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Abstract

Intravascular ultrasound (IVUS) is a diagnostic modality used during percutaneous coro-

nary intervention. However, specialist skills are required to interpret IVUS images. To

address this issue, we developed a new artificial intelligence (AI) program that categorizes

vessel components, including calcification and stents, seen in IVUS images of complex

lesions. When developing our AI using U-Net, IVUS images were taken from patients with

angina pectoris and were manually segmented into the following categories: lumen area,

medial plus plaque area, calcification, and stent. To evaluate our AI’s performance, we cal-

culated the classification accuracy of vessel components in IVUS images of vessels with

clinically significantly narrowed lumina (< 4 mm2) and those with severe calcification. Addi-

tionally, we assessed the correlation between lumen areas in manually-labeled ground

truth images and those in AI-predicted images, the mean intersection over union (IoU) of a

test set, and the recall score for detecting stent struts in each IVUS image in which a stent

was present in the test set. Among 3738 labeled images, 323 were randomly selected for

use as a test set. The remaining 3415 images were used for training. The classification

accuracies for vessels with significantly narrowed lumina and those with severe calcifica-

tion were 0.97 and 0.98, respectively. Additionally, there was a significant correlation in

the lumen area between the ground truth images and the predicted images (ρ = 0.97, R2 =

0.97, p < 0.001). However, the mean IoU of the test set was 0.66 and the recall score for

detecting stent struts was 0.64. Our AI program accurately classified vessels requiring

treatment and vessel components, except for stents in IVUS images of complex lesions.

AI may be a powerful tool for assisting in the interpretation of IVUS imaging and could pro-

mote the popularization of IVUS-guided percutaneous coronary intervention in a clinical

setting.
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Introduction

Cardiovascular disease due to atherosclerosis is the leading cause of death worldwide [1]. Per-

cutaneous coronary intervention (PCI) is one of the therapeutic strategies for cardiovascular

disease, and intravascular ultrasound (IVUS) can be performed to examine the components of

vessels with atheromatous plaques pertaining to cardiovascular disease [2]. Therefore, in a

clinical setting, pre-intervention IVUS should be useful to examine the target lesion and

choose the optimal treatment strategy.

The Providing Regional Observations to Study Predictors of Events in the Coronary Tree

(PROSPECT) study, which used IVUS to assess the lesion-related risk for major adverse car-

diac events (MACEs), showed that non-culprit vessels with a lumen area less than 4 mm2

had a higher risk for future MACEs than those with a larger area [3]. Another study, which

regarded the minimum lumen area of the unprotected left main coronary artery assessed by

IVUS as an index for whether to perform PCI, reported that IVUS was more accurate than

angiographic measurement for evaluating the extent of stenosis of target lesions [4]. IVUS is

useful for choosing the optimized stent implantation for a target lesion and IVUS-guided PCI

has several other advantages [5, 6]. However, pre-intervention IVUS is not widely performed

worldwide [7, 8], partly because of the substantial knowledge and experience required for the

interpretation of IVUS images.

In recent years, reports have shown that artificial intelligence (AI) can help improve the effi-

ciency of medical care [9, 10]. Semantic segmentation is one task in the realm of AI-performed

object recognition, and involves the categorization of every pixel in an image to one of several

classes or concepts [11]. Although previous studies reported the segmentation of IVUS images,

this segmentation was performed only for the lumen and media [12, 13]. Moreover, segmenta-

tion was not performed on IVUS images of complex lesions containing severe calcification or

stenosis [14].

To optimize stent implantation using IVUS imaging guidance, the degree of calcification of

vessels in complex lesions must be evaluated, as well as their lumen area. Severely calcified

lesions have a higher risk of re-stenosis than less severely calcified lesions [15]. Therefore, eval-

uating the location and the arc of calcification for the target lesion in IVUS images is essential

for preventing complications in PCI procedures and improving the clinical outcome after PCI

[2, 16]. If AI could categorize vessel components in IVUS imaging and suggest the optimal

PCI strategies to cardiologists, more efficient and safer PCI could be performed. However,

whether AI can categorize vessel components, including calcification, has not been reported.

In the present study, we describe development and evaluation of a new AI program that can

classify vessels with significantly narrowed lumina and those with severe calcification. This AI

program can also categorize vessel components and stents, even in IVUS images of complex

lesions.

Materials and methods

Patients

Patients with stable angina pectoris who underwent pre-intervention IVUS imaging assess-

ment of the culprit vessel at The University of Tokyo Hospital between January and March

2019 were retrospectively selected. We included patients whose pre-intervention IVUS imag-

ing assessment was made using a high-definition 60-MHz IVUS system (AltaView, Terumo,

Tokyo, Japan). We excluded patients who underwent pre-balloon dilation or use of a debulk-

ing device before IVUS assessment, and those with poor-quality IVUS images. Finally, we ana-

lyzed IVUS imaging data from 24 patients.
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This study was approved by the Institutional Review Board of The University of Tokyo

(approval number 2650). The requirement for individual informed consent was waived.

Coronary angiographic analysis. Quantitative coronary angiography software (QAngio

XA 7.3, Medis Medical Imaging Systems BV, Leiden, The Netherlands) was used to analyze

coronary lesions. The parameters that were measured included lesion length and minimum

lumen diameter [17]. The American Heart Association/American College of Cardiology classi-

fication system was used to evaluate lesion complexity and type B2 and C lesions were consid-

ered complex [18].

IVUS image acquisition

IVUS examinations were performed using a high-definition 60-MHz IVUS system (AltaView)

and imaging data were analyzed with a Visicube IVUS imaging system (Terumo). All images

were collected at a rate of 3 mm s-1 using an automatic pullback system.

Preparation of IVUS image sets

Cross-sectional IVUS images were taken from the IVUS video and images were extracted at

0.5-mm intervals. First, manual segmentation to categorize the vessel components and stents

into each label was performed by a single interventional cardiologist (H.S.) according to the

following definitions, with use of the noncommercial software Labelme [19]. Each IVUS

image was manually segmented into one of four classes, each with a unique color. Green was

used for the lumen area, red for the medial plus plaque area, orange for calcification, and blue

for a stent. Next, two more interventional cardiologists (Susumu K. and Satoshi K.) evaluated

the images and labels, and disagreements were resolved by consensus. Consequently, mask

images composed of these four classes were generated for the deep learning (Fig 1). Lumen

areas were defined as areas surrounded by the luminal border [20]. Medial plus plaque areas

were defined as areas surrounded by the leading edge of the adventitia minus the lumen area

[20]. Stent struts were defined as points or arcs with high echogenicity along the circumference

of the vessel [20]. Areas of calcification were defined as bright echo points or regions with an

acoustic shadow [20]. Additionally, a lumen was considered significantly narrowed if it had an

area less than 4 mm2 [3], while severe calcification was defined as calcification with an arc in

more than two quadrants [21]. The remaining black areas, which had no manual annotation,

were defined as background.

Algorithms

To automatically recognize vessel components and a stent in the cross-sectional IVUS images,

a deep neural network framework called U-Net was used [22] (Fig 2). The batch sizes, loss

function, and optimizer were set at 2, categorical cross-entropy, and Adam (learning rate:

0.001), respectively. Horizontal and vertical flips and rotations were used for data augmenta-

tion, and 20% of the training sets were used for validation. A Xeon Platinum 8180 central pro-

cessing unit and Tesla V100 graphics processing unit were used for calculations.

Outcome measures and statistics

To evaluate the capabilities of our AI system, we calculated the accuracy, recall score, and pre-

cision score for the classification of vessels with significantly narrowed lumina (< 4 mm2) and
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those with severe calcification. The lumen area was calculated using OpenCV with Python.

Accuracy ¼
TP þ TN

TP þ FP þ TN þ FN

Recall score ¼
TP

TP þ FN

Pricision score ¼
TP

TP þ FP

FN = false negative; FP = false positive; TN = true negative; TP = true positive.

We also evaluated the correlation between lumen areas in the manually-labeled ground

truth images and those in the AI-predicted images. Additionally, the intersection over union

(IoU) and Dice scores of each category in the test set were calculated as true positive, true neg-

ative, false positive, and false negative on the basis of consistency of the number of the pixels in

the ground truth images and predicted images [12]. The IoU and Dice scores ranged from 0 to

1, with a higher number indicating a better segmentation result. We evaluated the mean IoU

and mean Dice scores calculated from the average of the IoU and Dice scores in each class. We

Fig 1. Representative manually segmented IVUS images and mask images. Upper images show IVUS images and lower images show mask

images. Panel D is the mask image segmented from panel A. Similarly, panel E corresponds to panel B and panel F corresponds to panel C. The

green, red, orange, and blue areas denote the lumen area, the medial plus plaque area, calcification, and a stent, respectively. The black areas

show background.

https://doi.org/10.1371/journal.pone.0255577.g001
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also calculated the recall score for detecting stent struts in each IVUS image with a stent in

the test set to evaluate how well our AI could detect stents. Additionally, the IoU and the Dice

score of the lumen area and the medial plus plaque area were evaluated when the five classes

were divided into the two following groups: lumen area and other classes, and medial plus pla-

que area and other classes.

Categorical variables are presented as number (%) and continuous variables as mean (±
standard deviation). Spearman’s rank correlation test was performed to evaluate the relation-

ship between the predicted images and the ground truth images. All differences were evaluated

Fig 2. Illustration of U-Net used in this study. The architecture of U-Net used in this study is illustrated. The blue block and orange block

are two-dimensional convolutional layers (kernel size = 3 × 3, stride = 1) with dropout (rate = 0.1). The number in the blue block denotes

the feature map size. The green block shows the maximum pooling layer (pool size = 2 × 2), the pink block shows the upsampling layer

(size = 2 × 2), and the red dashed arrows show the concatenation of the two layers.

https://doi.org/10.1371/journal.pone.0255577.g002
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at the 95% level of significance (p< 0.05) using Python.

IoU ¼
TP

TP þ FP þ FN

Dice score ¼
2TP

2TPþ FPþ FN

mean IoU ¼
1

n

Xn

i¼1

IoUi

mean Dice score ¼
1

n

Xn

i¼1

Dice scorei

FN = false negative; FP = false positive; IoU = intersection over union; TP = true positive.

Results

A total of 3738 IVUS images were labeled. Of these 3738 images, 2209 (59.1%) showed calcifi-

cation and 459 (12.3%) showed a stent. A mean of 156 ± 50.3 IVUS images were extracted

from one patient. Additionally, 635 of the 2209 images that showed calcification also showed

severe calcification. Among the total IVUS images, 323 images from two patients were ran-

domly selected and used for the test set. The remaining 3415 images from 22 patients were

used for the training set, from which 683 images were used for validation (Fig 3). The data aug-

mentation procedures, which are described above, were then used to increase the number of

training set images to 103,837.

Coronary angiographic findings showed that the mean minimum lumen diameter and

length of the lesions in the training set were 1.21 ± 0.48 mm and 46.7 ± 20.4 mm, respectively,

whereas those in the test set were 0.63 ± 0.09 mm and 56.7 ± 17.9 mm, respectively. All lesions

were complex lesions classified as B2 or C.

For the classification of vessels with a narrowed lumen area of less than 4 mm2 in IVUS

images of the test set, the accuracy was 0.97, the recall was 0.95, and the precision was 0.97.

Additionally, a strong correlation was found between the lumen area in the ground truth mask

images labeled by the authors and that in the mask images predicted by the AI (ρ = 0.97, R2 =

0.97, p< 0.001; Fig 4). For the test set, the accuracy of classifying vessels with severe calcifica-

tion with more than a two-quadrant arc was 0.98, the recall was 0.88, and the precision was

0.97. Figs 5 and 6 show representative images predicted by our AI system.

The mean IoU and Dice scores of the validation set were 0.70 and 0.76, respectively, while

those of the test set were 0.66 and 0.73, respectively (Table 1). Additionally, IoUs of the lumen

area, the medial plus plaque area, calcification, and a stent in the test set were 0.86, 0.72, 0.39,

and 0.05, respectively, while the Dice scores were 0.92, 0.83, 0.50, and 0.08, respectively

(Table 2). When the five classes were divided into the lumen area and other classes, the IoU

and Dice score of the lumen area were 0.86 and 0.92, respectively. When the five classes were

divided into the medial plus plaque area and other classes, the IoU and Dice score of the

medial plus plaque area were 0.66 and 0.77, respectively. The 40 IVUS images in the test set

had 349 stent struts, and the recall score for detecting stent struts in each IVUS image with a

stent in the test set was 0.64.
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Discussion

This study showed the following main findings. (1) Our AI was useful for classifying vessels

with a significantly narrowed lumen area and vessels with severe calcification in IVUS images

of complex lesions with a high accuracy. (2) Lumen areas in images predicted by our AI were

strongly positively correlated with those in manually-labeled ground truth images. (3) Our AI

accurately categorized vessel components in IVUS images of complex lesions, although not

necessarily for stents. Finally, (4) although our AI detected stents in IVUS images, the IoU for

stents was low.

Our AI may have the potential to classify lesions with a risk for MACEs by classifying ves-

sels with a significantly narrowed lumen area and those with severe calcification. We showed

that our AI was able to classify vessels with a lumen area less than 4 mm2 and those with severe

calcification of more than a two-quadrant arc with a high level of accuracy (0.97 and 0.98,

respectively). Moreover, the lumen area predicted by our AI system and the ground truth

lumen area that was manually labeled were strongly positively correlated. A previous study

reported that the minimum lumen area in IVUS images of target lesions was significantly

positively related to the fractional flow reserve [23], which is an index for predicting future

MACEs [24]. Additionally, the PROSPECT study showed that non-culprit vessels with a

Fig 3. Study flowchart. “Normal” means that the images were without calcification or a stent. Of the 3738 IVUS images, 413 had both

calcification and stents (purple double-headed arrow). In the test set, all 40 images with stents also had calcification. In the training set,

373 images with stents had calcification. AP = angina pectoris.

https://doi.org/10.1371/journal.pone.0255577.g003
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lumen area less than 4 mm2 had a higher risk of future MACEs than those with a larger lumen

area [3]. A previous study on IVUS reported that severely calcified lesions had a tendency for a

higher risk of requiring revascularization than less severely calcified lesions [25]. Another

study using angiography reported that severely calcified lesions had a higher risk of MACEs

than those without severe calcification [26]. Consequently, our AI might be able to classify

lesions that have the most at risk of future MACEs, and this classification could contribute to

improving IVUS-guided PCI by clarifying target lesions requiring treatment.

This study showed that IoUs of the lumen area and medial plus plaque area in complex

lesions with significantly narrowed lumina or severe calcification were 0.86 and 0.72, respec-

tively, for the AI. These findings suggest that the AI may also be able to classify vessel compo-

nents in IVUS images of complex and simple lesions. Furthermore, IoUs of the luminal area

and the medial plus plaque area were 0.86 and 0.66, respectively, when the five classes were

divided into luminal area and other classes and medial plus plaque area and other classes. An

IVUS study on the relationship between calcification in the culprit lesion and plaque volumes

reported that the arc of calcification in vessels in target lesions was proportional to the athero-

sclerotic plaque burden [27]. Additionally, a serial computed tomography angiography study

reported that the progression of calcification in the coronary artery was significantly positively

correlated with the progression of plaque volume [28]. In many cases, PCI is performed on

complex lesions (e.g., in those with severe calcification). Therefore, efficient interpretation of

vessel components in complex lesions is crucial for future application of AI to pre-intervention

Fig 4. Scatter plot showing a regression line for the lumen area in ground truth mask images and the lumen area in mask images predicted by

our AI. The light blue area shows the 95% confidence intervals of the regression line. Lumen areas of mask images predicted by our AI and lumen

areas of ground truth mask images show a strong positive correlation (Spearman rank correlation).

https://doi.org/10.1371/journal.pone.0255577.g004
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IVUS. Previous studies have reported the use of deep neural networks for the segmentation of

the lumen and media in IVUS images of simple lesions, such as those without severe calcifica-

tion [12, 13]. One study reported that IoUs of the lumen area and the medial plus plaque area

were 0.89 and 0.89, respectively [12], while another reported values of 0.80 and 0.81, respec-

tively [13]. Compared with previous studies, the dataset used in our study included more calci-

fications and stents, which should have led to the presence of more artifacts and shadows.

IVUS images with artifacts and shadows are generally more difficult to analyze and segment

Fig 5. Representative images of cases successfully predicted by our AI. The panels on the left (A, D, G) show IVUS images. The

middle panels (B, E, H) show ground truth mask images that were manually segmented corresponding to IVUS images on the left in the

same row. The panels on the right (C, F, I) show mask images predicted by our AI corresponding to IVUS images on the left in the same

row. In the mask images, the green area shows the lumen area, the red area shows the medial plus plaque area, the orange area shows

calcification, and the black area is background. Calcifications in the IVUS images were effectively segmented by our AI (F, I).

https://doi.org/10.1371/journal.pone.0255577.g005
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Fig 6. Representative images of cases showing prediction failure by our AI. The panels on the left (A, D, G) show IVUS images. The

middle panels (B, E, H) show ground truth mask images that were manually segmented corresponding to IVUS images on the left in the

same row. The panels on the right (C, F, I) show label images predicted by our AI corresponding to IVUS images on the left in the same

row. In the mask images, the green area shows the lumen area, the red area shows the medial plus plaque area, the orange area shows

calcification, the blue area shows a stent, and the black area is background. Two lumina were delineated in panel C because of

misidentification of the coronary vein in panel A as the lumen of the coronary artery (blue arrowhead). The lumen edges in panel F were

incorrectly delineated because of an artifact of the wire in panel D (pink arrowhead). The stent struts in panel I were misidentified as

calcification (yellow arrowhead).

https://doi.org/10.1371/journal.pone.0255577.g006

Table 1. Results of the validation and test sets.

Validation Test

Mean IoU 0.70 0.66

Mean Dice score 0.76 0.73

https://doi.org/10.1371/journal.pone.0255577.t001
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than those without them [13]. Under such situations, the IoU of the lumen area in our study is

equivalent to that in previous studies.

Our AI had difficulty in accurately identifying stents. The mean IoU of the test set, which

was calculated from the average of the IoU in each class of the test set, was only 0.66. This

result was due to the low IoU (0.05) of the stents and was attributed to an insufficient seg-

mentation of stents in vessels in IVUS images. If the AI can accurately categorize stents in

vessels on IVUS images, it might be able to help cardiologists evaluate the extent of stent

expansion and stent apposition, improving the outcomes of PCI. An insufficient segmenta-

tion of the stents may be a result of the small number of vessels with stents in IVUS images

in the training set, and the similarity of appearance and properties of the stents to calcifica-

tion in IVUS images. The proportion of IVUS images with stents in the training set was rela-

tively small (12.3%). Additionally, because stents are small, they only comprise a limited

portion of IVUS images. This situation could have led to an imbalance between the number

of correct pixels of stents and the number of correct pixels of other categories, such as the

lumen or medial plus plaque area in IVUS images in the training set. Moreover, stents and

calcifications appear as structures with high levels of brightness and shadow [20]. Indeed,

small calcifications located near the vascular surface and stents were often mistaken for each

other. IVUS images of stents and areas of calcification had similar appearances and proper-

ties, and our AI might not have been able to correctly extract each feature. Ensuring more

accurate segmentation of stents requires including more IVUS images with stents, using new

models, such as the Pyramid Scene Parsing Network or DeepLab v3+, and using new prepro-

cessing imaging methods [29, 30].

We consider that using U-Net is appropriate for performing semantic segmentation to

improve our AI’s performance in classifying vessels with significantly narrowed lumina in

IVUS images. Object recognition includes methods, such as simple image classification, object

detection, and semantic segmentation, and appropriate methods need to be used for the

required analysis. Simple image classification involves classifying an image into categories

by recognition of objects in the image [31]. Object detection involves identifying objects in

images based on their categories and identifying the location of them in the images [32]. If the

classification of vessels with or without a significantly narrowed lumen is considered as a sim-

ple image classification task, it might be affected by calcification and other factors seen in

IVUS images, and AI might classify vessels incorrectly. Although object detection algorithms,

such as YOLO, are considered to be effective in detecting thrombus or coronary artery dissec-

tion [32], an AI using an object detection algorithm appears to be inadequate to accurately

classify vessels with or without a significantly narrowed lumen. However, semantic segmenta-

tion categorizes each pixel in an image on the basis of its class or concept [11]. Therefore, by

conducting segmentation of the lumen in IVUS images and calculating its area, our AI can

classify vessels with a significantly narrowed lumen and other various features at a high level of

accuracy.

This study has several limitations. First, the number of images in the study dataset was rela-

tively small. Furthermore, to construct the ground truth dataset of IVUS images, manual seg-

mentation of a large number of IVUS images was required, which was labor-intensive. We will

Table 2. Results for stents and each component of the vessels in the test set.

Test

Lumen Media plus plaque area Calcification Stent

IoU 0.86 0.72 0.39 0.05

Dice score 0.92 0.83 0.50 0.08

https://doi.org/10.1371/journal.pone.0255577.t002
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attempt to change the learning method to semi-supervised image learning in future studies.

Second, this was a single-center retrospective study, which means that potential selection bias

cannot be excluded. Future studies involving a multicenter approach are warranted. Third,

because expert interventional cardiologists can easily recognize and categorize IVUS images

with a significantly narrowed lumen area or severe calcification in clinical practice, merely rec-

ognizing and classifying IVUS images may not be helpful for expert interventional cardiolo-

gists. An algorithm that can recognize and detect minor stent edge dissection and hematoma

formation would be more useful.

Conclusion

Our AI program is able to automatically recognize and delineate vascular structures (except

for stents) in IVUS images of coronary arteries with complex lesions. Additionally, our AI can

classify vessels that are likely to require treatment or special devices with a high accuracy. An

AI might prove to be a powerful tool in IVUS imaging interpretation, and could promote the

popularization of IVUS-guided PCI in a clinical setting.
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7. Koskinas KC, Nakamura M, Räber L, Colleran R, Kadota K, Capodanno D, et al. Current use of intracor-

onary imaging in interventional practice—Results of a European Association of Percutaneous Cardio-

vascular Interventions (EAPCI) and Japanese Association of Cardiovascular Interventions and

Therapeutics (CVIT) Clinical Practice Sur. EuroIntervention 2018; 14:e475–e484. https://doi.org/10.

4244/EIJY18M03_01 PMID: 29537966

8. Smilowitz NR, Mohananey D, Razzouk L, Weisz G, Slater JN. Impact and trends of intravascular imag-

ing in diagnostic coronary angiography and percutaneous coronary intervention in inpatients in the

United States. Catheter Cardiovasc Interv 2018; 92:E410–E415. https://doi.org/10.1002/ccd.27673

PMID: 30019831

9. Ueda D, Yamamoto A, Nishimori M, Shimono T, Doishita S, Shimazaki A, et al. Deep learning for MR

angiography: Automated detection of cerebral aneurysms. Radiology 2019; 290:187–194. https://doi.

org/10.1148/radiol.2018180901 PMID: 30351253

10. Aoki T, Yamada A, Kato Y, Saito H, Tsuboi A, Nakada A, et al. Automatic detection of various abnormal-

ities in capsule endoscopy videos by a deep learning-based system: a multicenter study. Gastrointest

Endosc 2020. https://doi.org/10.1016/j.gie.2020.04.080 PMID: 32417297

11. Long J, Shelhamer E, Darrell T. Fully Convolutional Networks for Semantic Segmentation. CoRR 2014;

abs/1411.4038.

12. Yang J, Faraji M, Basu A. Robust segmentation of arterial walls in intravascular ultrasound images

using Dual Path U-Net. Ultrasonics 2019; 96:24–33. https://doi.org/10.1016/j.ultras.2019.03.014 PMID:

30947071

13. Balakrishna C, Dadashzadeh S, Soltaninejad S. Automatic detection of lumen and media in the IVUS

images using U-Net with VGG16 Encoder 2018:1–10.

14. Balocco S, Gatta C, Ciompi F, Wahle A, Radeva P, Carlier S, et al. Standardized evaluation methodol-

ogy and reference database for evaluating IVUS image segmentation. Comput Med Imaging Graph

2014; 38:70–90. https://doi.org/10.1016/j.compmedimag.2013.07.001 PMID: 24012215

15. Vavuranakis M, Toutouzas K, Stefanadis C, Chrisohou C, Markou D, Toutouzas P. Stent deployment in

calcified lesions: Can we overcome calcific restraint with high-pressure balloon inflations? Catheter Car-

diovasc Interv 2001; 52:164–172. PMID: 11170322

16. Sakakura K, Ito Y, Shibata Y, Okamura A, Kashima Y, Nakamura S, et al. Clinical expert consensus

document on rotational atherectomy from the Japanese association of cardiovascular intervention and

therapeutics. Cardiovasc Interv Ther 2020; 35:105–116. https://doi.org/10.1007/s12928-020-00715-w

PMID: 33079355

17. Niccoli G, Stefanini GG, Capodanno D, Crea F, Ambrose JA, Berg R. Are the culprit lesions severely

stenotic? JACC Cardiovasc Imaging 2013; 6:1108–1114. https://doi.org/10.1016/j.jcmg.2013.05.004

PMID: 24135324

18. Ryan TJ, Bauman WB, Kennedy JW, Kereiakes DJ, King SB, McCallister BD, et al. Guidelines for per-

cutaneous transluminal coronary angioplasty. A report of the American College of Cardiology/American

Heart Association Task Force on the Assesment of Diagnostic and Therapeutic Cardiovascular Proce-

dures (Committee on Percutaneous Translu. J Am Coll Cardiol 1993; 22:2033–2054. https://doi.org/10.

1016/0735-1097(93)90794-2 PMID: 8245363

19. Wada K. labelme: Image Polygonal Annotation with Python 2016.

20. Saito Y, Kobayashi Y, Fujii K, Sonoda S, Tsujita K, Hibi K, et al. Clinical expert consensus document on

standards for measurements and assessment of intravascular ultrasound from the Japanese Associa-

tion of Cardiovascular Intervention and Therapeutics. Cardiovasc Interv Ther 2020; 35:1–12. https://

doi.org/10.1007/s12928-019-00625-6 PMID: 31571149

21. Henneke KH, Regar E, König A, Werner F, Klauss V, Metz J, et al. Impact of target lesion calcification

on coronary stent expansion after rotational atherectomy. Am Heart J 1999; 137:93–99. https://doi.org/

10.1016/s0002-8703(99)70463-1 PMID: 9878940

22. Novikov AA, Lenis D, Major D, Hladuvka J, Wimmer M, Buhler K. Fully Convolutional Architectures for

Multiclass Segmentation in Chest Radiographs. IEEE Trans Med Imaging 2018; 37:1865–1876. https://

doi.org/10.1109/TMI.2018.2806086 PMID: 29994439

23. Ben-Dor I, Torguson R, Gaglia MA, Gonzalez MA, Maluenda G, Bui AB, et al. Correlation between frac-

tional flow reserve and intravascular ultrasound lumen area in intermediate coronary artery stenosis.

EuroIntervention 2011; 7:225–233. https://doi.org/10.4244/EIJV7I2A37 PMID: 21646065

PLOS ONE Automatic detection of vessel structure by deep learning using IVUS images

PLOS ONE | https://doi.org/10.1371/journal.pone.0255577 August 5, 2021 13 / 14

https://doi.org/10.1161/JAHA.119.013678
https://doi.org/10.1161/JAHA.119.013678
http://www.ncbi.nlm.nih.gov/pubmed/32075491
https://doi.org/10.1161/01.cir.0000043240.87526.3f
http://www.ncbi.nlm.nih.gov/pubmed/12515744
https://doi.org/10.4244/EIJY18M03%5F01
https://doi.org/10.4244/EIJY18M03%5F01
http://www.ncbi.nlm.nih.gov/pubmed/29537966
https://doi.org/10.1002/ccd.27673
http://www.ncbi.nlm.nih.gov/pubmed/30019831
https://doi.org/10.1148/radiol.2018180901
https://doi.org/10.1148/radiol.2018180901
http://www.ncbi.nlm.nih.gov/pubmed/30351253
https://doi.org/10.1016/j.gie.2020.04.080
http://www.ncbi.nlm.nih.gov/pubmed/32417297
https://doi.org/10.1016/j.ultras.2019.03.014
http://www.ncbi.nlm.nih.gov/pubmed/30947071
https://doi.org/10.1016/j.compmedimag.2013.07.001
http://www.ncbi.nlm.nih.gov/pubmed/24012215
http://www.ncbi.nlm.nih.gov/pubmed/11170322
https://doi.org/10.1007/s12928-020-00715-w
http://www.ncbi.nlm.nih.gov/pubmed/33079355
https://doi.org/10.1016/j.jcmg.2013.05.004
http://www.ncbi.nlm.nih.gov/pubmed/24135324
https://doi.org/10.1016/0735-1097%2893%2990794-2
https://doi.org/10.1016/0735-1097%2893%2990794-2
http://www.ncbi.nlm.nih.gov/pubmed/8245363
https://doi.org/10.1007/s12928-019-00625-6
https://doi.org/10.1007/s12928-019-00625-6
http://www.ncbi.nlm.nih.gov/pubmed/31571149
https://doi.org/10.1016/s0002-8703%2899%2970463-1
https://doi.org/10.1016/s0002-8703%2899%2970463-1
http://www.ncbi.nlm.nih.gov/pubmed/9878940
https://doi.org/10.1109/TMI.2018.2806086
https://doi.org/10.1109/TMI.2018.2806086
http://www.ncbi.nlm.nih.gov/pubmed/29994439
https://doi.org/10.4244/EIJV7I2A37
http://www.ncbi.nlm.nih.gov/pubmed/21646065
https://doi.org/10.1371/journal.pone.0255577


24. Pijls NHJ, van Schaardenburgh P, Manoharan G, Boersma E, Bech JW, van’t Veer M, et al. Percutane-

ous Coronary Intervention of Functionally Nonsignificant Stenosis. 5-Year Follow-Up of the DEFER

Study. J Am Coll Cardiol 2007; 49:2105–2111. https://doi.org/10.1016/j.jacc.2007.01.087 PMID:

17531660

25. Mosseri M, Satler LF, Pichard AD, Waksman R. Impact of vessel calcification on outcomes after coro-

nary stenting. Cardiovasc Revascularization Med 2005; 6:147–153. https://doi.org/10.1016/j.carrev.

2005.08.008 PMID: 16326375

26. Kawaguchi R, Tsurugaya H, Hoshizaki H, Toyama T, Oshima S, Taniguchi K. Impact of lesion calcifica-

tion on clinical and angiographic outcome after sirolimus-eluting stent implantation in real-world

patients. Cardiovasc Revascularization Med 2008; 9:2–8. https://doi.org/10.1016/j.carrev.2007.07.004

PMID: 18206630

27. Mintz GS, Pichard AD, Popma JJ, Kent KM, Satler LF, Bucher TA, et al. Determinants and correlates of

target lesion calcium in coronary artery disease: A clinical, angiographic and intravascular ultrasound

study. J Am Coll Cardiol 1997; 29:268–274. https://doi.org/10.1016/s0735-1097(96)00479-2 PMID:

9014977

28. Ceponiene I, Nakanishi R, Osawa K, Kanisawa M, Nezarat N, Rahmani S, et al. Coronary Artery Cal-

cium Progression Is Associated With Coronary Plaque Volume Progression: Results From a Quantita-

tive Semiautomated Coronary Artery Plaque Analysis. JACC Cardiovasc Imaging 2018; 11:1785–1794.

https://doi.org/10.1016/j.jcmg.2017.07.023 PMID: 29055625

29. Yu C, Yan Y, Zhao S, Zhang Y. Pyramid feature adaptation for semi-supervised cardiac bi-ventricle seg-

mentation. Comput Med Imaging Graph 2020; 81:101697. https://doi.org/10.1016/j.compmedimag.

2019.101697 PMID: 32086113

30. Chen L-C, Zhu Y, Papandreou G, Schroff F, Adam H. Encoder-Decoder with Atrous Separable Convo-

lution for Semantic Image Segmentation. Lect Notes Comput Sci (Including Subser Lect Notes Artif

Intell Lect Notes Bioinformatics) 2018;11211 LNCS:833–851. https://doi.org/10.1007/978-3-030-

01234-2_49

31. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks.

Commun ACM 2017; 60:84–90. https://doi.org/10.1145/3065386

32. Redmon J, Divvala S, Girshick R, Farhadi A. You Only Look Once: Unified, Real-Time Object Detection.

Cvpr 2015. https://doi.org/10.1109/CVPR.2016.91

PLOS ONE Automatic detection of vessel structure by deep learning using IVUS images

PLOS ONE | https://doi.org/10.1371/journal.pone.0255577 August 5, 2021 14 / 14

https://doi.org/10.1016/j.jacc.2007.01.087
http://www.ncbi.nlm.nih.gov/pubmed/17531660
https://doi.org/10.1016/j.carrev.2005.08.008
https://doi.org/10.1016/j.carrev.2005.08.008
http://www.ncbi.nlm.nih.gov/pubmed/16326375
https://doi.org/10.1016/j.carrev.2007.07.004
http://www.ncbi.nlm.nih.gov/pubmed/18206630
https://doi.org/10.1016/s0735-1097%2896%2900479-2
http://www.ncbi.nlm.nih.gov/pubmed/9014977
https://doi.org/10.1016/j.jcmg.2017.07.023
http://www.ncbi.nlm.nih.gov/pubmed/29055625
https://doi.org/10.1016/j.compmedimag.2019.101697
https://doi.org/10.1016/j.compmedimag.2019.101697
http://www.ncbi.nlm.nih.gov/pubmed/32086113
https://doi.org/10.1007/978-3-030-01234-2%5F49
https://doi.org/10.1007/978-3-030-01234-2%5F49
https://doi.org/10.1145/3065386
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1371/journal.pone.0255577

