase B (MAO-B) pro-
moted conversion to 1-methyl-4-phenylpyridinium in astro-
cytes [35, 38, 43, 56], MPP+ could easily bind DA
transporters reaching mitochondria and interfering in the
oxidative phosphorylation process carried out by mitochon-
drial complex I [35, 38, 44, 84]. Also, many reports described
the MPTP neurotoxicity to be correlated with tyrosine
hydrolase loss and DA transporters [35, 43]. Due to the fact
that the participants to this mechanism are highly conserved,
OS induction in this way was observed in zebrafish, mice,
rats, cats, dogs, and nonhuman primates [35, 85].

Initial search:
- 100 research articles

- 20 reviews
- 100 sources of general information

Exclusion criteria:
- Articles not written in English

- Duplicate studies
- Not related to OS & PD

- Irrelevant studies 

Final selection:
- Research articles (n = 67)

- Reviews (n = 11)
- Sources of general information

(n = 86)

Figure 2: The procedure used for the selection of scientific articles.
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Table 1: Parkinson’s disease animal models based on neuromodulation agents.

PD-
inducing
agent

Model
organism

Treatment
Route of

administration
Effects Reference

MPTP

Zebrafish

5μg/ml and 10μg/ml, 3 days
Dissolved in the

water

↓Locomotor activity
↓Pretectal area size

↓DA levels
[55]

Single 20mg/kg dose
Abdominal
injection

↓DA and noradrenaline levels
↓Locomotor activity

[40]

1 × 50 μg and 2 × 50 μg/24 h Intraperitoneal
injection

↓Locomotor activity
Evidence of freezing bouts

[56]

Rat

Single 20 μl/kg dose
Intrasubstantia
nigra injection

↑MDA
↓SOD

[57]

Single 100μg/1μl dose Bilateral infusion
↑LPO
↓GSH

↑SOD levels in the striatum
[58]

1 μmol/2ml, in the 1st, 7th, and 14th day
of the experiment

Intrasubstantia
nigra injection

↑MDA
↓GSSH
↓CAT

[59]

Mice 30μg/kg, twice at 16 h intervals
Intraperitoneal

injection
↓GSH

↓SOD in substantia nigra
[60]

6-OHDA

Zebrafish
Single dose: 25mg/kg

Abdominal
injection

↓Velocity rate and locomotor
activity

↓DA neurons
[48]

Single dose: 25mg/kg
Intraperitoneal

injection
↓DA and noradrenaline levels

↓Locomotor activity
[40]

Rats
10μg/2μl

Unilateral
intrastriatal
injection

↓GSH
↓CAT
↓SOD

[19]

8mg/2ml
Intrastriatal
injection

↑MDA levels
↓GSH and SOD levels in striatum

[20]

Rotenone

Zebrafish

1-12mg/kg, 7 to 36 consecutive days
Intravenous
injection

↓DA neurons
↑α-Syn aggregates

[15]

5μg/l, 28 consecutive days Dissolved in water
↓Locomotor activity

↓DA neurons
↑α-Syn aggregates

[16]

Rats

1.5mg/kg and 2.5mg/kg, 2 months
Intraperitoneal

injection

↓DA neurons in posterior striatum
and prefrontal cortex

↑Catalepsy
[17]

2.2-2.5mg/kg, 28 consecutive days
Intravenous
injection

↓Locomotor activity
↑α-Synuclein aggregates

[61]

2.0-3.0mg/kg, 28-56 days
Subcutaneous

injection
↓DA neurons

α-Syn aggregates
[62]

Single 2.5mg/kg dose
Intraperitoneal

injection
↓Body weight

↓DA neurons in striatum
[63]

2-12 μg/μl, 28-90 days
Stereotaxial
infusion

↑α-Syn aggregates
↓ROS level

[64]

2.0mg/kg, 28 days
Subcutaneous

injection

↓Locomotor activity
↓DA neurons

↑α-Syn aggregates
[65]

5μg, 21 days
Stereotaxial
infusion

↓DA neurons
↑α-Syn aggregates

[66]

0.25-0.50 μg, 21 days
Stereotaxial
infusion

↑α-Syn aggregates [67]

3mg/kg, 30 days
Intraperitoneal

injection
↑MDA levels

↓GSH and SOD levels
[68]
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In zebrafish, the reports showed that MPTP could effi-
ciently induce decreased locomotor activity, which is caused
by DA activity decrease, number of DA neurons, and pretec-
tal size reduction [45, 49, 86–88]. Also, MPTP could induce
bradykinesia manifested in zebrafish as decreased velocity
and abnormal swimming behaviour [49, 86, 89]. Moreover,
as compared to rodent models which seemed to overcome
the short-term toxin activity on locomotion or even exhibit
no changes or hyperactivity [90], zebrafish showed behav-
ioural changes even in acute MPTP administration (Table 1).

However, neuromodulation efficiency depends on several
factors, such as the administration route, sex, strain, and
developmental stage [78, 91]. For example, larval zebrafish
is more sensitive to MPTP than adult zebrafish [92]. Also,
Jackson-Lewis et al. [93] showed that MPTP administration
effects could be influencing the size of central nervous system
damage in a dose-dependent manner, since they demon-
strated that the impairment of tyrosine hydroxylase (TH)
activity following lower doses of MPTP could not lead to
DA neuron loss in mice. Thus, Kirchhoff et al. [94] reported
that two MPTP injections (15 or 20mg/kg) for 7 consecutive
days were sufficient to cause dopaminergic neuron loss in
mice. Thus, in a recent report of Mingazov et al. [95], it was
demonstrated that 12mg/kg b.w./day subcutaneous MPTP
treatment for 2 weeks could not induce DA metabolism
impairment or MAO-A and MAO-B enzyme activity
changes even with DA neuron loss confirmation.

Similarly, the reports on DA neuron loss in zebrafish are
rather controversial. In this way, it was shown that at 24
hours postfertilization, zebrafish embryos immersed in
MPTP solution (800μM, distilled water) for 2 days exhibited
posterior tuberculum DA neuron function impairment lead-
ing to behavioural deficits [96]. Also, since L-deprenyl treat-
ment—which is a potent MAO-B inhibitor—could prevent
neurodegeneration in zebrafish [55, 97], it could be suggested
that a similar mammalian MPTP catabolism pathway could
be present in zebrafish; however, it is a known fact that they
possess a single monoamine oxidase homologous to both
MAO-A and MAO-B [55].

In this way, despite the demonstrated limitations of the
rodent models, mice are preferred for DA neuron loss
models, since there is no previous report accounting for the

neuronal loss that was not present after MPTP administra-
tion in mice and rats.

6. 6-OHDA

Because it is incapable of passing the blood-brain barrier, the
catecholamine 6-hydroxydopamine (6-OHDA) was the first
neurotoxin used to model PD [23, 98] by direct/sham injec-
tion [98, 99]. The 6-OHDA mechanism of action consists
of mitochondrial complex I and IV inhibition [23, 98, 100–
102] and also autoxidation resulting in O2

- and H2O2. In this
way, the major effect of 6-OHDA is the DA neuron
impairment.

Regarding the active potential of 6-OHDA to model PD
symptomatology in zebrafish, it was observed that its admin-
istration could lead to changes in both biochemical and
behavioural parameters. In this way, several studies reported
that the 6-OHDA administration led to a decrease in dopa-
mine and noradrenaline levels and also suggested that OS
could develop in a cause-effect relationship with regard to
6-OHDA [40, 48]. Furthermore, it seems that 6-OHDA
could successfully model in zebrafish one of the main PD
symptoms—motor disturbances—as it was previously sug-
gested that zebrafish larvae exposed to a 6-OHDA solution
exhibited salient motor impairments and decreases in tyro-
sine hydroxylase activity [40, 48, 80–82].

Also, the other PD hallmark symptom—DA neuron
loss—was evaluated in zebrafish models by Parng et al.
[103] and Vijayanathan et al. [48]. Thus, they showed that
irrespective of the administration route and developmental
stage (e.g., Parng et al. treated zebrafish embryos with
250μM 6-OHDA dissolved in the water, while, Vijayanathan
et al. microinjected 25mg/kg 6-OHDA in the ventral dien-
cephalon of adult zebrafish), 6-OHDA treatment as short as
3 days could lead to DA neuron loss [48, 103].

Moreover, given the many differences between zebrafish
and rodents, similar effects of 6-OHDA administration were
reported in rodent models [101]. Also, regarding the OS
implications of 6-OHDA in rodent models, the antioxidant
role of GPx overexpression and thus an increase in activity
for the DA neuron protection was demonstrated. In this
way, Bensadoun et al. [104] suggested that one of the most

Table 1: Continued.

PD-
inducing
agent

Model
organism

Treatment
Route of

administration
Effects Reference

Paraquat

Zebrafish
10mg/kg, twice a day for 3 days

Intraperitoneal
injection

↓Locomotor activity
Spatial memory impairments

[69]

1, 10, and 100μM, 4 days
Dissolved in the

water
↓Mitochondrial respiration [70]

Mice

0, 0.89, 2.67, and 8mg/kg, 28 days Oral administration
↑MDA in HIP

↑Mitochondrial injury
[71]

Paraquat (10mg/kg) +maneb
(30mg/kg), twice a week, 9 weeks

Intraperitoneal
injection

↑MDA
↑NO
↓GST

[72]

↑: increase; ↓: decrease; CAT: catalase; DA: dopamine; GPx: glutathione peroxidase; GSH: glutathione; GSSH: oxidised glutathione; GST: glutathione S-
transferase; LPO: lipid hydroperoxide; MDA: malondialdehyde; NO: nitric oxide; SOD: superoxide dismutase.
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prominent components of the anti-6-OHDA neurotoxic
effect is the GPx antioxidant enzyme which not only pre-
vented the dopamine secretion inhibition but also indirectly
modulated the tyrosine hydroxylase activity.

7. Rotenone

Despite that MPTP and 6-OHDA administrations are one of
the most common ways to modulate PD symptomatology in
animal models, more recent research revealed that several
nonintended molecules possess the potential to induce PD
[22, 23, 105]. For example, exposure to some extensively used
herbicides and pesticides was shown to lead to mitochondrial

dysfunction and DA neuron loss. In this category stands
rotenone, which is an alkaloidal pesticide used worldwide
[106] and which acts on mitochondrial complex I and DA
neurons [17, 63, 106–109]. According to Alam and Schmidt’s
report [17], rotenone could destroy DA neurons and induce
PD symptomatology in rats following 2 months of intraperi-
toneal treatment. Also, it was shown that rotenone adminis-
tration could lead to α-syn aggregate formation and
increased oxidant levels [15, 61, 62, 64–67].

The cytotoxic effects of rotenone seen in fish are similar
to those observed in rodents. For example, the administra-
tion of rotenone in zebrafish could lead to impaired motor
ability, olfactory dysfunction, and decreased DA levels [16,

A
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↓ MRC
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Figure 3: Parkinson’s disease molecular mechanisms and effects in the zebrafish central nervous system induced by several Parkinson’s
disease agents and treatment alternatives. Administration of these chemicals (MPTP, rotenone, paraquat, and 6-OHDA) through various
ways can lead to a reduction in locomotor parameter activity, a decrease of dopamine neuron number, an increase of oxidative stress, and
the inhibition of mitochondrial complex I promoting the formation of Lewy body inclusions [48, 69, 70, 79]. Vitamin E, rasagiline,
minocycline, and Sinemet can reverse the action of the Parkinson’s disease agents mentioned above in zebrafish [80–82]. Abbreviations:
↑—increase; ↓—decrease; 6-OHDA—6-hydroxydopamine; A—dissolved in the water; ADP—adenosine diphosphate; ANT—adenine
nucleotide translocase; ATP—adenosine triphosphate; B—intracerebroventricularly injection; BBB—blood-brain barrier;
C—intraperitoneal injection; DA—dopamine; DpN—dopaminergic neuron; LB—Lewy bodies; L-DOPA—levodopa; LP—locomotor
parameters; MPTP—1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; MAO-B—monoamine oxidase B; MRC—mitochondrial respiratory
chain; OS—oxidative stress; ROS—reactive oxygen species; TH—tyrosine.
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110]. Also, DA neuron reduction was reported by Martel
et al.’s study [111], wherein zebrafish embryos received for
7 days a dose of 30μM rotenone. These aspects were previ-
ously described to be a part of the natural mechanism of
action of rotenone used to eradicate pests. Moreover, the
OS-causing potential of rotenone was described and addi-
tional evidence was brought by Melo et al. [112] who demon-
strated that 20μg l-1 rotenone can inhibit CAT, GST, and
acetyl cholinesterase activity.

Another recent report showed that a 4-week adminis-
tration of 2μg l-1 rotenone to adult zebrafish leads to 40-
50% TH expression decrease. Also, the decrease of DA
level was correlated with impaired locomotor activity as
a motor symptom and anxiety behaviour specific to PD
individuals [110]. As stated before, rotenone is a potent
tool to induce motor and nonmotor symptoms of PD in
a zebrafish model [111, 112].

8. Paraquat

Being largely used as herbicide, the paraquat mechanism
of action is similar to MPTP [39]. In this way, lipid perox-
idation, mitochondrial dysfunction, accumulation of α-syn,
and low levels of GSH were reported in organism models
such as rodents and zebrafish following paraquat adminis-
tration [39, 70, 71, 79, 113]. Additionally, the loss of DA
neurons is evidence of the effects of paraquat which can
be observed in behavioural and biochemical deficits [70].

Moreover, it was shown that paraquat has the potential to
increase the effect of ROS on other molecules, such as lipids,
which are one of the main targets of oxidants [114, 115].
Thus, it was observed that 0.04 ppm paraquat administration
to zebrafish could lead to more than a 15% increase in MDA
levels after 96 hours, concomitantly with DA, GSH, and sero-
tonin decrease [79]. Another important aspect on the para-
quat mechanism of action in zebrafish models was that
intraperitoneal administration could lead to increased CAT
and GPx activity suggesting that its administration could
boost some of the antioxidant enzyme activities in the effort
of decreasing the cellular ROS levels [116].

9. Relevant Antioxidant Opportunities in
Parkinson’s Disease Treatment

Considering that healthy functioning metabolism includes a
physiological anti-ROS system actively engaged in the pre-
vention of overproduction and accumulation of ROS and
that OS seems to be an important component of PD in
both human and animal models, the obvious lead for a
PD cure could be the antioxidant system stimulation. In
this way, the antioxidant system consists of biologically
active molecules responsible for ROS neutralization and cell
protection against the free toxic radicals’ effects [4–7].
Thus, the antioxidant enzymes, such as superoxide dismut-
ase (SOD), glutathione peroxidase (GPx), catalase (CAT),
and glutathione reductase (GRx) [10–13], and the nonenyz-
matic antioxidants, such as lipoic acid, coenzyme Q10, mel-
atonin, vitamin E, vitamin C, flavonoids, and omega acids

[21], form a powerful protection system which prevents
the occurrence of OS.

Regarding the implication of mitochondria in ROS
metabolism, being responsible for adenosine triphosphate
(ATP) production, the main chemical energy source for
cellular functions [23], it was demonstrated that the reduc-
tion of the ATP synthesis and the electron transport chain
impairments lead to ROS accumulation [24]. Due to the
fact that mitochondria are a high-quantity ROS source,
the correlation between mitochondrial dysfunction and
neurodegenerative diseases was predictable. Moreover, the
biochemical profile of the brain and the vital role of
ROS in brain molecular signalling are further evidence that
the central nervous system is continuously predisposed to
OS exposure [17, 18]. Additional evidence regarding the anti-
oxidant system and the modulatory pathways has been
reported while studying antioxidant supplements, while it
was observed that they could provide symptomatology relief
or even to reverse oxidative changes and their effects in
chronic mitochondrial diseases [24].

PD treatment is mainly based on levodopa and dopamine
agonists (amantadine) [47, 114, 117, 118]. Despite the advan-
tages of levodopa administration, dopamine agonists only
partially reverse motor symptoms of PD leading to different
motor oscillations. However, levodopa remains the main
substance used in PD therapy [117–119].

Also, other alternatives for PD treatment are catechol-
O-methyl-transferase (COMT) inhibitors and monoamine
oxidase B inhibitors, such as safinamide or rasagiline
[114, 120, 121]. Similarly, α-lipoic acid is used to remove
the excess metals, and coenzyme Q10 is used to decrease
oxidative marker activity [27, 114]. Another efficient ther-
apeutic choice in PD treatment is selegine (L-deprenyl)
[55, 122]. The carotenoid lycopene was described as a
potent antioxidant by reducing the complex I inhibition
in a rotenone rat model and reversing MPTP effects in a
PD mice model [68, 123].

Besides the drug-centred therapies, exercise programs are
an effective strategy used in PD patients to improve and to
delay functional decline [124]. Alongside the improvement
in muscle tonus, it was demonstrated that exercise leads to
OS decrease and overall metabolism improvement [125],
while muscle weakness is one of the main symptoms of PD,
its severity increasing with time [126]. Despite that several
studies reported muscle weakness as a consequence of seden-
tary state and aging processes, bradykinesia seems an impor-
tant and independent symptom of PD; however, its
occurrence mechanism is not fully understood [124, 126].
Recently, it was demonstrated that aquatic exercise therapy
could improve motor disability of PD individuals [127].

Studies made until now using animal models led to
new speculations regarding PD treatment and other alter-
natives for it. Treatment with 100μM vitamin E, 10μM
minocycline, and 25μg/ml Sinemet (a well-known drug
for PD which contains carbidopa and levodopa) in the
presence of 25μg/ml 6-OHDA of zebrafish larvae led to
a reverse of locomotor disruptions and of the changes that
appeared for parkin, pink1, and cd-11b mRNA expression
[80]. Locomotor deficits and neuronal loss observed in
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zebrafish larvae after 3 days of treatment with 250μM 6-
OHDA were prevented by 10μM minocycline and 1μM
rasagiline coadministration [81]. Another study also
reported motor and optomotor alterations and morphologi-
cal changes in zebrafish larvae induced by 250μM 6-
OHDA which were ameliorated after supplementation with
1mg l-1 N-acetylcysteine, which is known for its antioxidant,
anti-inflammatory, and neurotrophic potential [82].

10. Is There an Oxidative Stress Correlation to
Sleep Disturbances in Parkinson’s Disease?

According to Porkka-Heiskanen et al. [128], sleep is the peri-
odic physiological state characterized by temporal suppres-
sion of consciousness, partial loss of sensitivity, and
decrease of several body functions, such as heart rhythm,
respiratory rate, muscle relaxation, and body temperature.
Due to its complex mechanism, many factors influence the
quantity and quality of sleep, namely stress exposure, health
conditions, or some forms of substance abuse [128].

Several recent studies reported that sleep disturbances
are a common symptom of PD. In this way, both Menza
et al. [129] and Selvaraj and Keshavamurthy [130]
described that a direct correlation between PD severity and
sleeping time could be suggested and assumed by memory
deficits, depressive mood, body weakness, and involuntary
sleep events during the day [128]. In this way, several sleep
disturbances were described to occur in PD patients, such
as insomnia, sleep-related respiratory disorders (SRD),
excessive daytime sleepiness (EDS), and sleep-related motor
problems often exhibited with variable intensities and dura-
tions [129–131]. The connection between these sleep impair-
ments and PD could be certain mechanisms also occurring in
OS, for an instance due to sleep apnea or poor oxygenation of
the brain during sleeping time [132].

However, regarding the occurrence of sleep-related respi-
ratory symptoms in PD patients, recent studies reported con-
troversial results. In this way, sleep apnea episodes were not
significantly present in PD patients, as compared to control
groups [131], despite that other reports demonstrated that
almost 50% of PD patients experienced sleep apnea incidents
[129]. In a more recent study, Bohnen and Hu [132] reported
a correlation between sleep apnea which leads to repeated
periods of hypoxia and reoxygenation during sleeping and
the occurrence of OS and inflammation though a similar
mechanism with sleep apnea-induced chronic intermittent
hypoxia models. On the other hand, other studies reported
that the more common sleep disturbance in PD patients is
insomnia [131, 133], which is present in 54-60% of cases
[134]. However, Gjerstad et al. [134] discussed the results
in the context of age, pathological lesions in the upper brain-
stem and midbrain, depression, nocturia, and medication
[133, 135]. Thus, the multifactorial etiology of sleep distur-
bances [132] could be discussed in this context and also in
the context of the possible comorbidity of sleep disturbances
in PD. However, the cause-effect relationship between PD
and sleep disturbances is not fully understood.

Another PD-occurring sleep disturbance is rapid eye
movement sleep behaviour disorder characterized by motor

behaviours and different vocalizations [135, 136]. By com-
parison with the other sleep disturbance symptoms in PD,
rapid eye movement sleep behaviour disorder is being con-
sidered a premotor symptom, and in some cases a disease
development marker [137] due to the fact that 40 to 65% of
those diagnosed with rapid eye movement sleep behaviour
disorder are further later diagnosed with PD [137–140].
Excessive daytime sleepiness (EDS) and fatigue are also pres-
ent in PD [129, 131, 141, 142]. Restless legs syndrome (RLS)
and periodic limb movements in sleep (PLMS) are both cor-
related to PD [131, 133, 141, 143, 144].

RLS is a sensorimotor condition characterized by the
desire to move the legs due to unpleasant sensations [133].
Often appearing in older PD patients, RLS was correlated to
iron deficiency as a secondary condition for RLS onset [133,
144, 145]. However, low substantia nigra iron levels were
reported in RLS while increased iron levels in PD patients
were suggested to lead to OS [142, 144, 145]. Both PD and
RLS are characterized by iron deficiency, which may lead to
DA damage specific for PD-RLS according to a study pub-
lished in 2017 [142].

The correlation between OS and PD was previously
described, but so was the idea that sleep deprivation can
cause OS [146–148]. Thus, it is controversial to ask if any
of these correlations could be explained in the context of
the presence of all three components: PD, sleep disturbance,
and OS. This aspect was partly elucidated due to animal
models using certain substances or genetic manipulations
for PD features. Scientific literature reported various ways
to study these aspects whose target were sleep disturbances
[129, 130]. Disruptions in diurnal rhythms, stress, and spe-
cific alterations in sleep architecture are only three examples
of methods used in animal research [149].

In this way, a recent study presented reasonable evi-
dence which correlated sleep disorders occurring in PD
and OS. Filograna et al. [150] extensively described the
mechanism through which iron chelators prevent the
increase of substantia nigra iron levels in PD patients.
Thus, in a well-known study, an iron-chelator-treated
chronic iron-loaded mice model exhibited improved OS
markers and decreased iron levels. Also, the same group
described the antioxidant effects of melatonin in the con-
text of PD-occurring OS mechanisms. The authors pointed
out that melatonin antioxidant activity is not described as
only free radicals scavenging, but also as other indirect
modulatory activities, such as expression stimulation of
several antioxidant enzymes and the downregulation of
prooxidant enzymes.

Another important component of this triad is the mech-
anism underlying intermittent hypoxemia observed in PD
patients in concomitance with obstructive sleep apnea
[151]. According to Kaminska et al. [151], a potential origin
of OS occurrence in PD would be the exposure to intermit-
tent episodes of hypoxemia during the sleeping periods. It
was shown that intermittent hypoxemia could lead to impor-
tant changes in the brain structures involved in peripheral
nerve conduction, impaired learning and memory, and neu-
ronal loss possibly through mechanisms of ischemia/reperfu-
sion, and oxidative injury.
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The recent report of Cao et al. [152] suggested that
another OS-related ion could be involved in sleep distur-
bances. It was demonstrated that magnesium could have
long-term benefits in reducing the likelihood of falling asleep
in the daytime in women, but not in men, through a mecha-
nism that is, however, unknown. Genetic predisposition
would be one of the possible responses in the matter of
mechanisms.

Despite that the genetic landscape of PD is currently well
described, the implication of magnesium in PD has been only
recently hypothesised [153]. Recent research in human and
animal models showed that low magnesium levels are corre-
lated with increased risk to develop PD [154]. Moreover,
Sturgeon et al. [154] suggested that the mechanism through
which this correlation is built is based on a unique genetic
landscaping of magnesium homeostasis. Sustaining this
hypothesis, several studies meta-analysed by Jin et al. [155]
suggested that increased magnesium levels are a molecular
feature of PD, therefore magnesium dishomeostasis may be
considered a real risk factor in PD. Both SLC41A1 and
TRPM7 are directly or indirectly modulating sleep-related
behaviours [154]. Thus, SLC41A1 is being involved in rapid
eye movement sleep behaviour disorder [156], while TRPM7
is suggested to be involved in sleep-wake cycle modulation
through magnesium ion ligation potential [157].

Moreover, the OS and DA perturbations were also
observed in gene mutations of α-syn, PINK, parkin, and
DJ-1 proteins [25, 52]. The lack of PINK1 leads to a loss
of DA neurons, affects the mitochondrial morphology,
and is linked with OS [21, 25, 158–161]. Also, the accu-
mulation of α-syn causes the reduction of mitochondrial
activity and a high production of ROS which is completed
by cell death [25, 31]. The PARK2 and LRRK2 genes rep-
resent a source of ROS production [26]. All these proteins
are linked with PD pathogenesis, and their use in genetic
manipulations has become a new tool in transgenic animal
models [12, 161, 162].

Thus, genetic implications in PD are not new to PD
research. Several recent studies suggested not only that some
genetic factors give real predisposition to PD development at
some point in life [163] but also that PD may be one of the
disorders which run in a family [164]. Currently, more than
20 PD genetic predisposition loci are identified and exten-
sively reviewed [163]. Among these, some target the synaptic
vesicle anomalies (SNCA mutations), the protein-to-protein
interaction in the cytoskeleton assembly (dardarin gene
mutations), ubiquitin degradation (parkin gene mutations),
and several other energetic mechanisms.

11. Conclusions

This study synthesized the current information and corre-
lated available data on the relevance of the oxidative stress
status modifications in the complex pathophysiology of Par-
kinson’s disease with regard to the available animal models.
Moreover, the importance of the zebrafish model in Parkin-
son’s disease research was described. It was observed that
OS possesses an important role in Parkinson’s disease as
shown by numerous animal model studies, many of which

are based on rodent experimental models. However, an
emerging impact of the zebrafish model was observed in
research on Parkinson’s disease pathological mechanisms
with regard to disease development factors, cause-effect rela-
tionship of oxidative stress and comorbidities (such as
depression, hyposmia, fatigue, sleep disturbances, and cogni-
tive deficits), and also regarding the pharmacological poten-
tial of antioxidant molecules in Parkinson’s disease
treatment.
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