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Abstract

Chronic pain is a major debilitating condition that is difficult to treat. Although chronic pain may appear to

be a disorder of the nervous system, crucial roles for immune cells and their mediators have been

identified as important contributors in various types of pain. This review focuses on how the immune

system regulates pain and discusses the emerging roles of immune cells in the initiation or maintenance of

chronic pain. We highlight which immune cells infiltrate damaged nerves, the dorsal root ganglia, spinal

cord and tissues around free nerve endings and discuss through which mechanisms they control pain.

Finally we discuss emerging roles of the immune system in resolving pain and how the immune system

contributes to the transition from acute to chronic pain. We propose that targeting some of these immune

processes may provide novel therapeutic opportunities for the treatment of chronic pain.
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Rheumatology key messages

. Immune cells contribute to chronic pain but have different roles in the initiation, maintenance and resolution of
pain.

. Modulating immune cells or immune mediators can attenuate chronic pain.

Introduction

Pain-related problems are the main reason for physician

consultations [1, 2]. Chronic pain affects >20% of the

population [3, 4]. Current therapies to relieve pain

(e.g. NSAIDs, opioids) often fail or produce treatment-

limiting side effects [5, 6]. Different causalities may be at

the root of chronic pain development. Inflammation

causes inflammatory pain (e.g. RA, IBD), while nerve

injury as a consequence of an operation or trauma, meta-

bolic disorders (e.g. diabetic mellitus) or auto-immune dis-

eases (e.g. multiple sclerosis) may cause neuropathic

pain. Moreover, cancer itself or its treatment (chemother-

apy) may result in painful neuropathies [7].

RA and OA are common causes of chronic pain and

combined account for �42% of the chronic pain patients

in Europe [8]. Although inflammation and damage are clo-

sely linked to pain, chronic pain may not be the direct

consequence of ongoing inflammation or damage because

arthritis pain does not correlate well with the magnitude of

inflammation or joint damage [9, 10]. Moreover, in a sub-

stantial proportion (ranging from 12 to 70%) of RA patients,

pain persists even with minimal disease activity or with

sustained remission [9, 11, 12]. Finally, �20% of OA pa-

tients with total knee replacement surgery report severe or

extreme pain 3�4 years after the operation [13, 14].

Chronic pain may result from aberrant neuronal activity

including ectopic discharges, peripheral sensitization of

primary sensory neurons and sensitization of neurons in

the CNS [15]. However, the immune system is also

involved in pain regulation [16]. Microglia, the resident

macrophages of the CNS, play important roles in multiple

rodent models of chronic pain, including neuropathic pain,

cancer-induced bone pain and chronic inflammatory

pain. In these models, resident microglia switch from a

quiescent inactive state to an activated phenotype that is

associated with production of inflammatory mediators

that increase the sensitivity of the pain system [17].

However, evidence indicates that peripheral immune

cells and their mediators are also involved in regulating

pain [18�20].
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During inflammation or tissue damage, infiltrating or

resident peripheral immune cells at the site of inflamma-

tion or damage produce mediators that trigger sensory

neurons to produce action potentials or sensitize neurons

by enhancing sensory transduction and neuronal excit-

ability [21, 22]. However, peripheral inflammation or

tissue damage also induces infiltration of immune cells

into other pain-relevant sites such as peripheral nerves;

dorsal root ganglia (DRG), containing the somas of the

sensory neurons; or the dorsal horn of the spinal cord,

which receives peripheral input to modulate pain sensitiv-

ity [19, 23, 24]. These peripheral immune cells and their

mediators play different roles in the initiation and mainten-

ance of different types of pain, and evidence exists for a

role in the resolution of pain [21, 25�27]. These intricate

contributions of immune cells at different stages of pain

induced by inflammation (e.g. arthritis), damage (OA) or

nerve damage (neuropathic) will be discussed in the fol-

lowing paragraphs and are summarized in Fig. 1.

Immune-derived mediators in pain initiation
and maintenance

Several inflammatory mediators, such as bradykinin, his-

tamine, adenosine triphosphate, neurotrophins and cyto-

kines but also protons or damage-associated molecular

patterns, activate sensory neurons to generate action po-

tentials and/or enhance neuronal excitability and sensory

transduction through neuronal receptors leading to pain

and hyperalgesia [21, 22]. The contribution of cytokines in

initiating pain is supported by evidence that the develop-

ment of inflammatory pain is attenuated by neutralizing

cytokines or blocking cytokine receptors at the site of in-

flammation. Neutralization of TNFa with TNFa antibodies

or soluble TNF receptors attenuates the development of

pain in various experimental arthritis models [28�31].

Inhibition of IL6 or IL1b signalling by an intra-articular in-

jection of soluble gp130 or with the IL1 receptor (IL1R)

antagonist anakinra, respectively, attenuates the develop-

ment of pain in experimental arthritis [32, 33]. Pro-

inflammatory cytokines may also maintain pain through

modulating the central terminals of primary afferent neu-

rons and/or spinal cord neurons because spinal adminis-

tration of neutralizing TNFa antibodies also reduces

experimental arthritis pain [31]. Some RA patients con-

tinue to experience pain after systemic anti-TNFa treat-

ment [11], but this may be explained by systemically

administered antibodies not efficiently blocking spinal

TNFa. Indeed, spinal TNFa neutralization is more effective

in treating arthritis pain than when administered system-

ically [31]. Other cytokines, such as IL15, IFNg, IL18, IL22

and IL17, or damage associated molecules, such as high

mobility group box 1 or S100, initiate or maintain pain [34,

35]. IL15 contributes to the development of neuropathic

pain by promoting infiltration of macrophages and T cells

into the sciatic nerve and spinal cord while IFNg induces

spontaneous neuronal firing and activates spinal microglia

[36]. Nerve injury-induced allodynia is reduced after gen-

etic or pharmacological inhibition of IL17 or IL18 and intra-

thecal injections of these cytokines induce pain, probably

through activating spinal glial cells [37, 38]. Finally, IL22

expression is increased during the onset of experimental

arthritis pain and inhibiting IL22 reduces pain [39].

Intriguingly, levels of pro-inflammatory cytokines such as

IL1b, IL6 and IL18 are increased in the spinal cerebral fluid

of FM, non-diabetic polyneuropathy and post-traumatic

neuralgia patients [40, 41].

The functional capacity of inflammatory mediators such

as cytokines to produce pain is highly dependent on the

expression and composition of their receptors in sensory

neurons. Indeed, a wide range of cytokine receptors are

expressed on sensory neurons, allowing cytokines to act

directly on there [42, 43]. During development of pain,

expression of these receptors may be modulated,

affecting the functional consequences of inflammatory

mediators released. After peripheral nerve injury TNF re-

ceptors (TNFR1 and TNFR2) and their ligand, TNFa, are

upregulated in sensory neurons [44]. However, in several

models of chronic pain, TNFR1 is the main pain promoting

receptor [43], yet some reports indicate involvement of

TNFR2 in pain induction [45].

Sensory neurons also express IL1R, and IL1b induces

activation of sensory neurons [46]. In models of neuro-

pathic and inflammatory pain, sensory neuron IL1R1 ex-

pression is increased [43, 47, 48] and in an experimental

adjuvant-induced arthritis model, the proportion of IL1R1

expressing neurons almost doubles [33]. Finally, after

nerve injury IL6 and its receptor (IL6R) are upregulated.

Expression of the signal-transducing component gp130

remains unchanged [49, 50]; nevertheless, sensory

neuron-specific depletion of gp130 attenuates inflamma-

tory, tumour, and arthritis pain [51, 52], indicating an im-

portant role of the receptor component in pain

development.

Complement components appear to also be important

contributors to pain and are increased in the affected knee

of RA and OA patients [53, 54]. Moreover, C1q, factor B

and C3 are increased in sciatic nerves of humans with

traumatic nerve lesion-induced pain and after spinal cord

injury in rodents [55, 56]. Components from the classical

and non-classical pathway (e.g. C5, C3 and C1q) cause

pain through triggering sensory neurons or recruiting and

activating immune cells (e.g. C5a and C3a) to facilitate pain

[57�59]. Intrathecal as well as intraplantar injections of C3a

and C5a induce pain hypersensitivity in rodents, while

blocking C5aR reduces pain in inflammatory, neuropathic

and postoperative pain models [57, 60, 61].

Evidence exists that short-lived episodes of acute inflam-

mation can induce long-lasting sensory neuron plasticity

that may contribute to chronic pain development [62, 63].

This neuronal plasticity includes changes in the expression

of neurotransmitters, receptors, signalling cascades and ion

channels causing long-lasting altered sensory response to

subsequent inflammatory mediators [64, 65]. For example,

rodents challenged with a transient inflammatory stimulus

such as IL6, IL1b, bradykinin or carrageenan develop

short-lasting hyperalgesia. However, when signs of inflam-

mation have resolved, even weeks later, and animals are

challenged with a second inflammatory stimulus that
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normally induces a transient hyperalgesia (e.g. PGE2), this

inflammatory mediator now induces a hyperalgesia that

lasts much longer [66, 67]. Possibly, such neuronal plasticity

may explain why some RA patients after arthritis flares ex-

perience pain that outlast the inflammatory response.

Immune-derived mediators resolving pain

The first evidence of immune-derived mediators that can

resolve pain came from work showing that intrathecal ad-

ministration of the anti-inflammatory cytokine IL10 reduces

neuropathic pain [68]. Intriguingly, IL10 is important in

FIG. 1 Overview of the role of immune cells and their mediators at different stages of pain

(A) Time course of chronic pain induced by inflammation or damage visualizing the different stages of pain: (i) initiation,

(ii) maintenance and (iii) resolution. (B and C) Schematic overview of the different types of immune cells and mediators

modulating pain at different sites and during the different stages (i�iii) of pain shown in (A). (B) During inflammation or

tissue damage, resident and immune cells recruited to the inflamed or damaged site secrete inflammatory mediators that

act on peripheral nerves innervating the affected tissue. (C) Similarly, different immune cells migrate to the spinal cord

and/or the dorsal root ganglia to modulate pain sensitivity during the different phases of pain. ACPA: anti-citrullinated

protein antibody; ASIC, acid-sensing ion channel; ATP: adenosine triphosphate; CCL2: chemokine (C-C motif) ligand 2;

CRF: corticotropin-releasing factor; CX3CL1: chemokine (C-X3-C motif) ligand 1; Fcg1: Fcg type 1 receptor; GPCR:

G protein-coupled receptor; NGF: nerve growth factor; PD1/NPD1: protectin D1/neuroprotectin D1; ROS: reactive

oxygen species.
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endogenous pain resolution pathways that occur in natur-

ally resolving transient pain conditions. For example, intra-

thecal injection of neutralizing IL10 antibodies prolongs

transient inflammatory pain, and inhibition of IL10

signalling either genetically (IL10�/� mice) or pharmaco-

logically (neutralizing IL10 antibodies) delays recovery

from chemotherapy-induced neuropathy [25, 69]. Finally,

in neuropathic pain patients cerebrospinal fluid IL10 levels

are reduced compared with healthy controls [40]. The pain

resolving action of IL10 may be explained by its inhibitory

effects on spinal glia that maintain chronic pain [17]. IL10

inhibits glia cell activation in both inflammatory and neuro-

pathic models of pain [69, 70]. Moreover, IL10-mediated

attenuation of paclitaxel-induced mechanical allodynia is

associated with decreased CD11b, TNFa and IL1b expres-

sion in the DRG, suggesting that IL10 inhibits activation

and/or DRG recruitment of CD11b+ immune cells and

subsequent pro-inflammatory cytokine production [71].

Nevertheless, IL10 also inhibits tetrodotoxin (TTX)-sensi-

tive sodium channels in sensory neurons and reduces

chemotherapy-induced spontaneous firing of sensory neu-

rons in vitro, indicating IL10 modulates sensory neurons

directly [69, 72]. Importantly, sensory neurons do express

other anti-inflammatory cytokine receptors, such as IL4R,

IL13R and TGFbR, and potentially these regulatory cyto-

kines modulate sensory function and pain as well [42].

Indeed IL10 is not the only pain resolving cytokine since

mice deficient for IL4 display mechanical allodynia and

increased neuronal excitability, and patients with painful

neuropathy have reduced IL4 serum levels, indicating

that IL4 plays some role in controlling pain [73, 74].

Moreover, intrathecal injections of TGFb, IL13 or sensory

neuron-specific overexpression of IL4 have analgesic ef-

fects in neuropathic and inflammatory pain models

[75�78]. The efficacy of these anti-inflammatory cytokines

to inhibit pain is dependent on receptor expression or sig-

nalling. To our knowledge there are no data available on

whether expression and/or receptor signalling are regu-

lated in sensory neurons during chronic pain.

Nevertheless, expression of IL10Ra is reduced in synovial

tissue of RA patients, enabling the possibility that in such

chronic inflammatory conditions sensory neuron IL10R sig-

nalling may be affected rendering these neurons less sus-

ceptible to IL10-mediated pain inhibition [79].

Despite analgesic actions of anti-inflammatory cytokines,

the therapeutic potential of unmodified anti-inflammatory

cytokines is limited because these cytokines work optimally

in concert with each other and their relatively small size

causes rapid clearance, reducing their bioavailability

[80�82]. More recently these limitations have been over-

come by fusion of IL4 and IL10 into one molecule that

was more effective in inhibiting persistent inflammatory

and neuropathic pain than the combination of the individual

cytokines [83]. Moreover several viral gene therapy or non-

viral transduction vectors have been employed to induce

prolonged production of native cytokines to resolve chronic

pain conditions [68, 78, 84, 85]. Overall these strategies

show a promising perspective for the use of anti-inflamma-

tory cytokines to treat chronic pain.

Other immune-derived mediators known to be involved

in the termination programme of inflammation, such as

resolvins (e.g. RvE1, RvD1) and protectins [e.g. neuropro-

tectin D1 (NPD1)/protectin D1 (PD1)] have strong anal-

gesic actions. RvE1 and RvD1 suppress pain through

inhibiting transient receptor potential channel activity in

sensory neurons and N-methyl-D-aspartate receptors

postsynaptically in the dorsal horn [86, 87]. Similarly, intra-

thecal NPD1/PD1 injections reduce established neuro-

pathic pain by blocking nerve injury-induced spinal glia

activation and spinal synaptic plasticity [88].

Immune cells regulating pain

Myeloid cells

Pain initiation

Monocytes/macrophages are linked to the development

of pain by the production of inflammatory mediators. In

neuropathic (e.g. nerve injury-induced) and inflammatory

pain models [e.g. arthritis, intraplantar complete Freund’s

adjuvant (CFA) injections] elevated numbers of mono-

cytes/macrophages are observed in pain-relevant tissues

such as the injured nerve, the inflamed skin or the DRG

[23, 89�92] at the time pain is developing. Depletion of

macrophages locally after CFA-induced paw inflammation

attenuates the development of inflammatory pain, whilst

depletion of macrophages at the site of inflammation

during established persistent inflammatory pain does not

affect pain [89, 93]. Some evidence exists for a role of

myeloid cells in the initiation of pain in neuropathic pain

models. Macrophages infiltrate the injured nerve after

chemotherapy or sciatic nerve injury and depletion of

these cells suppresses the development of neuropathic

pain [23, 92].

Osteoclasts are derived from myeloid progenitors and

play a role in the initiation of pain. In chronic inflammatory

and degenerative diseases such as RA and OA, osteo-

clasts are increased in number and display increased

bone resorption activities [94]. These enhanced bone re-

sorption activities cause local acidification, activating

acid-sensing ion channels and transient receptor potential

channel vanilloid subfamily member 1 in sensory neurons,

leading to pain [95�97]. Inhibitors of osteoclast activity

reduce pain in models of OA, inflammatory pain and

cancer-induced bone pain [95, 97, 98]. Similarly, in

humans inhibitors of osteoclast activity reduce pain in pa-

tients with bone disorders or RA [99�101].

Although some studies have shown a role for myeloid

cells or myeloid-derived osteoclasts in the initiation of

pain, the majority of studies indicate roles for myeloid

cells in pain maintenance.

Pain maintenance

In rodent models of neuropathic pain, induced either sur-

gically or by chemotherapy, monocytes/macrophages

appear in the DRG and spinal cord at time points when

pain is already established and these cells remain present

for several weeks [24, 102�104]. In several chronic inflam-

matory pain models, including CFA-induced arthritis and
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experimental arthritis, macrophages are found in the DRG

and spinal cord when pain is established [90, 91, 105,

106]. In a surgical model of OA, macrophages infiltrate

the DRG 8 weeks after the destabilization of the medial

meniscus and persist within the DRG for at least 16 weeks

[107]. Similarly, 4 weeks after intra-articular administration of

monosodium iodoacetate, which induces long-lasting pain

by damaging the knee joints [108], the number of CD68+

macrophages in the lumbar DRG triples, suggesting a role

of these cells in the maintenance of OA pain (Fig. 2). During

antigen-induced arthritis, DRG-infiltrating macrophages

exert a phenotype that resembles TNFa-stimulated macro-

phages [106]. In vitro, TNFa-stimulated macrophages pro-

mote calcitonin gene-related peptide (CGRP) release by

sensory neurons, which could explain their pro-nociceptive

properties [105]. Macrophage-derived IL6, TNFa and IL1b
are described as important drivers of chronic pain [21]. In

addition, macrophages also release reactive oxygen species

that may contribute to the maintenance of pain, since Nox2+

macrophages migrate to the DRG and contribute to neuro-

pathic pain in a reactive oxygen species-dependent mech-

anism [109, 110].

The strongest evidence of the involvement of monocytes/

macrophages in the maintenance of chronic pain comes

from monocyte/macrophage depletion studies. Depletion

of peripheral macrophages by i.v. injections of clodronate

liposomes partially reverses established paclitaxel-induced

or nerve ligation-induced mechanical hyperalgesia and

reduced TNFa expression in DRG [111, 112]. Moreover,

monocyte/macrophage depletion with clodronate lipo-

somes delays the progression of diabetes-induced mech-

anical allodynia [113]. Systemic depletion of monocytes/

macrophages after sciatic nerve ligation attenuates

axonal damage and hyperalgesia, whereas depletion prior

to L5 spinal nerve transection has no effect on the

development of neuropathic pain, indicating that macro-

phages play a role in the maintenance of chronic pain

[114, 115].

The presence of macrophages at pain-relevant sites

raises the question why these cells migrate to these tis-

sues that are distant from the site of actual damage or

inflammation. After peripheral inflammation sensory neu-

rons produce chemokines chemokine (C-C motif) ligand 2

(CCL2) and chemokine (C-X3-C motif) ligand 1 (CX3CL1),

which may drive the attraction of macrophages [116, 117].

Similarly, after chemotherapy-induced nerve injury or after

knee damage in an experimental osteoarthritis model, ex-

pression of CCL2 is increased in the DRG and spinal cord,

and the increase in CCL2 production is associated with

elevated numbers of macrophages in the DRG and spinal

cord [107, 112]. CX3CL1 is anchored to the plasma

membrane, but is liberated after cleavage by proteases

(e.g. cathepsin S) produced by activated microglia [118].

After nerve injury soluble CX3CL1 levels are increased in

the DRG, whilst membrane-bound CX3CL1 is decreased

[119].

In mice deficient for chemokine (C-C motif) receptor 2

(CCR2) and CX3C chemokine receptor 1 (CX3CR1),

receptors for CCL2 and CX3CL1, pain and the number

of monocytes/macrophages in the injured nerve or DRG

are markedly reduced after a peripheral inflammation, ex-

perimental OA or chemotherapy-induced neuropathy [92,

107, 120, 121]. Moreover, blocking of spinal and DRG

CX3CL1 or CCL2 during established paclitaxel-induced

neuropathy inhibits macrophage recruitment to the DRG

and attenuates allodynia [122, 123]. In patients with

lumbar disk herniation with sciatic pain, the severity of

pain is correlated with increased local expression of

FIG. 2 Macrophages infiltrate the DRG in a model of OA

(A) Unilateral intra-articular monosodium iodoacetate (MIA) injections in rats significantly increased the number of CD68+

macrophages in the lumbar DRG compared with the contralateral knee or vehicle injected rats at 4 weeks after injections

(n = 6). (B) Exemplar images of the DRGs innervating the affected knee (ipsi) or the contral lateral knee (contra). Scale bar

is 50mm. Data are presented as mean and S.E.M. ***P < 0.001: statistical analyses were performed by two-way analysis of

variance with the Bonferroni post hoc test.
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CX3CL1 and CCL2 in the soft tissues around nerve root.

Moreover, intrathecal administration of a CCR2 antagonist

inhibits neuropathic pain in a rat model of lumbar disc

herniation [124, 125].

Sensory neurons also produce other chemokines after

nerve injury, such as CCL21, CXCL13 and CCL7 [120,

126, 127]. Whether similar chemokines are produced

during chronic inflammatory pain remains to be deter-

mined. Nevertheless, all these factors may contribute to

macrophage infiltration in the DRG to regulate pain.

However, it should be noted that many chemokines

including CCL2 also act on chemokine receptors ex-

pressed by sensory neurons to produce pain [128]).

Pain resolution

Depletion of monocytes prior to the induction of transient

inflammatory pain with IL1b or carrageenan prevents the

resolution of inflammatory pain, that normally last 1�2

days but now persists for >1 week. This prevention of

the resolution of a transient inflammatory hyperalgesia is

dependent on IL10 production by monocytes/macro-

phages [25]. Moreover, reduction of G protein-coupled

receptor kinase 2, an ubiquitously expressed negative

regulator of G protein-coupled receptors and other sig-

nalling molecules (e.g. p38) in monocytes/macrophages

increases production of TNFa whilst reducing IL10 and

prevents the resolution of transient inflammatory pain

[25]. The existence of pain-resolving macrophages is fur-

ther supported by evidence that perineural injection of

IL4-skewed macrophages reduces neuropathic pain

through the production of opioid peptides including Met-

enkephalin, dynorphin A and b-endorphin [129].

In conclusion, myeloid cells have distinct roles in the

initiation, maintenance and resolution of pain. The func-

tional plasticity of macrophages enables these cells to

mediate both pro- and anti-nociceptive effects following

injury or inflammation. As such, regulating macrophage

phenotype by promoting polarization into anti-nociceptive

or blocking polarization into pro-nociceptive phenotype

might represent interesting avenues for potential new

therapeutic strategies for chronic pain.

Neutrophils and mast cells

Pain initiation and maintenance

After an inflammation/damage, neutrophils are one of the

first cells recruited to the affected tissue and may act as

potential initiators of pain. However, the majority of stu-

dies indicate that there is no substantial role for neutro-

phils in pain induction, since the development of

inflammatory pain or incisional wound pain is not affected

by neutrophil depletion [61, 89, 130]. Moreover, local re-

cruitment of polymorphonuclear cells with CXCL1 and

CXCL2/3 does not induce pain [131].

Given that mast cells are frequently found in close prox-

imity to nerve endings, they are in a unique position to

activate sensory neurons and induce pain. IgE-dependent

activation of human mast cells induces itch. However,

upon activation mast cells also rapidly release cytokines,

NGF, proteases and histamine and bradykinin that induce

pain [132, 133]. In patients with chronic pain, such as in-

flammatory bowel syndrome, RA and FM, increased mast

cell numbers are found in the inflamed tissues that corre-

lated with the severity of pain symptoms [134, 135]. In

rodents, degranulation of mast cells causes immediate

hyperalgesia in wild-type but not in mast-cell deficient

mice [136]. Although these results point to some role of

mast cells and granulocytes in the initiation of pain, po-

tential roles in maintaining pain are thus far unknown.

Pain resolution

Neutrophils can release opioid peptides (b-endorphin,

met-enkephalin and dynorphin-A) that have anti-nocicep-

tive effects through m, d or k opioid receptors expressed

by sensory neurons [137]. An anti-nociceptive role of neu-

trophils is evoked by corticotrophin releasing factor (CRF)

injections that induce opioid secretion by neutrophils

[138]. CRF attenuates CFA-induced inflammatory-hyper-

algesia in rats in an opioid and granulocyte-dependent

manner and intra-articular injections of CRF relieve post-

operative pain in patients after arthroscopic knee surgery

[138, 139].

T cells

Pain initiation and maintenance

Some evidence suggests that T cells control the initiation

of neuropathic pain, because T cell infiltration into

damaged nerves coincidences with the time when allody-

nia is developing [23, 27]. In some neuropathic pain

models mechanical allodynia is reduced in T cell deficient

mice at time points during the development of allodynia

(day 3) [140, 141]. There is some evidence that T cells

infiltrate the inflamed tissue after intraplantar CFA injec-

tions. However in T cell deficient mice the pain sensitivity

after CFA is not altered, suggesting that T cells do not

contribute to the initiation of inflammatory pain [89].

The majority of studies indicate that T cells infiltrate

spinal cord and DRGs during the maintenance of neuro-

pathic pain and are thus more likely to contribute to the

maintenance of pain [18, 140�142]. T cells are present in

spinal cord starting from 1 to 2 weeks after nerve injury in

different models of neuropathic pain [20, 142]. The major-

ity of infiltrating T cells are CD4+ and produce IL17 and

IFNg [140, 142, 143]. IL15 and IL23 produced by macro-

phages and dendritic cells drive T helper 17 cells to the

spinal cord during the maintenance of neuropathic pain

[141]. In T cell deficient mice nerve injury-induced neuro-

pathic pain is attenuated when pain has already de-

veloped, while the initial development phase of

neuropathic pain is intact [27, 142]. Depletion of CD4+ T

cells with intravenous CD4 antibodies also reduces hyper-

algesia and allodynia once pain has already developed

[23]. Similarly, in CD4�/�mice neuropathic pain is reduced

only during the maintenance of neuropathic pain and is

rescued by adoptive transfer of CD4+ T cells [140].

Some recent evidence suggests that the involvement of

T cells in pain maintenance is sex dependent. In female

mice the expression of several T cell markers in the spinal

cord is almost 2-fold higher than in males after nerve injury
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and nerve injury-induced neuropathic pain is reduced in

female but not in male T cell deficient mice [144]. This

immune system-related sex difference may be explained

by sex-dependent IFNg and IL-17A expression by CD4

T cells [143, 144]. The contribution of T cells might not

only be limited by sex but also by age, because the

large T cell infiltration and upregulation of IFNg in the

dorsal horn after spared nerve injury is only observed in

adult and not in infant rats and mice [142]. This age-

dependent involvement of T cells in neuropathic pain

could explain the clinical observation that in children

neuropathic pain is less often observed [145]. However,

increased production of IL4 and IL10 in the spinal cord

also contributes to the diminished neuropathic pain devel-

opment in neonatal rats and mice [146].

Resolution of pain

Adoptive transfer of T helper 2 cells reduces established

neuropathic pain in an IL10-dependent manner, indicating

that this T cell subset has some anti-nociceptive roles

[27]. Similarly, Tregs resolve pain. Systemic application

of a CD28 superagonist, a Treg population expander, re-

duces the development of nerve injury-induced neuro-

pathic pain and number of infiltrating T cells in the

damaged nerve [26]. Conversely, depletion of Tregs with

cytotoxic CD25 antibodies or by using transgenic mice to

selectively deplete FOXP3+ T cells prolongs nerve injury-

induced mechanical hypersensitivity [26, 147]. In mice

deficient for T cells, transient chemotherapy-induced allo-

dynia does not resolve and the resolution is rescued by

reconstitution of CD8+ T cells but not by CD4+ T cells [69].

Importantly, this CD8+ T cell-mediated resolution of

chemotherapy-induced pain required IL10 signalling not

by direct secretion of IL10 but rather through upregulating

IL10 receptor expression in the DRG [69]. Thus, T cells

also control resolution of chemotherapy-induced neuro-

pathic pain.

Overall, T cells clearly have roles in development of

neuropathic pain. However, specific T cell subtypes and

their secreted inflammatory products determine whether T

cells have a pro- or anti-nociceptive role. Whether T cells

also regulate inflammatory or other types of pain remains

to be determined.

B cells

Pain initiation and maintenance

Evidence for the involvement of B cells in the initiation of

pain mainly comes from studies that show that autoanti-

bodies can induce pain [148]. Autoantibodies against

citrullinated antigens (ACPAs; e.g. against citrullinated fi-

brinogen, vimentin, a-enolase, collagen type II, immuno-

globulin-binding protein and histone 4) are increased in

patients with RA [149]. Intravenous injection of purified

ACPAs from RA patients or those from arthritic mice to

healthy mice induces pain and increased heat and cold

sensitivity without inducing inflammation [150]. ACPAs

can be present years before RA diagnosis and may ex-

plain the pain-related problems of RA patients before the

onset of clinical symptoms [151]. Mechanistically, ACPAs

bind to osteoclasts to induce the release of CXCL1

(equivalent to human IL8), which activates sensory neu-

rons and induces pain [152]. The majority of ACPAs are

IgGs and the Fcg type 1 receptor (FcgR1) is expressed by

some sensory neuron subsets. Intradermal injection with

IgG immune complexes produces hyperalgesia depend-

ent on FcgRI expression, indicating that IgG immune com-

plexes also produce pain through activating neurons

directly [153]. Moreover, during experimental arthritis,

the number of sensory neurons expressing FcgR1 is

increased suggesting that during inflammation the sen-

sory system becomes more sensitive for IgGs [153,

154]. Autoantibodies are also detected in other autoim-

mune diseases associated with pain such as multiple

sclerosis, Guillian�Barre syndrome and complex regional

pain syndrome (CRPS) [155, 156]. Moreover, anti-neur-

onal antibodies are detected in patients with CRPS and

B cell depletion in a mouse model of CRPS reduced pain

[157, 158]. Finally, treatment of neuroblastoma with anti-

bodies against disialoganglioside produces severe pain as

a side effect, indicating that some IgGs can induce pain

[159].

Concluding remarks

Immune cells and their mediators have important but dis-

tinct roles in regulating different types of pain (Fig. 1) indi-

cating that the immune system and nervous system are

intimately intertwined. The diverse roles of myeloid cells

and T cells in the initiation, maintenance and resolution of

inflammatory and neuropathic pain are intriguing and

invite the question of whether chronic pain conditions

may be the results of defects in the immune system

rather than merely nervous system defects. The intricate

involvement of the immune system in pain regulation also

highlights possibilities for using immune approaches for

the treatment of pain. Regulating the subsets of these

cells by inducing anti-nociceptive phenotypes may repre-

sent a strategy to prevent debilitating chronic pain condi-

tions. In some clinical studies strategies have been tested

to interfere with myeloid cell for treating neuropathic pain

(e.g. CCR2, CSF1R antagonists), but these compounds

failed to reduce pain scores [160]. Other approaches

including targeting B cells to prevent the production of

autoantibodies (e.g. B cell depletion strategies with anti-

CD20) reduce arthritis disease onset, but this study only

showed a limited improvement of pain visual analogue

scores [161]. Although systemic anti-inflammatory strate-

gies may have the risk of introducing infections, local

(spinal) and/or transient administration of immunomodula-

tory compounds may reduce these risks. Finally, the use

of anti-inflammatory cytokines for pain treatment remains

a very promising strategy, but to the best of our know-

ledge, clinical trials are yet to be conducted.
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