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Abstract

Background: Advanced-stage ovarian cancer patients are generally treated with platinum/taxane-based chemotherapy
after primary debulking surgery. However, there is a wide range of outcomes for individual patients. Therefore, the
clinicopathological factors alone are insufficient for predicting prognosis. Our aim is to identify a progression-free survival
(PFS)-related molecular profile for predicting survival of patients with advanced-stage serous ovarian cancer.

Methodology/Principal Findings: Advanced-stage serous ovarian cancer tissues from 110 Japanese patients who
underwent primary surgery and platinum/taxane-based chemotherapy were profiled using oligonucleotide microarrays. We
selected 88 PFS-related genes by a univariate Cox model (p,0.01) and generated the prognostic index based on 88 PFS-
related genes after adjustment of regression coefficients of the respective genes by ridge regression Cox model using 10-
fold cross-validation. The prognostic index was independently associated with PFS time compared to other clinical factors in
multivariate analysis [hazard ratio (HR), 3.72; 95% confidence interval (CI), 2.66–5.43; p,0.0001]. In an external dataset,
multivariate analysis revealed that this prognostic index was significantly correlated with PFS time (HR, 1.54; 95% CI, 1.20–
1.98; p = 0.0008). Furthermore, the correlation between the prognostic index and overall survival time was confirmed in the
two independent external datasets (log rank test, p = 0.0010 and 0.0008).

Conclusions/Significance: The prognostic ability of our index based on the 88-gene expression profile in ridge regression
Cox hazard model was shown to be independent of other clinical factors in predicting cancer prognosis across two distinct
datasets. Further study will be necessary to improve predictive accuracy of the prognostic index toward clinical application
for evaluation of the risk of recurrence in patients with advanced-stage serous ovarian cancer.
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Introduction

Patients with advanced-stage ovarian cancer generally undergo

primary debulking surgery followed by platinum/taxane-based

chemotherapy. Although postoperative introduction of taxane

drug has improved the 5-year survival rate for advanced-stage

ovarian cancer, patients with this cancer have a 5-year survival

rate of only 30% [1–3]. Clinicopathological characteristics, such as

debulking status after primary surgery, are clinically considered

important indicators of prognosis [4,5]. However, recurrence after

optimal debulking surgery occurs in some patients, while disease-

free status after incomplete surgery is maintained in others. In fact,

it has been reported that 34% of patients treated with optimal

surgery and platinum-taxane combination chemotherapy for

advanced-stage ovarian cancer recur within 12 months [4].

Therefore, these clinicopathological factors alone are insufficient

for predicting prognosis and elucidating the pathological mecha-

nisms of disease progression or recurrence. Molecular biology
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approaches can be used to identify new prognosis-related profiles

leading to elucidation of pathological issues of advanced-stage

serous ovarian cancer.

Microarray technology has been developing very rapidly, and it

has become relatively easy to analyze the expression levels of

thousands of genes within cancer cells. Although many studies

have reported the associations of gene expression profiles with

prognoses in cancer patients [6–10], a limited number of such

profiles are used in clinical settings. Microarray technology is

clinically applied for predicting prognosis in breast cancer patients.

MammaPrint TM (Agendia BV, Amsterdam, the Netherlands) has

been already put to practical use for the purpose. Meanwhile,

there are no microarray kits for clinical diagnosis and management

in patients with ovarian cancer yet.

Three studies have recently reported gene expression profiles

that predict overall survival (OS) in ovarian cancer patients using

microarray techniques [11–13]. These studies use a relative large

sample size (n.80) for establishing a survival-related profile in a

discovery phase of the experiment and an external independent

dataset as the validation set to solve the problem that the number

of the genomic variables examined is much larger than that of

subjects. Thus, research on the overall survival-related profiles in

ovarian cancer patients has progressed, whereas there are no

extensive studies based on multicenter validation of gene

expression profiles for prediction of disease progression or

recurrence in patients with ovarian cancer [14–15]. Prediction

of the risk of recurrence in patients with advanced-stage ovarian

cancer receiving standard treatments (primary surgery+platinum/

taxane-based chemotherapy) is more important with respect to

optimization of clinical management [16].

We have recently reported that there are high similarities in

gene expression between early-stage and a subset of advanced-

stage serous ovarian cancer patients that have favorable prognoses,

and two molecular subgroups among patients with advanced-stage

serous ovarian cancer according to gene expression profiles

reflecting tumor progression and prognosis [17]. In this study,

we focused on progression-free survival (PFS) time in a larger

number of patients only with advanced-stage serous ovarian

cancer treated with platinum/taxane-based chemotherapy, and

tried to identify PFS-related gene expression profile using a new

survival analysis method: ridge regression Cox model [18]. We

then assessed the correlation between our PFS-related genes

expression profile and survival time in an external independent

dataset of advanced-stage serous ovarian cancer.

Results

Clinical Characteristics
The clinical characteristics of 110 Japanese patients with

advanced-stage serous ovarian cancer are summarized in

Table 1. In the discovery set, 93 patients (84.5%) were diagnosed

as the International Federation of Gynecology and Obstetrics

(FIGO) stage III, and 17 patients (15.5%) as FIGO stage IV [19].

All patients received platinum/taxane-based chemotherapy after

primary surgery. The median progression-free and overall survival

times were 17 and 31 months, respectively.

On the other hand, we used a part of publicly available

microarray data (GSE9891) as an external independent dataset

(See Materials and Methods) [20]. The clinical characteristics of

87 patients with advanced-stage serous ovarian cancer in the

external dataset are listed in Table S1 [20]. Kaplan-Meier survival

analysis showed that there were no significant differences in PFS

and OS time between patients of the discovery dataset and those of

the external dataset (Figure S1). When we compared clinicopath-

ological characteristics between the discovery set and the external

dataset, there were significant differences in frequencies of stage

(Table S1). Because grading system adopted in the external

dataset was distinct from that in the discovery set [21–23], we

could not make a simple comparison of malignant grade between

the two datasets. Then we examined the association between

clinicopathological features and PFS time in patients with

advanced-stage serous ovarian cancer of each dataset. Multivariate

analysis revealed that only optimal surgery was an independent

prognostic factor for PFS in the discovery dataset (Table S2) and

that there was marginally significant correlation between debulk-

ing status of primary surgery and PFS time in the external dataset

(Table S2). Therefore, we planned first to develop a prognostic

index based on PFS-related genes in the discovery dataset,

secondarily to evaluate the prognostic ability of our index in the

external dataset using multivariate analysis, and then thirdly to

assess predictive performance of the prognostic index again after

the stratification of patients according to the debulking status of

primary surgery.

Identification of PFS-Related Profile
Using Agilent Whole Human Genome Oligo microarray, we

generated gene expression data for 110 advanced-stage serous

ovarian cancer patients. Then this dataset was used as a discovery

set for the identification of PFS-related profile in patients with

advanced-stage serous ovarian cancer. To further evaluate the

PFS-related profile, we prepared a part of the GSE9891 dataset as

an external independent dataset using Affymetrix Human

Genome U133 Plus 2.0 Array (See Materials and Methods) [20].

To deal with cross-platform microarray data appropriately, we

analyzed only common genes (28304 probes in Agilent platform;

38497 probes in Affymetrix platform) between the two platforms

in this study. Of 28304 Agilent probes, 18178 probes with

expression levels marked as ‘‘Present’’ in all of the 110 microarray

data from the discovery set was further extracted to remove

missing and uncertain signals on gene expression, and then the

data were per-gene normalized in each dataset by transforming

the expression of each gene to a mean of 0 and standard deviation

of 1 (Figure S2).

Table 1. Clinical characteristics of advanced-stage serous
ovarian cancer patients.

Present Dataset (n = 110) Percentage

Median age, years (range) 58 (23–85)

Stage

Stage III 93 84.5

Stage IV 17 15.5

CA125 (IU) (n = 99) 196063519

Optimal Cytoreduction

Optimal (,1cm) 57 51.8

Not optimal 53 48.2

Grade

Grade 1 26 23.6

Grade 2 41 37.3

Grade 3 43 39.1

Median survival time, months
(range)

31 (1–81)

doi:10.1371/journal.pone.0009615.t001
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A univariate Cox proportional hazard model showed that

expression levels of 97 probes (representing 88 nonredundant

genes) were correlated with PFS time (p,0.01). In case of multiple-

tagged 8 genes (represented by 17 probes), we selected 8 probes

(one probe per gene) with the largest sum of the squares of

individual expression values for the respective genes as represen-

tatives [24]. A total of 88 genes (represented by 88 unique probes)

were thereby identified as PFS-related profile. Furthermore, we

applied the ridge regression model to estimate optimal regression

coefficients (b) for 88 genes of the PFS-related profile (Table 2),

and calculated the prognostic index for each sample using

equation (1) as reported previously [18]. The 88-gene prognostic

indices obtained were in the range of -5.09 to 4.14 (median, 0.11),

and the frequency distribution of the indices among 110 patients

was unimodal.

To assess the prognostic index as a categorical variable, we

attempted to divide this dataset into two groups based on median

prognostic index of 0.11 [9]. Patients were assigned to the ‘‘high-

risk’’ group if their prognostic index was greater than or equal to

the median value, whereas ‘‘low-risk’’ group was composed of

cases with the prognostic indices that were less than the median.

As shown in Figure 1A, patients with high-risk prognostic indices

had shorter median PFS times than those belonging to low-risk

group (median PFS, 12 months vs. 51 months; log rank test,

p,0.0001).

We then performed univariate and multivariate Cox proportion-

al hazard analyses to prove that the 88-gene prognostic index was an

independent prognostic factor (Table 3). A univariate Cox’s

proportional hazard analysis showed that the prognostic index,

stage, optimal surgery, and histological grade were correlated with

PFS (p,0.0001, p = 0.022, p,0.0001 and p = 0.016, respectively).

Moreover, a multivariate analysis showed that the prognostic index

was most significantly associated with PFS time [hazard ratio (HR),

3.80; 95% confidence interval (CI), 2.68–5.61; p,0.0001].

Validation by Quantitative Real-Time RT-PCR
To validate the microarray expression data, we performed

quantitative real-time RT-PCR for a subset of the discovery dataset

(53 samples). The four genes, E2F2, FOXJ1, DNAH7, and FILIP1,

were randomly selected for this purpose. There were significant

correlations between microarray expression data and real-time RT-

PCR expression data (Figure 2). In spite of the smaller sample size,

we confirmed a significant association between PFS time and each

of the real-time RT-PCR data for the four genes in the univariate

Cox hazard model (data not shown).

Appling PFS-Related Profile to the External Dataset
We translated the 88 prognostic genes with Agilent Probe IDs to

Affymetrix 196 probes using a translation function in GeneSpring

GX 10 and evaluated the present PFS-related profile in the external

dataset (Figure S2). We calculated the prognostic index for each

sample in the external dataset by the weighted sum of the expression

values of 88 PFS-related genes according to the equation (1), in

which the ridge regression coefficients (b) identified in the discovery

set were used as weights for the respective genes (See Materials and

Methods). We obtained prognostic indices ranging from -5.37 to

4.56 in the external dataset. The frequency distribution of the

prognostic indices was not statistically different from that in the

discovery set by Kolmogorov Smirnov test (p.0.05).

When we divided the external dataset into two subgroups by the

median prognostic index (0.11) in the discovery set, a significant

correlation was observed between risk classification and PFS (log

rank test, p = 0.0004) (Figure 1B). In univariate analysis of the

external data, the estimated prognosis index and optimal surgery

were correlated with PFS time (p = 0.0001 and 0.049, respectively)

(Table 3). Multivariate analysis showed that prognostic index was

an independent prognostic factor for PFS time (HR, 1.64; 95% CI,

1.27–2.13, p = 0.0001).

Assessment of Our Prognostic Index
To assess the sensitivity and specificity of our prognostic index,

we used ROC curves for the index. An area under ROC curve of

0.5 (indicated by diagonal dotted lines in Figure S3) represents

equality between true positive and false positive test results. The

extent to which the ROC curve departs from the diagonal line to

left and top axes is a measure of the effectiveness of the 88-gene

prognostic index in the prediction of clinical outcome. The area

under the ROC curves to distinguish early-relapse patients with

less than 18 months of PFS times from late-relapse patients was

0.959 and 0.674 in the discovery set and the external dataset,

respectively (Figure S3). When we used median value of prognostic

index in the discovery set as the cut-off, the sensitivity and

specificity were 88.9% and 85.7% in discovery dataset and 64.4%

and 69.2% in the external dataset.

We performed survival analysis after the stratification of patients

according to the status of debulking surgery which was an

independent prognostic factor in multivariate analysis of the

discovery dataset (Table 3). We divided patients into two groups

(‘‘optimal group’’ and ‘‘suboptimal group’’) in each of the

discovery and external datasets, and assigned each patient to

‘‘high-risk’’ or ‘‘low-risk’’ based on the median value of the current

prognostic index in each stratum according to the debulking

status. Kaplan-Meier survival analysis showed that high-risk

patients had significant shorter PFS time than low-risk patients

in each of the four strata from the two datasets (Figure 3) as

follows: optimal group (p,0.0001) and suboptimal group

(p,0.0001) in our dataset; optimal group (p = 0.0034) and

suboptimal group (p = 0.015) in the external dataset. This stratified

analysis also indicated that the prognostic index was associated

with PFS time independently of the debulking status.

Correlation between This Prognostic Index and Overall
Survival

Overall survival is another important endpoint in patients with

advance-stage ovarian cancers, and hence we further examined if

the present 88-gene prognostic index could be extended to use for

predicting the overall survival of patients. To evaluate correlation

between this prognostic index and overall survival time, we

performed Kaplan-Meier survival curve analysis. Patients with

high-risk prognostic indices had shorter overall survival times than

the low-risk patients in the two datasets (log rank test, p,0.0001

and p = 0.0010, respectively) (Figure 1C, D). Furthermore, the

prognostic index was significantly associated with overall survival

time in both the discovery set and the external dataset in

multivariate analysis (Table 4).

In addition, we examined the predictive ability of our prognostic

index in publicly available Dressman’s dataset [25], in which

patients were longer followed-up (median overall survival, 31

months; range, 1–185 months). Dressman’s dataset [25] was

composed of 119 advanced-stage serous ovarian cancer patients

treated with platinum-based chemotherapy (including non-taxane

chemotherapy). Because their data were generated by a different

platform with the foregoing two datasets, 75% of 88 PFS-related

genes were translated for survival prediction in this dataset. When

we divided Dressman’s dataset [25] into two subgroups by the

median prognostic index in discovery dataset, a significant

association was observed between risk classification and overall

survival (log rank test, p = 0.0008) (Figure S4). Its prognostic index

Survival Prediction in Cancer
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Table 2. Eighty-eight genes composing the progression-free survival-related profile.

GenBank Acc. GeneSymbol Cytoband bridge
a Description

NM_001123 ADK 10q22.2 0.006 adenosine kinase

NM_006408 AGR2 7p21.1 0.128 anterior gradient homolog 2 (Xenopus laevis)

NM_080429 AQP10 1q21.3 20.162 aquaporin 10

NM_001040118 ARAP1 11q13.4 0.141 ArfGAP with RhoGAP domain, ankyrin repeat and PH domain 1

NM_006420 ARFGEF2 20q13.13 0.032 ADP-ribosylation factor guanine nucleotide-exchange factor 2 (brefeldin A-inhibited)

NM_181575 AUP1 2p13.1 0.129 ancient ubiquitous protein 1

NM_004776 B4GALT5 20q13.13 0.215 UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase, polypeptide 5

NM_138639 BCL2L12 19q13.33 20.189 BCL2-like 12 (proline rich)

NM_020643 C11orf16 11p15.4 0.221 chromosome 11 open reading frame 16

NM_145061 C13orf3 13q12.11 20.107 chromosome 13 open reading frame 3

NM_024032 C17orf53 17q21.31 20.184 chromosome 17 open reading frame 53

NM_001144956 C1orf230 1q21.3 0.012 chromosome 1 open reading frame 230

NM_022106 C20orf177 20q13.33 0.167 chromosome 20 open reading frame 177

NM_000715 C4BPA 1q32.2 20.505 complement component 4 binding protein, alpha

NM_012337 CCDC19 1q23.2 20.162 coiled-coil domain containing 19

NM_015603 CCDC9 19q13.32 0.263 coiled-coil domain containing 9

NM_005408 CCL13 17q12 20.228 chemokine (C-C motif) ligand 13

NM_001252 CD70 19p13.3 20.204 CD70 molecule

NM_078481 CD97 19p13.12 20.137 CD97 molecule

NM_006383 CIB2 15q25.1 0.359 calcium and integrin binding family member 2

NM_182848 CLDN10 13q32.1 20.292 claudin 10

NM_001316 CSE1L 20q13.13 20.220 CSE1 chromosome segregation 1-like (yeast)

NM_024295 DERL1 8q24.13 0.007 Der1-like domain family, member 1

NM_001042517 DIAPH3 13q21.2 0.022 diaphanous homolog 3 (Drosophila)

NM_021120 DLG3 Xq13.1 20.039 discs, large homolog 3 (Drosophila)

NM_020877 DNAH2 17p13.1 20.378 dynein, axonemal, heavy chain 2

NM_018897 DNAH7 2q32.3 0.226 dynein, axonemal, heavy chain 7

NM_001394 DUSP4 8p21.1 0.007 dual specificity phosphatase 4

NM_004091 E2F2 1p36.12 0.220 E2F transcription factor 2

NM_006795 EHD1 11q13.1 0.248 EH-domain containing 1

NM_020819 FAM135A 6q13 0.142 family with sequence similarity 135, member A

NM_032181 FAM176A 2p12 20.096 family with sequence similarity 176, member A

NM_015687 FILIP1 6q14.1 20.188 filamin A interacting protein 1

NM_021784 FOXA2 20p11.21 0.184 forkhead box A2

NM_001454 FOXJ1 17q25.1 20.344 forkhead box J1

NM_000819 GART 21q22.11 0.140 phosphoribosylglycinamide formyltransferase, phosphoribosylglycinamide synthetase,
phosphoribosylaminoimidazole synthetase

NM_178172 GPIHBP1 8q24.3 0.147 glycosylphosphatidylinositol anchored high density lipoprotein binding protein 1

NM_000189 HK2 2p13.1 20.087 hexokinase 2

NM_002118 HLA-DMB 6p21.32 20.288 major histocompatibility complex, class II, DM beta

NM_022465 IKZF4 12q13.2 20.092 IKAROS family zinc finger 4 (Eos)

NM_016584 IL23A 12q13.2 0.493 interleukin 23, alpha subunit p19

NM_006801 KDELR1 19q13.32 20.001 KDEL (Lys-Asp-Glu-Leu) endoplasmic reticulum protein retention receptor 1

NM_014895 KIAA1009 6q14.3 20.150 KIAA1009

NM_017527 LY6K 8q24.3 0.226 lymphocyte antigen 6 complex, locus K

NM_005906 MAK 6p24.2 0.271 male germ cell-associated kinase

NM_024871 MAP6D1 3q27.1 20.038 MAP6 domain containing 1

NM_031417 MARK4 19q13.32 0.040 MAP/microtubule affinity-regulating kinase 4

NM_024298 MBOAT7 19q13.42 20.058 membrane bound O-acyltransferase domain containing 7

NM_002421 MMP1 11q22.2 20.336 matrix metallopeptidase 1 (interstitial collagenase)

NM_181526 MYL9 20q11.23 0.058 myosin, light chain 9, regulatory

Survival Prediction in Cancer
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was significantly correlated with overall survival time in multivar-

iate analysis (HR, 1.51; 95% CI, 1.19–1.93, p = 0.0008).

Characterization of PFS-Related Profile
We conducted GO analysis to understand the biological

characteristics of 88 PFS-related genes. To characterize the gene

list based on GO classification on ‘biological process’, ‘molecular

function’, and ‘cellular component’, we examined which categories

were highly associated with the 88 genes. After multiple testing

corrections using the FDR method [26], 8 categories were signi-

ficantly overrepresented (FDR q-value,0.10) (Figure 4). In the 88

PFS-related genes, genes involved in GTPase binding (GO17016,

GO31267 and GO51020), cellular localization (GO51649 and

GO51641), intracellular transport (GO46907 and GO6886), and/

or ciliary or flagellar motility (GO1539) were notably enriched. We

investigated similarities in overrepresented GO categories between

our 88 PFS-related genes and the previously reported gene expression

profiles which were correlated to prognosis in ovarian cancer [11,13].

However, we could not identify common GO categories between our

profile and the previously reported profiles (data not shown).

GenBank Acc. GeneSymbol Cytoband bridge
a Description

NM_032344 NUDT22 11q13.1 0.198 nudix (nucleoside diphosphate linked moiety X)-type motif 22

NM_007224 NXPH4 12q13.3 20.310 neurexophilin 4

NM_015311 OBSL1 2q35 20.045 obscurin-like 1

NM_014982 PCNX 14q24.2 20.098 pecanex homolog (Drosophila)

NM_014317 PDSS1 10p12.1 0.001 prenyl (decaprenyl) diphosphate synthase, subunit 1

NM_024420 PLA2G4A 1q31.1 0.107 phospholipase A2, group IVA (cytosolic, calcium-dependent)

NM_016341 PLCE1 10q23.33 0.029 phospholipase C, epsilon 1

NM_001031745 RIBC1 Xp11.22 0.209 RIB43A domain with coiled-coils 1

NM_015653 RIBC2 22q13.31 0.053 RIB43A domain with coiled-coils 2

NM_006987 RPH3AL 17p13.3 20.043 rabphilin 3A-like (without C2 domains)

NM_001025070 RPS14 5q33.1 0.013 ribosomal protein S14

NM_152732 RSPH9 6p21.1 20.102 radial spoke head 9 homolog (Chlamydomonas)

NM_014433 RTDR1 22q11.22 0.034 rhabdoid tumor deletion region gene 1

NM_005500 SAE1 19q13.32 0.038 SUMO1 activating enzyme subunit 1

NM_020150 SAR1A 10q22.1 0.277 SAR1 homolog A (S. cerevisiae)

NM_031469 SH3BGRL2 6q14.1 20.281 SH3 domain binding glutamic acid-rich protein like 2

NM_003951 SLC25A14 Xq25 20.344 solute carrier family 25 (mitochondrial carrier, brain), member 14

NM_014585 SLC40A1 2q32.2 0.065 solute carrier family 40 (iron-regulated transporter), member 1

NM_052910 SLITRK1 13q31.1 20.314 SLIT and NTRK-like family, member 1

NM_172312 SPAG8 9p13.3 20.123 sperm associated antigen 8

NM_145263 SPATA18 4q12 0.041 spermatogenesis associated 18 homolog (rat)

NM_006100 ST3GAL6 3q12.1 20.192 ST3 beta-galactoside alpha-2,3-sialyltransferase 6

NM_018414 ST6GALNAC1 17q25.1 20.175 ST6 (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3) -N-acetylgalactosaminide alpha-2,6-
sialyltransferase 1

NM_032872 SYTL1 1p36.11 20.084 synaptotagmin-like 1

NM_014466 TEKT2 1p34.3 20.226 tektin 2 (testicular)

NM_005424 TIE1 1p34.2 0.250 tyrosine kinase with immunoglobulin-like and EGF-like domains 1

NM_198276 TMEM17 2p15 0.025 transmembrane protein 17

NM_199203 TMEM189 -UBE2V1 20q13.13 0.174 TMEM189-UBE2V1 readthrough transcript

NM_033550 TP53RK 20q13.12 0.054 TP53 regulating kinase

NM_139075 TPCN2 11q13.2 0.034 two pore segment channel 2

NM_018430 TSNAXIP1 16q22.1 0.170 translin-associated factor X interacting protein 1

NM_014023 WDR37 10p15.3 0.296 WD repeat domain 37

NM_018053 XKR8 1p35.3 0.106 XK, Kell blood group complex subunit-related family, member 8

NM_015896 ZMYND10 3p21.31 0.052 zinc finger, MYND-type containing 10

NM_005773 ZNF256 19q13.43 0.048 zinc finger protein 256

NM_024691 ZNF419 19q13.43 20.042 zinc finger protein 419

NM_021089 ZNF8 19q13.43 0.093 zinc finger protein 8

NM_017975 ZWILCH 15q22.31 20.074 Zwilch, kinetochore associated, homolog (Drosophila)

aA regression coefficient of each gene in ridge regression extension of multivariate Cox hazard model.
doi:10.1371/journal.pone.0009615.t002

Table 2. Cont.
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We further used IPA software to analyze 88 PFS-related genes

from the viewpoint of molecular interaction or pathway. Top three

significant networks (score.25) are shown in Figures S5-7. The

network 1 included 15 of the 88 prognostic genes, and was

significantly associated with IPA-defined several networks: cell

death, neurological disease, and cellular assembly and organiza-

tion (Figure S5). Fourteen prognostic genes were included in the

network 2, which was defined as networks related to cancer, cell

morphology, and renal and urological disease (Figure S6). The

network 3 displayed significant interactions and interrelations

between genes involved in cell-to-cell signaling and interaction,

hematological system development and function, and immune cell

trafficking (Figure S7). In the 88 genes, we found several genes

interacting with SRC or MYC (Figure S6), each of which was

reported as a representative gene in oncogenic pathways of

ovarian cancer [25,27].

Discussion

In this study, we identified the prognostic index for predicting

PFS time in patients with advanced-stage serous ovarian cancer

treated with platinum/taxane-based adjuvant chemotherapy across

two types of microarray expression data from the present discovery

set and publicly available external set by using the ridge regression

Cox model. The significant correlation between our prognostic

index and OS time was also indicated in the two independent

datasets.

In expression microarray analysis, there is a so-called ‘‘curse of

dimensionality’’ problem that the number of genes is much larger

than the number of samples. To improve the reliability of a

gene expression-based prognostic model, it is necessary to avoid

overfitting to the dataset, and to confirm the reproducibility of the

predictive ability in external independent datasets [28]. Until now,

several bioinformatics approaches have been proposed to establish

a model for survival prediction using microarray data [18,29].

Bøvelstad et al. [18] recently examined the prediction performance

of the following seven methods: univariate selection, forward

stepwise selection, principal components regression, supervised

principal components regression, partial least squares regression,

ridge regression and the lasso using three microarray datasets

[Dutch breast cancer data (n = 295), diffuse large B-cell lymphoma

data (n = 240), and Norway/Stanford breast cancer data (n = 115)]

[7,30–32]. They concluded that the univariate Cox model alone

was insufficient for predicting survival and that the ridge regression

Figure 1. Prediction of prognosis in high-risk and low-risk patients based on the prognostic index. High-risk patients had significantly
short progression-free survival times compared to low-risk patients (A) in the discovery set (log rank test, p,0.0001) and (B) in the external set (log
rank test, p = 0.0004). Similarly, high-risk patients had significantly shorter overall survival times compared to low-risk patients (C) in the discovery set
(log rank test, p,0.0001) and (D) in the external set (log rank test, p = 0.0010).
doi:10.1371/journal.pone.0009615.g001
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Table 3. Univariate and multivariate Cox’s proportional hazard model analysis of prognostic factors for progression-free survival.

Univariate analysis Multivariate analysis

Prognostic factor Hazard ratio (95%CI*) p-value Hazard ratio (95%CI) p-value

A) Present study (n = 110)

Age 0.99 (0.97–1.01) 0.41 1.00 (0.99–1.02) 0.68

Stage IV (vs Stage III) 1.40 (1.05–1.81) 0.022 0.93 (0.69–1.24) 0.65

Optimal Surgery (vs not optimal) 0.57 (0.45–0.72) ,0.0001 0.73 (0.56–0.94) 0.016

Grade

Grade2 (vs Grade1) 1.21 (0.89–1.67) 0.23 1.08 (0.78–1.50) 0.66

Grade3 (vs Grade1) 1.44 (1.07–1.98) 0.016 1.34 (0.98–1.88) 0.065

Prognostic Index

High (vs Low) 3.95 (2.85–5.74) ,0.0001 3.80 (2.68–5.61) ,0.0001

B) Tothill’s dataset [20] (n = 87)

Age 1.01 (0.98–1.03) 0.61 1.00 (0.98–1.03) 0.82

Stage IV (vs Stage III) 1.26 (0.51–2.28) 0.55 0.83 (0.33–1.55) 0.60

Optimal Surgery (vs not optimal) 0.78 (0.62–0.99) 0.049 0.76 (0.60–0.98) 0.035

Prognostic Index

High (vs Low) 1.62 (1.26–2.09) 0.0001 1.64 (1.27–2.13) 0.0001

*CI denotes confidence interval.
doi:10.1371/journal.pone.0009615.t003

Figure 2. Validation of microarray expression data using quantitative real-time reverse transcript polymerase chain reaction (RT-
PCR) analysis. There were significant correlations between microarray expression and real-time RT-PCR expression in (A) E2F2, (B) DNAH7, (C) FOXJ1,
and (D) FILIP1.
doi:10.1371/journal.pone.0009615.g002
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Cox model demonstrated the best performance in three datasets.

Therefore, we used univariate Cox model only for selecting genes

related to PFS time, and adjusted the regression coefficients by the

ridge regression Cox model in order to increase the predictive

performance of the prognostic index in our dataset.

The current study is intended to identify gene expression profile

with a superior ability to predict prognosis than other clinicopath-

ological factors. The stratification of patients with ovarian cancer

according to clinicopathological prognostic factors is one of im-

portant analysis methods for the identification of highly accurate

prognostic index [11]. After we stratified patients according to

grade, FIGO stage, and status of debulking surgery, we investigated

gene expression profile for predicting PFS time in stage III grade

2/3 serous ovarian cancer patients received optimal surgery or

suboptimal surgery. However, we could find poorer predictive

performance of the prognostic indices from the stratified analyses

than that from the non-stratified analysis (Table S3). Besides the

reduction of sample size in the discovery and external datasets after

the stratification, a variety in clinical features and grading systems

between the two datasets (Table S1) might influence the results from

these stratified analyses. This is the main reason why we planned to

identify prognostic index based on PFS-related genes in 110

advanced-stage serous ovarian cancers and then evaluate the

significance of the prognostic index using multivariate analysis

including grade, stage, and status of debulking surgery.

Although we enrolled ovarian cancer patients screened carefully

by the following three categories: advanced-stage, histological

serous-type, and platinum/taxane-based chemotherapy after pri-

mary surgery, we established no inclusion or exclusion criterion of

histological grade for the enrollment as well as Crijns and colleagues

did [12]. This is because a standard system for grading ovarian

carcinomas is still under construction in the world, although several

grading systems have been proposed for epithelial ovarian cancer

[21–23,33,34]. According to the three criteria above, we recruited

110 Japanese ovarian cancer patients as a discovery set for the PFS

analysis. The prognostic index for each patient was simply

calculated by the ridge-regression-weighted sum of 88-gene

expression values, and the prognostic power of our index was

assessed using Tothill’s dataset [20]. Further, subsequent stratified

analysis according to debulking status, which was an independent

prognostic factor in multivariate analysis of the discovery dataset,

indicated that our prognostic index was associated with PFS time

Figure 3. Prediction of prognosis in high-risk and low-risk patients based on the prognostic index after the stratification of patients
according to the status of debulking surgery. High-risk patients had significantly short progression-free survival times compared to low-risk
patients (A) in optimal (log rank test, p,0.0001) and (B) suboptimal group of discovery dataset (log rank test, p,0.0001). Similarly, high-risk patients
had significantly shorter overall survival times compared to low-risk patients (C) in optimal (log rank test, p = 0.0034) and (D) suboptimal group of the
external dataset (log rank test, p = 0.015).
doi:10.1371/journal.pone.0009615.g003
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independently of the debulking status. However, the sensitivity and

specificity of the prognostic index for discriminating between early-

and late-relapse patients were lower in Tothill’s dataset than those in

the discovery set. This might be caused by different backgrounds in

respects of ethnicity or microarray platform. Although the

differences in gene expression of cancer tissues among ethnicities

have not been reported previously, several studies indicate that the

proportions of clear cell and endometrioid histological types in

Table 4. Univariate and multivariate Cox’s proportional hazard model analysis of prognostic factors for overall survival.

Univariate analysis Multivariate analysis

Prognostic factor Hazard ratio (95%CI*) p-value Hazard ratio (95%CI) p-value

A) Present study (n = 110)

Age 1.01 (0.98–1.03) 0.56 - -

Stage IV (vs Stage III) 1.14 (0.78–1.59) 0.49 0.75 (0.50–1.08) 0.12

Optimal Surgery (vs not optimal) 0.69 (0.50–0.92) 0.012 0.98 (0.70–1.35) 0.90

Grade

Grade2 (vs Grade1) 1.30 (0.85–2.09) 0.23 1.23 (0.80–2.01) 0.35

Grade3 (vs Grade1) 1.68 (1.12–2.68) 0.012 1.83 (1.18–3.02) 0.0065

Prognostic Index

High (vs Low) 2.72 (1.91–4.08) ,0.0001 2.99 (2.02–4.65) ,0.0001

B) Tothill’s dataset [20] (n = 87)

Age 1.01 (0.97–1.05) 0.73 1.00 (0.97–1.04) 0.88

Stage IV (vs Stage III) 2.13 (0.85–3.95) 0.093 1.60 (0.62–3.21) 0.28

Optimal Surgery (vs not optimal) 0.89 (0.62–1.23) 0.42 0.94 (0.66–1.37) 0.74

Prognostic Index

High (vs Low) 1.76 (1.24–2.55) 0.0013 1.71 (1.20–2.49) 0.0029

*CI denotes confidence interval.
doi:10.1371/journal.pone.0009615.t004

Figure 4. Biological characteristics of 88 progression-free survival-related genes. Significantly over-represented 8 gene ontology (GO)
categories in GO-based profiling of 88 genes after multiple testing correction of the Benjamini–Hochberg false discovery rate method (FDR
q-value,0.10). Over-represented GO categories were identified using all genes on Agilent platform as a background set of genes for the determining
p-values. The actual number of the PFS-related genes involved in each category is given in parentheses.
doi:10.1371/journal.pone.0009615.g004
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epithelial ovarian cancer in Asian population are higher than those

in non-Asian populations [35,36]. Recent genome-wide association

study has identified a single nucleotide polymorphism at 9p22

associated with ovarian cancer risk in subjects with European

ancestry but not in non-European descendants [37]. This type of

differences between studies could be also attributed to genetic as

well as environmental factors. In addition, we cannot rule out the

possibility that the present PFS-associated classifiers with ridge-

regression-based weights still have insufficient generalization

properties on the external dataset due to the problem of overfitting.

Therefore, we will reconsider these important issues such as

between-study differences in ethnicities and microarray platforms

and the overfitting problem using a larger number of microarray

data from advanced-stage serous ovarian cancer patients in order to

obtain better classifiers for the prediction of prognosis. And to

improve the accuracy of prognostic index, development of

prognostic index after the stratification of patients will be a research

agenda for further study.

Interestingly, the present 88-gene prognostic index for predic-

tion of PFS time was also significantly associated with overall

survival time in both our dataset and Tothill’s dataset [20].

Moreover, we examined the predictive ability of our prognostic

index in Dressman’s dataset [25] since patients in their dataset

received longer-term follow-up than those in the above two

datasets. Although Dressman’s dataset (n = 119) [25] included 34

patients treated with platinum/cyclophospamide chemotherapy

and 3 with single-agent platinum, the significance of this

prognostic index for overall survival was still statistically supported

in the longer followed-up dataset. As treatments for recurrent

ovarian cancer patients remain an open area of investigation

aiming to lead to survival benefit [38], our prognostic index for

patient with advanced-stage serous ovarian cancer displays a

potential to predict not only PFS time but also overall survival

time. In the future, we may apply the prognostic indices to

estimation of risk of recurrence for serous ovarian cancer patients

and select a novel treatment such as dose-dense chemotherapy

[39] or molecular-targeted agent for the purpose of improving

prognosis of high-risk patients.

There are small number of genes overlapped between our 88

PFS-related profile and previously reported expression-profiles

that were related to prognosis or sensitivity of platinum/taxane-

based chemotherapy [11–15,40,41]. Konstantinopoulos et al. [6]

have discussed that these discrepancies might be related to the use

of different microarray platforms with different normalization

methods and different degree of contamination by noncancerous

cells in a tumor sample, as well as differences in the patient

populations under study. Nevertheless, several survival-associated

genes such as E2F2 and HLA-DMB [42,43] are included in 88

PFS-related genes. Reimer et al. [42] have reported that E2F2 is

associated with grade 3 ovarian tumors and residual disease (more

than 2cm in diameter) after initial surgery, and that low E2F2

expression is significantly associated with favorable disease-free

and overall survival in epithelial ovarian cancer. Callahan et al.

[43] have recently reported that the high expression of HLA-DMB

in ovarian cancer cells is correlated with increased numbers of

tumor-infiltrating CD8-positive T lymphocytes, and with good

prognosis in advanced-stage high-grade serous ovarian cancer.

We performed GO analysis and IPA to assess biological

characteristics of PFS-related genes. GO analysis revealed the

significant associations of GTPase binding, intracellular transport,

and ciliary or flagellar motility with PFS (Figure 4). PLCE1 belongs

to the GTPase binding category and activates MAP kinase or

ERK as shown in IPA network 3 (Figure S7). In particular,

previous report indicates that PLCE1 activates the small G protein

Ras/MAP kinase signaling [44], which is one of important

pathways associated with cell growth and differentiation. Intrigu-

ingly, CSE1L included in the intracellular transport category is

involved in the regulation of multiple cellular mechanisms,

proliferation, and apoptosis [45]. Tanaka et al. [46] have reported

that CSE1L is associated with regulated expression of p53 target

genes, and that downregulation of CSE1L protects cancer cell from

DNA damage-induced apoptosis. DNAH2 and DNAH7 are

components of the inner dynein arm of cilialy axonemes, and

axonemal dyneins are molecular motors that drive the beating of

cilia and flagella. Plotnikova et al. [47] have reported that loss of

cilia in cancer cells may contribute to the insensitivity of cancer

cells to environmental repressive signals, partly owing to

derangement of cell cycle checkpoints governed by cilia and

centrosomes. On the other hand, IPA analysis showed several

genes interacting with SRC or MYC (Figure S6), each of which was

reported as a representative gene in oncogenic pathways of

ovarian cancer [25,27]. Dressman et al. [25] have demonstrated

that Src pathway activity is associated with chemotherapy

response because of a significant correlation between the

activation of Src pathway and poor prognosis in patients with

platinum-resistant ovarian cancer. MYC is a multifunctional proto-

oncogene and activated in about 30% of ovarian cancer by several

mechanisms [48]. Iba et al. [49] report that MYC expression is

associated with responsiveness to platinum-based chemotherapy

and with prognosis in patients with epithelial ovarian cancer. Our

PFS-related profile might have potentially functional relevance to

altered activities of several oncogenic pathways. Although we

identified several genes whose molecular function could be linked

to prognosis in ovarian cancer patients, further functional study

will be necessary to clarify the biological and pathological

implications of the PFS-related profile.

These results suggest that the gene expression profile could be a

useful tool to predict disease progression or recurrence of advanced-

stage serous ovarian cancer. To apply the gene expression profile in

clinical practice, we will need to improve the predictive ability of the

profile and confirm the reliability of survival profile in a prospective

multi-center study. Nevertheless, the survival-related profile could

provide an optimization of the clinical management and develop-

ment of new therapeutic strategies for the serous ovarian cancer

patients.

Materials and Methods

Tissue Samples
One hundred ten Japanese patients who were diagnosed with

advanced-stage serous ovarian cancer between July 1997 and June

2008 were included in this study. Fresh-frozen samples were

obtained from primary tumor tissues during primary debulking

surgery prior to chemotherapy. All patients with advanced-stage

serous ovarian cancer were treated with platinum/taxane-based

chemotherapy after surgery. In principle, patients were seen every

1 to 3 months for the first 2 years. Thereafter, follow-up visits had

an interval of 3 to 6 months in the third to fifth year, and 6 to 12

months in the sixth to tenth year. At every follow-up visits, general

physical and gynecologic examination were performed. CA125

serum levels were routinely determined. Staging of the disease was

assessed according to the criteria of the International Federation of

Gynecology and Obstetrics (FIGO) [19]. Optimal debulking

surgery was defined as #1cm of gross residual disease. The

histological characteristics of surgically resected specimens were

assessed on formalin-fixed and paraffin-embedded hematoxylin

and eosin sections by two or three gynecological pathologists

belonging to the Japanese Society of Pathology at each institute,
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and frozen tissues containing more than 80% of tumor cells upon

histological evaluation were used for RNA extraction. In this

study, the degree of histological differentiation is determined

according to the increase in the proportion of solid growth within

the adenocarcinoma as follows: grade 1, less than 5% solid growth;

grade 2, 6-50% solid growth; grade 3, over 50% solid growth

based on grading system proposed by Japan Society of

Gynecologic Oncology.

PFS time was calculated as the interval from primary surgery to

disease progression or recurrence. Based on standard Response

Evaluation Criteria In Solid Tumors (RECIST) guidelines [50],

disease progression was defined as at least 20% increase in the sum

of the longest diameters of all target lesions or as the appearance of

one or more new lesions and/or unequivocal progression existing

non-target lesions. Overall survival time was calculated as the

interval from primary surgery to the death due to ovarian cancer.

This study was approved by the institutional ethics review board at

Niigata University (No. 239, 282, 285, and 318), Niigata Cancer

Center Hospital (No. 25), Jichi Medical University (G07-01),

Kagoshima City Hospital (H19-21), Hiroshima University (Hi-11),

Nagasaki University (080509), Kumamoto University (No. 309),

and Tokai University (07I-29). All patients provided written

informed consent for the collection of samples and subsequent

analysis.

Microarray Experiments
Total RNA was extracted from tissue samples as previously

described [17]. Five hundred nanograms of total RNA were

converted into labeled cRNA with nucleotides coupled to a

cyanine 3-CTP (Cy3) (PerkinElmer, Boston, MA, USA) using the

Quick Amp Labeling Kit, one-color (Agilent Technologies). Cy3-

labeled cRNA (1.65 mg) was hybridized for 17 hours at 65uC to an

Agilent Whole Human Genome Oligo Microarray, which carries

60-mer probes to more than 40,000 human transcripts. The

hybridized microarray was washed and then scanned in Cy3

channel with the Agilent DNA Microarray Scanner (model

G2565AA). Signal intensity per spot was generated from the

scanned image using Feature Extraction Software version 9.1

(Agilent Technologies) in the default settings. Spots that did not

pass quality control procedures were flagged as ‘‘Absent’’. The

MIAME-compliant microarray data were deposited into the Gene

Expression Omnibus data repository (accession number

GSE17260).

Microarray Data Analysis
We analyzed our dataset as a ‘‘discovery set’’ and the publicly

available dataset as an ‘‘external dataset’’. Considering differences

in microarray platforms, we selected common genes between the

Agilent Whole Human Genome Oligo Microarray and Affymetrix

Human Genome U133 Plus 2.0 Array, which was the platform in

an external dataset (GSE9891) [20].

Data normalization was performed in GeneSpring GX 10

(Agilent Technologies) as follows: (i) Threshold raw signals were set

to 1.0. (ii) 75th percentile normalization was chosen as normalized

algorithm. (iii) Baseline was transformed to median of all samples.

Furthermore, the expression level was normalized by Z-transfor-

mation (the mean expression was set to 0 and standard deviation

to 1 for each gene in each dataset). In our dataset, 18,178 probes

with expression levels marked as ‘‘Present’’ in all microarrays were

used to remove missing and uncertain signals on gene expression.

The PFS-related genes from the 18,178 probes were identified

by univariate Cox proportional hazard analysis, followed by a

ridge regression, a penalized Cox regression analysis for survival

prediction (Figure S2). We first identified 97 probes with expression

levels correlating with the PFS time determined using the univariate

Cox proportional hazard model (p,0.01). In case of multiple probes

representing a given gene (so-called multiple tagged gene) in

microarrays, only the probe with the largest magnitude (i.e., sum of

the squares of per-individual expression values) was extracted as a

representative probe for the gene [24]. To avoid the problem

of overfitting, ridge regression extension of the multivariate Cox

model was employed [18]. The ridge regression shrinks regression

coefficients (b) of genes in multivariate Cox model by imposing a

penalty on squared values of the coefficients, and is able to handle

the problem of having larger number of expression values than

individuals in an appropriate way [30]. We estimated regression

coefficients of the prognostic genes by the ridge regression Cox

model using M-files (available at http://www.med.uio.no/imb/

stat/bmms/software/microsurv/) for MATLAB (Mathworks, Na-

tick, MA, USA). Using 10-fold cross-validation, we obtained

regression coefficients with optimal penalty parameter for the

penalized Cox model, and calculated a prognostic index for each

patient as defined by

Prognostic index ~
X88

i~1

bi|Xi ð1Þ

where bi is the estimated regression coefficient of each gene in

discovery dataset under ridge regression multivariate Cox model

and Xi is the Z-transformed expression value of each gene [18]. The

estimated regression coefficient of each PFS-related gene given by

ridge regression in the discovery set was also applied to calculate a

prognostic index for each patient in external dataset using the

equation above. We classified all patients into the two groups (high-

and low-risk groups) by the median of the prognostic index in

discovery set [9]. PFS between high- and low-risk groups was

compared using Kaplan-Meier curves and the log rank test using

GraphPad PRISM version 4.0 (GraphPad Software, San Diego,

CA, USA). Furthermore, We then evaluated the prognostic index in

the multivariate Cox proportional hazard model using JMP version

6 (SAS Institute, Cary, NC, USA). We also examined the

discrimination performance of the prognostic index between early

and late relapse in patients by plotting a receiver operating

characteristic (ROC) curve for each dataset (JMP). Because 18

months is the median PFS time for advanced-stage ovarian cancer

patients treated with cisplatin-paclitaxel [1], we used 18 months as

the cut-off between early and late relapse. We performed ROC

curve analysis for our prognostic index in only patients with follow-

up for more than 18 months (Discovery set 103 samples; External

dataset 84 samples).

To investigate the biological functions of PFS-related gene

expression profiles, we used GO Ontology Browser, embedded in

GeneSpring GX [17,51]. The GO Ontology Browser was used to

analyze which categories of gene ontology were statistically

overrepresented among the gene list obtained. Statistical signifi-

cance was determined by Fisher’s exact test, followed by multiple

testing corrections by the Benjamini and Hochberg false discovery

rate (FDR) method [26]. Furthermore, we tried to explore

molecular interaction networks among the PFS-related genes

using Ingenuity Pathway Analysis (IPA) [17].

Quantitative Real-Time Reverse Transcription Polymerase
Chain Reaction (RT-PCR) Analysis

Real-time PCR was performed on E2F2 (Hs00231667_m1,

Applied Biosystems), FOXJ1 (Hs00230964_m1, Applied Biosys-

tems), DNAH7 (Hs01022427_m1, Applied Biosystems), and FILIP1

(Hs00325074_m1, Applied Biosystems) for a subset of serous
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ovarian cancer (n = 53) as previously described [17]. The relative

quantification method [52] was used to measure the amounts

of the respective genes in serous ovarian cancer samples, nor-

malized to ACTB (Hs99999903_m1, Applied Biosystems) and TBP

(Hs99999910_m1, Applied Biosystems).

Evaluation of PFS-Related Genes in the External Dataset
To confirm whether our expression profile could predict prognosis

of serous ovarian cancer patients in an independent data set, we

selected to use publicly available microarray data (GSE9891) only

because the data also disclosed individual clinical characteristics

including PFS time. We examined clinical information of these

dataset using supplementary data [20]. From this original dataset

(n = 285), we selected 87 samples that were (i) diagnosed as advanced-

stage serous adenocarcinoma, (ii) treated by platinum/taxane-based

chemotherapy, (iii) obtained from primary lesion, and (iv) followed-up

for more than 12 months (Table S1). Their samples are histologically

graded by Silverberg classification [22] whose grading system is

different from that in this study.

Supporting Information

Figure S1 Kaplan-Meier survival curves between 110 patients in

this dataset and 87 in Tothill’s dataset.

Found at: doi:10.1371/journal.pone.0009615.s001 (0.24 MB TIF)

Figure S2 Analytical process to develop a prognostic index for

predicting survival.

Found at: doi:10.1371/journal.pone.0009615.s002 (0.48 MB TIF)

Figure S3 Assessment of the sensitivity and specificity of 88-gene

prognostic index using receiver-operating characteristic (ROC)

curves. When early relapse is positive in the analysis, the area

under ROC curve to distinguish early-relapse patients with less

than 18 months of progression-free survival times from late-relapse

patients was 0.959 and 0.674 in (A) discovery set (early, n = 54;

late, n = 49) and in (B) external set (early, n = 45; late, n = 39),

respectively.

Found at: doi:10.1371/journal.pone.0009615.s003 (0.42 MB TIF)

Figure S4 Appling PFS-related gene expression profile to

Dressman’s dataset [25]. (A) Multivariate analysis showed a

significant association of overall survival with the prognostic index

estimated using the 88-gene linear combination model with the

ridge regression coefficients from the present discovery set in

Dresssman’s dataset (HR, 1.51; 95% CI, 1.19–1.93, p = 0.0008)

(B) Kaplan-Meier survival curves and the log rank test showed that

high-risk patients had shorter overall survival compared to low-risk

patients (median survival, 31 and 87 months for high- and low-risk

patients, respectively; p = 0.0008).

Found at: doi:10.1371/journal.pone.0009615.s004 (0.23 MB TIF)

Figure S5 Molecular interaction networks of 88 progression-free

survival-related genes using Ingenuity Pathway Analysis (IPA)

software. The prognostic genes incorporated into the respective

networks were marked as gray-colored.

Found at: doi:10.1371/journal.pone.0009615.s005 (2.42 MB TIF)

Figure S6 Molecular interaction networks of 88 progression-free

survival-related genes using Ingenuity Pathway Analysis (IPA)

software. The prognostic genes incorporated into the respective

networks were marked as gray-colored.

Found at: doi:10.1371/journal.pone.0009615.s006 (1.68 MB TIF)

Figure S7 Molecular interaction networks of 88 progression-free

survival-related genes using Ingenuity Pathway Analysis (IPA)

software. The prognostic genes incorporated into the respective

networks were marked as gray-colored.

Found at: doi:10.1371/journal.pone.0009615.s007 (1.82 MB TIF)

Table S1 Clinical characteristics of advanced-stage serous

ovarian cancer patients in Tothill’s dataset [20] (n = 87).

Found at: doi:10.1371/journal.pone.0009615.s008 (0.04 MB

DOC)

Table S2 Univariate and multivariate Cox’s proportional

hazard model analysis of prognostic factors for progression-free

survival.

Found at: doi:10.1371/journal.pone.0009615.s009 (0.04 MB

DOC)

Table S3 Univariate Cox’s proportional hazard model analysis

of prognostic index for progression-free survival in the two

datasets.

Found at: doi:10.1371/journal.pone.0009615.s010 (0.04 MB

DOC)
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