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The traveling salesman problem with time windows (TSPTW) is a variant of the traveling salesman problem in which each
customer should be visited within a given time window. In this paper, we propose an electromagnetism-like algorithm (EMA)
that uses a new constraint handling technique to minimize the travel cost in TSPTW problems. The EMA utilizes the attraction-
repulsion mechanism between charged particles in a multidimensional space for global optimization. This paper investigates the
problem-specific constraint handling capability of the EMA framework using a new variable bounding strategy, in which real-coded
particle’s boundary constraints associated with the corresponding time windows of customers, is introduced and combined with
the penalty approach to eliminate infeasibilities regarding time window violations. The performance of the proposed algorithm
and the effectiveness of the constraint handling technique have been studied extensively, comparing it to that of state-of-the-art
metaheuristics using several sets of benchmark problems reported in the literature. The results of the numerical experiments show
that the EMA generates feasible and near-optimal results within shorter computational times compared to the test algorithms.

1. Introduction

The traveling salesman problem with time windows
(TSPTW) is an important variant of the well-known travel-
ing salesman problem (TSP) in which each customer has a
service time (i.e., the time that should be spent during the
visit to the customer), which should start within a given
time window. In the TSPTW, the time window of each visit
is bounded by an earliest arrival time and a latest arrival
time. The TSPTW can be defined as the problem of finding
a minimum cost tour that starts and ends at the same depot,
where each node should be visited exactly oncewithin its time
window. A nonnegative cost is associated with each arc, and
the total cost can be taken as the route completion time, total
travel time, or total traveled distance [1]. In this study, the
total traveled distance will be considered the cost value. The
TSPTW can be considered a special case of the capacitated
vehicle routing problem with time windows (VRPTW) to
which the relaxation of capacity constraints is applied.

The TSPTWhas various practical real-world applications
such as package delivery, school bus routing, scheduling,

automated guided machines, and routing problems in the
context of lean manufacturing. Savelsbergh [2] has shown
that the TSPTW is NP-hard, and even finding a feasible route
is a NP-complete problem. Nevertheless, early study focused
on exact optimization techniques to solve the TSPTW. Baker
[1] proposed an exact algorithm using a branch and bound
approach in which lower bounds are determined by dual
relaxations of the model. Dumas et al. [3] developed a
dynamic programming approach, and Langevin et al. [4]
described a two-commodity flow model including two com-
plementary flows. More recently, a branch and cut algorithm
[5], linear time dynamic programming [6], and constraint
programming [7, 8] were proposed to solve the TSPTW.

Because it is difficult to solve the TSPTW within accept-
able computation times using exact methods, Heuristic and
metaHeuristic techniques have been analyzed extensively
in the literature. Carlton and Wesley Barnes [9] proposed
a static-penalty-based tabu search to solve the TSPTW.
Gendreau et al. [10] presented an insertion Heuristic, and
Calvo [11] used a construction Heuristic based on both
greedy insertion and local search. Furthermore, Da Silva and
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Urrutia [12] proposed a general variable neighborhood search
(VNS) Heuristic that consists of a constructive stage for
finding a feasible solution and an optimization stage during
which feasible solutions are improved using a general VNS
Heuristic. Ohlmann andThomas [13] proposed a compressed
annealing approach, which is a variant of simulated annealing
and utilizes a variable penalty method, and López-Ibáñez
and Blum [14] proposed a Beam-ACO algorithm, which
hybridizes Beam search and ant colony optimization to solve
the TSPTW via extensive computational analysis.

In this study, an electromagnetism-like algorithm (EMA)
using a new variable bounding strategy is proposed to solve
the TSPTWefficiently.The EMA approach basically emulates
electromagnetism theory in physics, in which charged parti-
cles exert attractive or repulsive forces on each other [15].The
basic idea behind the algorithm is to force particles to search
for the optimum in a multidimensional space by applying a
collective force on them. In recent work, an EMAwas used to
train neural networks [16] to solve fuzzy relations [17]. Debels
et al. [18] solved resource constrained scheduling problems
by combining an EMA with scatter search. Tsou and Kao
[19] used an EMA to control and optimize multiobjective
inventory models. Maenhout and Vanhoucke [20] used an
EMA to solve nurse scheduling problems. Jhang and Lee [21]
used an EMA for array pattern optimization in the field of
electrical engineering. Chang et al. [22] combined a GA with
an EMA to solve single machine earliness/tardiness schedul-
ing problems and showed that the hybrid EMA performs
better than the plain EMA. Moreover, the researchers used
a random key procedure to decode particles into feasible
schedules. Wu et al. [23] applied an EMA using a random
key procedure to solve the traveling salesman problem.
Yurtkuran and Emel [24] solved capacitated vehicle routing
problems by using an EMA that hybridizes a local search
procedure. Naji-Azimi et al. [25] combined preprocessing
procedure, mutation, and local search with an EMA to
solve the well-known unicost set covering problem. In [26]
EMA framework was introduced for solving the response
time variability problem. Guan et al. [27] used an EMA
to solve flow path design problems for automated guided
vehicles. Jamili et al. [28] proposed a simulated annealing
and electromagnetism-like mechanism hybrid framework to
solve the periodic job shop scheduling problem. In [29]
EMA was used to detect circles on figures. Su and Lin
[30] introduced an EMA mechanism for feature selection.
Lee and Chang [31] used an improved EMA to optimize
fractional-order PID controllers. Furthermore, EMAs have
also been applied to address multimode project scheduling
under uncertainty [32] and nonlinear system control [33].

In this study, new constraint handling techniques are
introduced to cope with time-window constraints in the
TSPTW. To the best of our knowledge, our proposed con-
straint handling technique is the first in the literature in
which the feasibility is maintained without using any extra
feasibility operators.Themain goal of using VBS is to narrow
the unbounded search space to a bounded search space to
reach feasible solutions effortlessly. Moreover, to analyze the
effectiveness of the proposed algorithm, first, the constraint
handling performance of the proposed EMA framework

is analyzed, comparing it to that of the traditional EMA.
Then, the modified framework is compared to state-of-the-
art algorithms using benchmark problems.

The rest of this paper is organized as follows. Section 2
provides a brief introduction and amathematical formulation
of the TSPTW. Section 3 discusses the traditional EMA, and
the proposed EMA for the TSPTW is presented in Section 4.
The computational results are summarized in Section 5, and,
finally, Section 6 concludes the paper.

2. Traveling Salesman Problem with
Time Windows

The traveling salesman problem with time windows can
be briefly defined as follows. Let 𝐺 = (𝑁,𝐴) be an
undirected complete graph, where𝑁 = {0, 1, . . . 𝑛} is the node
(customer) set and𝐴 = {(𝑎

𝑖𝑗
), 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑛, 𝑖 ̸= 𝑗}

is the arc set. Node 0 denotes the depot, and 𝑁 denotes the
number of customers. There is a cost 𝑐

𝑖𝑗
associated with every

arc 𝑎
𝑖𝑗
∈ 𝐴. The cost 𝑐

𝑖𝑗
generally represents the distance or

time between nodes 𝑖 and 𝑗, plus a service time 𝑠
𝑖
at customer

𝑖. In addition, each node 𝑖 ∈ 𝑁 has a time window [𝑒
𝑖
, 𝑙
𝑖
],

where 𝑒
𝑖
denotes the earliest time and 𝑙

𝑖
the latest time in

which the service can begin. In most of the formulations,
waiting times are permitted; that is, arrival to node 𝑖 before
𝑒
𝑖
is feasible, but a waiting time till 𝑒

𝑖
is applied. On the other

hand, arrival to node 𝑖 after 𝑙
𝑖
is not permitted. The TSPTW

can be mathematically formulated as follows:
decision variables:
𝑟
𝑖𝑗
:

𝑟
𝑖𝑗
= {
1, if arc𝑎

𝑖𝑗
∈ 𝐴 is used,

0, otherwise.
(1)

𝑦
𝑖
: position of node 𝑖,where 𝑖 ∈ 𝑁 within the tour;
𝑡
𝑖
: arrival time at node 𝑖, 𝑖 ∈ 𝑁;

𝑤
𝑖
: waiting time at node 𝑖, 𝑖 ∈ 𝑁;

parameters:
𝑁: set of nodes;
𝑐
𝑖𝑗
: travel time (distance) from node 𝑖 to 𝑗, where 𝑖, 𝑗 ∈ 𝑁;
𝑠
𝑖
: service time at node 𝑖, 𝑖 ∈ 𝑁;
𝑒
𝑖
: earliest arrival time at node 𝑖, 𝑖 ∈ 𝑁;
𝑙
𝑖
: latest arrival time at node 𝑖, 𝑖 ∈ 𝑁;

minimize ∑

𝑖∈𝑁

∑

𝑗∈𝑁

(𝑐
𝑖𝑗
+ 𝑠
𝑖
) 𝑟
𝑖𝑗 (2)

subject to ∑

𝑖∈𝑁

𝑟
𝑖𝑗
= 1, ∀𝑗 ∈ 𝑁, 𝑖 ̸= 𝑗. (3)

∑

𝑗∈𝑁

𝑟
𝑗𝑖
= 1, ∀𝑖 ∈ 𝑁, 𝑗 ̸= 𝑖. (4)

𝑦
𝑖
− 𝑦
𝑗
+ 𝑁𝑟
𝑖𝑗
≤ 𝑁 − 1,

∀𝑖, 𝑗 ∈ 𝑁, 𝑗 ̸= 1, 𝑗 ̸= 𝑖.
(5)

𝑡
𝑗
− 𝑡
𝑖
− 𝑐
𝑖𝑗
− 𝑠
𝑖
− 𝑤
𝑖
≥ −𝑀(1 − 𝑟

𝑖𝑗
) ,

∀𝑖, 𝑗 ∈ 𝑁, 𝑖 ̸= 𝑗.

(6)
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𝑒
𝑖
≤ 𝑡
𝑖
+ 𝑤
𝑖
≤ 𝑙
𝑖
, ∀𝑖 ∈ 𝑁. (7)

1 ≤ 𝑦
𝑖
≤ 𝑁, ∀𝑖 ∈ 𝑁. (8)

𝑡
𝑖
, 𝑤
𝑖
∈ R
+
∀𝑖 ∈ 𝑁.

𝑦
𝑖
∈ Z
+
∀𝑖 ∈ 𝑁.

𝑟
𝑖𝑗
∈ {0, 1} ∀𝑖, 𝑗 ∈ 𝑁.

(9)

Formula (2) denotes the objective function of the problem.
The objective is to minimize the total time required to
travel from each node 𝑖 to node 𝑗 and the service time
at each node 𝑖. Constraints (3) and (4) ensure that every
node is visited only once. Constraint (5) aims to maintain
the sequence of the route. Constraints (6) and (7) specify
the service time windows, where 𝑀 denotes a large real
number. Constraint (8) bounds the sequence 𝑦

𝑖
for each

node 𝑖. Depending on the tight bounds in time-window
constraints (7), TSPTW results in a tighter search space of
feasible solutions. If an efficient neighborhood search strategy
which is part of ametaHeuristic solver takes advantage of this
feasible solution space, it is expected that the performance of
such a metaHeuristic algorithm can be improved. Therefore,
in the following sections, EMA will be used to host our
proposed strategy for handling constraint (7).

3. Electromagnetism-Like Algorithm

TheEMA is a population-basedHeuristicmethod introduced
by Birbil and Fang [15] for solving bound constraint opti-
mization problems.The algorithmwas inspired by the theory
of electromagnetism in physics, in which there are attractive
and repulsive forces between charged particles.The EMA can
be used easily and effectively to solve optimization problems
with bounded variables of the following form:

minimize 𝑓 (x)

subject to x ∈ [L,U] ,
(10)

where [L,U] = {x ∈ R𝑛 | 𝐿
𝑘
≤ 𝑥
𝑘
≤ 𝑈
𝑘
, 𝑘 = 1, . . . , 𝑚}.

In the problem formulation, x is a vector that represents
a solution point position in 𝑚-dimensional space in a pop-
ulation of 𝑛 position vectors. 𝑥

𝑘
denotes the variable of the

𝑘th dimension (i.e., axis). Each variable 𝑥
𝑘
has an upper and

lower bound, 𝑈
𝑘
and 𝐿

𝑘
, respectively, and 𝑓(x) indicates the

objective function value (OFV) of the candidate solution x.
In the EMA, a candidate solution is associated with a

charged particle in a multidimensional space using a real-
coded position vector x. Index 𝑘 in each particle 𝑖’s position
vector x

𝑖
identifies a dimensional element 𝑥

𝑖𝑘
, where 𝑘 =

1, . . . , 𝑚 and 𝑖 = 1, . . . , 𝑛. In other words, 𝑛 and𝑚 are the pop-
ulation size and the total number of variables, respectively.
The OFV of the 𝑖th candidate solution is calculated by using
its position vector.The charge of particle 𝑖, 𝑞

𝑖
, depends on the

quality of the OFV. The better the OFV of the particle is, the
greater amount of charge the particle has. Each particle exerts
a repulsive or attractive force on other population members
according to the charges they carry. The resultant force F

𝑖

(1) Initialize (PopSize)
(2) Set Iter← 1
(3) While Iter <MaxIter do
(4) LocalSearch(LsIter)
(5) CalculateCharges()
(6) CalculateForces()
(7) Movement()
(8) Set Iter← Iter + 1
(9) EndWhile

Algorithm 1: EMA (PopSize, MaxIter, and LsIter).

is determined by calculating the vector sum of the forces
exerted on a particle 𝑖. Then, x

𝑖
is updated by F

𝑖
at each

iteration. The key idea of the EMA is that, for a minimization
problem, a candidate particle 𝑖will attract particle 𝑗 if particle
𝑖has a betterOFV than particle 𝑗 (i.e.,𝑓(x

𝑖
) < 𝑓(x

𝑗
)), whereas

if𝑓(x
𝑗
) < 𝑓(x

𝑖
), particle 𝑖 will repel particle𝑗.

The traditional EMA has four phases: (1) initialization,
(2) calculation of particle charges and force vectors, (3)move-
ment according to the resultant force, and (4) local search to
exploit the local minima [15].The general scheme of the algo-
rithm is presented in Algorithm 1 (for more details, readers
are referred to [15]). In Algorithm 1, 𝑃𝑜𝑝𝑆𝑖𝑧𝑒 represents the
population size, and𝑀𝑎𝑥𝐼𝑡𝑒𝑟 and 𝐿𝑠𝐼𝑡𝑒𝑟 are the maximum
iteration number for the algorithm and the local search
procedure, respectively. An 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒() procedure is used to
generate𝑃𝑜𝑝𝑆𝑖𝑧𝑒 number of points randomly from the search
space. A 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ() procedure is applied to the particles
to improve the solution quality and to force the algorithm
to search for unvisited regions. Then, 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐶ℎ𝑎𝑟𝑔𝑒𝑠(),
𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐹𝑜𝑟𝑐𝑒𝑠(), and 𝑀𝑜V𝑒𝑚𝑒𝑛𝑡() procedures are applied
to the particles within the population at each iteration.

In this study, the charge and force calculations and the
subsequent particle movement procedures are implemented
using the modified EMA proposed by [18]. Here, the charge
and force calculations are not absolute-value-based; instead,
relative charge and force calculations are used for each
particle pair in the population. The details of the proposed
algorithm will be described in the next section.

4. EMA for TSPTW

This section provides the details of the proposed EMA.

4.1. Charge and Force Calculations andMovement of Particles.
In our proposed EMA, the charge of particle 𝑖 is defined as
𝑞
𝑖𝑗
, which is relative to that of particle 𝑗, whereas it has been

defined as 𝑞
𝑖
in previous works [20, 21, 25, 26, 29, 32, 33].

The value of 𝑞
𝑖𝑗

can be obtained by calculating the relative
difference between the OFVs of particles 𝑖 and 𝑗 [18]:

𝑞
𝑖𝑗
=

𝑓 (x
𝑖
) − 𝑓 (x

𝑗
)

𝑓 (xworst) − 𝑓 (xbest)
∀𝑖, 𝑗 ∈ 𝑁, 𝑖 ̸= 𝑗, (11)

where 𝑓(xworst) and 𝑓(xbest) are the worst and best OFVs
in the population, respectively. For a minimization problem,
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if 𝑓(x
𝑖
) < 𝑓(x

𝑗
), then 𝑞

𝑖𝑗
will be negative, and the reverse is

true if 𝑓(x
𝑖
) > 𝑓(x

𝑗
). If 𝑓(x

𝑖
) = 𝑓(x

𝑗
), then 𝑞

𝑖𝑗
will be zero.

After calculating 𝑞
𝑖𝑗
, the force vector F

𝑖𝑗
exerted on

particle 𝑖 by particle 𝑗 is calculated as follows:

F
𝑖𝑗
= (x
𝑗
− x
𝑖
) 𝑞
𝑖𝑗
, ∀𝑖, 𝑗 ∈ 𝑁, 𝑖 ̸= 𝑗. (12)

For a minimization problem, if particle 𝑖 is a better solution
than particle 𝑗, that is,𝑓(x

𝑖
) < 𝑓(x

𝑗
), then particle 𝑗will repel

particle𝑖 because 𝑞
𝑖𝑗
will be negative.

In the modified EMA, first, 𝑞
𝑖𝑗

and F
𝑖𝑗

are calculated
for every combination of particle pairs; then, the resultant
cumulative force on particle 𝑖 is determined by F

𝑖
=

∑
𝑛

𝑗=1,𝑗 ̸= 𝑖
F
𝑖𝑗
. Once the cumulative force F

𝑖
exerted on particle

𝑖 is determined, the particle 𝑖 will move in the direction
of F
𝑖
to yield improved solutions. A uniformly distributed

random step 0 < 𝜆 < 1 is used to force the algorithm to
explore unvisited regions. Similarly to the cooling effect in the
simulated annealing algorithm, the current iteration number,
𝐼𝑡𝑒𝑟, is used to decrease the step length as the algorithm
proceeds. Additionally, a preset parameter 𝑟, 0 ≤ 𝑟 ≤ 1, is
used to control the cooling effect. The motion of particle 𝑖
along the F

𝑖
direction is calculated as follows:

x
𝑖
= x
𝑖
+

𝜆

(𝐼𝑡𝑒𝑟)
𝑟
F
𝑖
, ∀𝑖 ∈ 𝑁. (13)

It is important to note that the proposed EMA uses an elitist
strategy. In other words, the best solution’s position vector in
the population, xbest, is preserved.

4.2. Solution Representation. As mentioned above, the EMA
was originally designed to copewith continuous optimization
problems. In order to solve combinatorial optimization prob-
lems such as vehicle routing problems with EMA, real-coded
position vectors (candidate solutions) have to be decoded
into permutations of customers. To the best of our knowl-
edge, most researchers have introduced a random key (RK)
procedure into the EMA to facilitate solving combinatorial
optimization problems [18, 22, 25, 26].

The RK representation was proposed by [34] to maintain
feasible solutions after crossover operations in genetic algo-
rithms. In [34] a random number encoding structure was
proposed for the chromosomal representation of solutions.
The main advantage of using the RK procedure is that each
candidate solution can be represented by real-coded values
such that several metaHeuristic operators can be imple-
mented without concern over feasibility issues. Because all
position vectors are real-coded, integrating the random key
procedure into the EMA is a very straightforward and easy
process, thus making the EMA an efficient search algorithm
for combinatorial optimization problems. A sample random
key procedure is shown in Figure 1. In the random key
procedure, when the real-coded coordinate values of the
position vector are sorted in a nondecreasing order, the new
permutation of the indexes of this position vector represents
a route for the TSPTW as a sorted index. In Figure 1, because
the smallest coordinate value of the position vector is 0.04 for
index = 2, customer 2will be visited first.The other customers

Index: 1 2 3 4 5
Position vector: 0.11 0.04 0.65 0.51 0.19

Sorted position vector: 0.04 0.11 0.19 0.51 0.65
Sorted index (TSP route): 2 1 5 4 3

Figure 1: A sample random key procedure.

are visited following the sorted index in a similarmanner, and
the resulting route will be 2→ 1→ 5→ 4→ 3.

4.3. Handling Time Window Constraints. In the proposed
EMA, two approaches are combined to prevent infeasible
routes: (i) new variable bounding strategy (VBS) and (ii)
penalty approach. VBS is used to eliminate infeasible candi-
date solutions when the problem consists of nonoverlapping
time windows for nodes, whereas a penalty strategy is used
to cope with infeasibilities resulting from overlapping time
windows.

4.3.1. VBS with Nonoverlapping TimeWindows. Nonoverlap-
ping time window infeasibilities can be described as follows.
Consider two customers 𝑖 and 𝑗 with time windows [𝑒

𝑖
, 𝑙
𝑖
]

and [𝑒
𝑗
, 𝑙
𝑗
], respectively. These time windows are said to be

nonoverlapping if and only if either 𝑙
𝑖
≤ 𝑒
𝑗
or 𝑙
𝑗
≤ 𝑒
𝑖
, where

𝑒
𝑖
≤ 𝑙
𝑖
by definition (Figure 2(a)). Because a waiting time

up to 𝑒
𝑖
is applied for early visits, the earliest time (𝑡earliest

𝑖
)

in which a customer can be left is the early time of that
customer (𝑡earliest

𝑖
≥ 𝑒
𝑖
). Therefore, any customer sequence

that ensures the following constraint will always be infeasible
for a nonoverlapping customer pair:

𝑒
𝑖
+ 𝑠
𝑖
+ 𝑑
𝑖𝑗
≥ 𝑙
𝑗
, (𝑖, 𝑗) ∈ 𝑠, 𝑑

𝑖,𝑗
> 0, (14)

where 𝑠 represents the set of customer pairs that customer
𝑖 precedes 𝑗. In other words, if 𝑙

𝑖
< 𝑒
𝑗
, then customer 𝑖

should be visited before customer 𝑗; otherwise, if 𝑙
𝑗
< 𝑒
𝑖
, then

customer 𝑗 should be visited before customer 𝑖 and any tour
that contains a sequence in which 𝑗 is visited before customer
𝑖 is infeasible.

VBS relies on the ability of the EMA to operate with
bounded variables. In VBS, the time windows of cus-
tomers are normalized between predetermined lower and
upper global bounds [𝐿, 𝑈], and the variables are then
bounded within their corresponding normalized time win-
dows [𝑒nor

𝑘
, 𝑙

nor
𝑘
], where 𝑒nor

𝑘
= 𝑒

𝑘
(𝐿/min𝐸), 𝑙nor

𝑘
=

𝑙
𝑘
(𝑈/max 𝐿), min𝐸 = min

𝑘
{𝑒
𝑘
}, andmax 𝐿 = max

𝑘
{𝑙
𝑘
} and 𝑘

represents the customer number. Combining theVBS and the
nondecreasing sorting step in RK, any solution point that has
infeasible customer pairs with nonoverlapping time windows
is thus eliminated from the candidate solution population. In
other words, EMA is forced to search in feasible regions using
VBS.

4.3.2. Penalty Strategy with Overlapping Time Windows.
However, this variable bounding strategy has drawbacks in
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Figure 2: Time windows for a customer pair: (a) nonoverlapping time windows and (b) overlapping time windows.

the case of highly overlapping time windows. The effect of
VBS will decrease in going from nonoverlapping to overlap-
ping windows and will be ineffective if the time windows of a
customer pair (𝑖, 𝑗) are fully overlapping (𝑒

𝑖
= 𝑒
𝑗
and 𝑙
𝑖
= 𝑙
𝑗
)

(see Figure 2(b) for an overlapping time window example).
To overcome the infeasibility problems for highly overlapping
time windows, a penalty strategy is introduced. A penalty
cost that is calculated from a linear penalty function is added
to the OFV if the solution violates the time window of any
customer. This penalty is assumed to be a linear function
of the amount of time that is violated. The penalty cost is
calculated as follows:

𝑃
𝑖
=

{{

{{

{

0 𝑡
𝑖
< 𝑒
𝑖

0 𝑒
𝑖
≤ 𝑡
𝑖
≤ 𝑙
𝑖

𝛽 (𝑡
𝑖
− 𝑙
𝑖
) 𝑡
𝑖
> 𝑙
𝑖
,

(15)

where 𝑃
𝑖
denotes the penalty cost at customer 𝑖, 𝑡

𝑖
represents

the vehicle arrival time to customer 𝑖, and 𝛽 is the penalty
coefficient, which will be determined experimentally. By
using the penalty approach, infeasible solutionswill have high
OFVs and will exert repulsive forces on better solutions.

The effect of VBS and RK in eliminating time window
infeasibilities is illustrated by considering a sample problem.
Consider a TSP with 4 customers having time windows,
as indicated in Table 1. For ease of analysis, we ignore the
normalization step and time windows are directly used as the
bounds. As shown in Figure 3, customers (1,2), (1,4), (2,4),
and (3,4) have nonoverlapping time windows. By definition,
customer 4 should be visited last because 𝑒

4
≥ 𝑙
𝑗
, 𝑗 =

1, 2, 3. Because we bound index 4 of the position vector with
customer 4’s normalized time window [𝑒nor

𝑘
, 𝑙

nor
𝑘
], index 4 will

always be larger than the other variables during the search
process. As a result, when the real-coded coordinate values
of the position vector are sorted in a nondecreasing order
in RK, it will be ensured that customer 4 will be the last.
Similarly, by combining VBS and RK, customer 1 will always
precede customer 2 because 𝑒

2
≥ 𝑙
1
. To summarize, by

combining VBS and RK as a solution representation strategy,
infeasibilities associated with nonoverlapping time windows
are eliminated, and those infeasible regions are abandoned.
Figure 4 shows the variable boundaries and possible positions

Table 1: Customers’ time windows for the sample problem.

Customer Early time Late time
1 5 15
2 12 27
3 17 31
4 34 42

Time

C
us

to
m

er

2

3

4

1

e1 l3 l4l1
e2 e4e3 l2

Figure 3: Time windows for the sample problem.

of customers after using the VBS and RK. Furthermore, a
penalty approach will help to discern feasible solutions from
the possible feasible solution set because infeasible solutions
will have higher OFVs.

4.4. Initialization and Boundary Control. The EMA frame-
work begins with the initialization mechanism. The Initial-
ize() procedure generates PopSize() solutions as a starting
population using the normalized time windows. The pro-
cedure is shown in Algorithm 2, where 𝑛 and 𝑚 denote
the population size and length of the position vector (i.e.,
number of variables), respectively, and 𝑈𝑛𝑖𝑓𝑜𝑟𝑚() draws
samples from a uniform distribution. Each position vector
x
𝑖
is initialized randomly within the time window of each

corresponding variable, x
𝑖𝑘
.
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Index: 1 2 3 4
Position vector boundaries: [5, 15] [12, 27] [17, 31] [34, 42]

Possible sorted index positions: 1-2 1-2-3 1-2-3 4

Figure 4: Possible routes after combining VBS and RK.

At the end of each iteration, boundary control is applied
to the position vector of the particles to determine whether
any boundary violations occur. The proposed algorithm
adopts an absorbing bound-handling scheme, where, in the
case of boundary violation, the corresponding variable is
relocated to the bound. Algorithm 3 is the boundary control
mechanism; as indicated, if the particle flies outside the
boundary, the corresponding variable is set to its normalized
early or late arrival time.

4.5. General Scheme of EMA. The general scheme of the
proposed EMA for solving the TSPTW is summarized in
Algorithm 4. Each step is executed according to the explana-
tions provided above.

5. Computational Results

The proposed algorithm, described in the previous sections,
was implemented in Visual Basic. Net on a PC with an Intel
Core 2 Duo CPU running at 2.0GHz with 2GB RAM for
computational experiments. Two types of experiments were
carried out to assess the effectiveness of the proposed EMA.
First, to evaluate the performance of the VBS, the EMA with
VBS and that without VBS are compared with respect to
selected benchmark instances. Second, the proposed EMA is
compared to state-of-the-art metaHeuristics using an exten-
sive set of benchmark instances reported in the literature.

5.1. The Effectiveness of Variable Bounding Strategy for the
TSPTW. To understand the role of VBS in finding feasible
solutions, the proposed EMAwithVBS and a penalty strategy
(EMA-VP) was compared with the EMA with only a penalty
strategy (EMA-P). Because the level of time window over-
lapping is the key criterion in analyzing the effect of VBS,
six different problem instances selected from the benchmark
set provided by Potvin and Bengio [35] are categorized as
exhibiting a low, average, or high level of time window
overlapping. An explicit indicator value of the overlap level
(VOL) is calculated by adding two percentages calculated
from problem instances, that is, (i) the percentage of time
windows of two or more customers that intersect over the
total time line (min𝐸 and max 𝐿) and (ii) the ratio of
customers with an overlapping time window of at least one
unit length. In other words, the length of the overlapped time
and number of customers having overlapping time windows
are calculated as basic indicators. Therefore, a VOL of 200
corresponds to the full overlap of time windows, whereas 0
denotes a nonoverlapping problem.

The categorized VOLs are presented in Table 2. Further-
more, Table 3 summarizes the selected problem parameters
and the corresponding VOLs. Problems with a similar num-
ber of customers from different classes (RC 201.3, RC 202.1,

(1) for 𝑖 = 1 to 𝑛 do
(2) for 𝑘 = 1 to 𝑚 do
(3) 𝜆 ← 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 1)

(4) 𝑥
𝑖𝑘
← 𝑒

nor
𝑘
+ 𝜆(𝑙

nor
𝑘
− 𝑒

nor
𝑘
)

(5) end for
(6) end for

Algorithm 2: Initialization mechanism.

(1) for 𝑖 = 1 to 𝑛 do
(2) for 𝑘 = 1 to 𝑚 do
(3) if 𝑥

𝑖𝑘
> 𝑙

nor
𝑘

then
(4) 𝑥

𝑖𝑘
← 𝑙

nor
𝑘

(5) elseif 𝑥
𝑖𝑘
< 𝑒

nor
𝑘

then
(6) 𝑥

𝑖𝑘
← 𝑒

nor
𝑘

(7) end if
(8) end for
(9) end for

Algorithm 3: Boundary control mechanism.

Table 2: Overlap level classification.

Classes of overlap level VOL
Low ≤90
Average 90 < VOL ≤ 150
High >150

Table 3: Selected problem parameters.

Instance n VOL Class of overlap level
RC 201.3 32 76.33 Low
RC 202.1 33 107.79 Average
RC 203.2 33 137.72 Average
RC 204.2 33 171.29 High
RC 205.1 14 101.95 Average
RC 208.1 36 161.07 High

RC 203.2, and RC 204.2), a small problem with an average
VOL (RC 205.1), and a relatively more complex problem (RC
208.1) are selected for the experiments. In Table 3, 𝑛 denotes
the total number of customers and the depot. Figures 5, 6,7,
8, 9, and 10 show the ratio of the number of feasible solutions
to the total population as the algorithm proceeds from each
benchmark problem. For those experiments, the population
size is set to 25 and the penalty coefficients𝛽 and 𝑟 are set to 1.5
and 0.35, respectively. A single run represents 1000 iterations,
and the ratio of feasible solutions is recorded at the end of 25
iterations. Box plots show 10 independent data, each of which
represents an average of 25 consecutive runs.

The experiments show that the EMA-VP clearly outper-
forms EMA-P (Figures 5–10). The following conclusions can
be drawn from the figures. (1) In all six experiments, the
EMA-VP demonstrates better performance than the EMA-P
as expected. (2) In all six experiments, EMA-VP finds feasible
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(1) Set 𝑃𝑜𝑝𝑆𝑖𝑧𝑒 ← Population Size
(2) Set 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 ←Maximum iteration limit
(3) Set 𝑈 ← Upper Bound for time window normalization
(4) Set 𝐿 ← Lower bound for time window normalization
(5) Normalize time windows of customers
(6) Generate 𝑃𝑜𝑝𝑆𝑖𝑧𝑒 of points within normalized time windows by 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 procedure
(7) Calculate the OFV of each point.
(8) Check feasibility of each point.
(9) Set best and worst solution points.
(10) While 𝐼𝑡𝑒𝑟 < 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 do
(11) For 𝑖 = 1 to 𝑃𝑜𝑝𝑆𝑖𝑧𝑒
(12) For 𝑗 = 1 to 𝑃𝑜𝑝𝑆𝑖𝑧𝑒
(13) Calculate 𝑞

𝑖𝑗

(14) Calculate F
𝑖𝑗

(15) End for
(16) Calculate resultant force F

𝑖

(17) End for
(18) Move each solution point. //Relocate particles by updating position vectors.
(19) Calculate OFV of each solution point.
(20) Check boundaries of each solution point by 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝐶𝑜𝑛𝑡𝑟𝑜𝑙 procedure.
(21) Set the best and worst points.
(22) Set 𝐼𝑡𝑒𝑟 ← 𝐼𝑡𝑒𝑟 + 1

(23) End while

Algorithm 4: General scheme of proposed EMA.

solutions, whereas the EMA-P finds a limited number of
feasible solutions only for the smallest problem (RC 205.1).
(3) Except for the benchmarks with high VOL (RC 204.2
and RC 208.1), the VBS generates a feasible initial population
with a minimum ratio of 0.1, whereas the EMA-P always
starts searching with an infeasible initial population. (4)The
EMA-VP quickly converges to a significant ratio of feasible
solutions in the first 150–250 iterations and finds a maximum
of 100% (RC 205.1) and a minimum of 3% (RC 204.2) feasible
solutions in the final populations. (5)Thenegligible reduction
(clearly observed for benchmark problemRC 203.2, Figure 7)
in the ratio of feasible solutions in the first 50 iterations
indicates that particles are generally stagnant at the bounds
under high magnitudes of resultant forces. Particles are
more likely to leave the search space because relatively high
resultant force values are applied in the early phases of the
searching process as force magnitudes are reduced iteratively
(see (13), Section 4.1).

5.2. Comparison Using Benchmark Instances. To verify the
effectiveness of the proposed algorithm, we performed an
extensive analysis using several benchmark instances. The
results of this study are presented in a manner similar to
that of state-of-the-art studies by López-Ibáñez and Blum
[14] and Ohlmann and Thomas [13] for an accurate and
objective comparison. The three benchmark sets used to test
the proposed EMA-VP mechanism are as follows.

(1) Benchmark Set 1. The benchmark set was introduced
by Potvin and Bengio [35], which was originally
developed for VRPTW problems by Solomon [36].
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Figure 5: Ratio of feasible solutions for EMA-VP and EMA-P for
RC 201.3.

This set includes 29 problems and is the most widely
used benchmark set for the TSPTW. Originally, the
set included 30 problems; however, there was a con-
flict among the researchers about the node number
and best solution value for problem RC 204.1 [13, 14].
(Thus, it is not considered here.) (See Table 4.)

(2) Benchmark Set 2. The set of 70 problems in seven
instance classes was introduced by Langevin et al.
[4]. These instances range from 20 to 60 customers
(Table 5).
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Figure 6: Ratio of feasible solutions for EMA-VP and EMA-P for
RC 202.1.
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Figure 7: Ratio of feasible solutions for EMA-VP and EMA-P for
RC 203.2.

(3) Benchmark Set 3. The set of benchmark instances was
introduced by Dumas et al. [3] This set consists of 135
instances, and the customer numbers range from 20
to 200 (Table 6).

Because parameter calibration is the key task in metaHeuris-
tic applications, we performed a set of pilot studies to
determine a good set of parameters for the EMA-VP mecha-
nism. After these preliminary computational studies, the
parameters were set as follows:𝑀𝑎𝑥𝐼𝑡𝑒𝑟 = 500, 𝛽 = 1.5, 𝑟 =
0.35, and 𝑃𝑜𝑝𝑆𝑖𝑧𝑒 = 50. The results are presented in terms of
relative percentage deviation (RPD), which is calculated as
100×(EMA value−the Best known value)/(the Best known
value). Because the EMA (particularly the movement pro-
cedure) is stochastic in nature, each result is reported as
the average of 10 runs. As presented in the studies by [13,
14], both the mean 𝜇RPD and standard deviation 𝜎RPD of
relative percentage deviation results and themeanCPU times
(second) 𝜇

𝑇
are reported here as well.

The results of the comparison between the EMA-VP and
novelmetaHeuristics for the benchmark set 1 are summarized
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Figure 8: Ratio of feasible solutions for EMA-VP and EMA-P for
RC 204.2.
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Figure 9: Ratio of feasible solutions for EMA-VP and EMA-P for
RC 205.1.

in Table 4.The first column of Table 4 represents the problem
name; 𝑛 denotes the number of customers in the problem;
VOL indicates the value of the time window overlap level
and BKV is the best known solution value of the problems
presented in the literature. Furthermore, whereas bold-typed
values of BKV are the optimal values reported by others,
the values indicated by an asterisk are the optimal values
determined using CPLEX 12.1 in this study. The EMA-VP
is compared to the Beam-ACO [14], compressed annealing
(CA) proposed by [13], dynamic programming (DP) [6], and
the best values reported in the studies by Gendreau et al. [10]
and Calvo [11] as Heuristic. As shown in Table 4, the EMA-
VP finds the optimal or the best known values for 19 out of 30
instances without any solution value variability. The Beam-
ACO outperforms the EMA-VP in some of the high VOL
instances; nevertheless, the differences between the mean
RPDs (i.e., RC 204.2, RC 204.3, and RC 208.3) are quite small.
Moreover, the EMA-VP and CA yield very similar results in
all of the instances, and the results that are obtained by the
EMA-VP are better than those obtained by DP and Heuristic.
Furthermore, the EMA-VP is able to find a feasible solution
for all instances.
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Table 4: Computational results on benchmark Set 1.

Problem name 𝑛 VOL BKV EMA-VP Beam-ACO CA DP Heuristic
𝜇RPD 𝜎RPD 𝜇

𝑇
𝜇RPD 𝜎RPD 𝜇

𝑇
𝜇RPD 𝜎RPD 𝜇

𝑇
𝜇RPD 𝜇

𝑇
𝜇RPD 𝜇

𝑇

RC 201.1 20 86.16 444.54 0.00 0.00 1 0.00 0.00 0 0.00 0.00 5 0.00 2 0.00 0
RC 201.2 26 77.92 711.54 0.00 0.00 1 0.00 0.00 2 0.00 0.00 6 0.00 3 0.00 0
RC 201.3 32 76.33 790.61 0.00 0.00 2 0.00 0.00 0 0.00 0.00 9 0.00 4 0.00 3
RC 201.4 26 79.20 793.64 0.00 0.00 1 0.00 0.00 0 0.00 0.00 6 0.00 3 0.00 0
RC 202.1 33 107.79 771.78 0.21 0.06 3 0.00 0.00 0 0.05 0.02 11 0.07 223 0.05 8
RC 202.2 14 153.95 304.14 0.00 0.00 0 0.00 0.00 0 0.00 0.00 5 0.00 2 0.00 0
RC 202.3 29 84.49 837.72 0.00 0.00 1 0.00 0.00 1 0.00 0.00 7 0.00 45 0.22 0
RC 202.4 28 115.19 793.03 0.00 0.00 1 0.00 0.00 0 0.00 0.00 9 0.78 212 0.00 2
RC 203.1 19 133.88 453.48 0.00 0.00 0 0.00 0.00 0 0.00 0.00 7 0.00 15 0.00 0
RC 203.2 33 137.72 784.16 0.00 0.00 4 0.00 0.00 0 0.00 0.00 11 3.14 404 0.00 4
RC 203.3 37 142.48 817.53 0.03 0.01 3 0.00 0.00 2 0.03 0.11 12 infeasible 0.23 14
RC 203.4 15 171.69 314.29 0.00 0.00 0 0.00 0.00 0 0.00 0.00 5 0.00 3 0.00 0
RC 204.2 33 171.29 662.16 0.31 0.14 3 0.00 0.00 8 0.71 1.29 10 0.00 77 0.57 8
RC 204.3 24 183.24 455.03∗ 0.74 0.10 3 0.00 0.00 0 0.96 0.50 9 2.46 639 0.00 4
RC 205.1 14 101.95 343.21 0.00 0.00 0 0.00 0.00 0 0.00 0.00 4 0.00 2 0.00 0
RC 205.2 27 93.19 755.93 0.00 0.00 2 0.00 0.00 0 0.00 0.00 7 0.00 5 0.00 0
RC 205.3 35 114.92 825.06 0.00 0.00 4 0.00 0.00 1 0.00 0.00 10 0.00 42 0.00 21
RC 205.4 28 89.68 760.47 0.00 0.00 3 0.00 0.00 5 0.00 0.00 7 0.00 5 0.26 6
RC 206.1 4 156.35 117.85 0.00 0.00 0 0.00 0.00 0 0.00 0.00 3 0.00 0 0.00 0
RC 206.2 37 109.01 828.06 0.00 0.00 5 0.00 0.00 0 0.01 0.04 11 0.00 33 1.70 33
RC 206.3 25 122.48 574.42∗ 0.00 0.00 1 0.00 0.00 1 0.00 0.00 9 0.00 38 0.00 0
RC 206.4 38 108.79 831.67 0.04 0.01 5 0.00 0.00 3 0.10 0.24 11 0.00 46 0.71 8
RC 207.1 34 127.74 732.68 0.09 0.03 5 0.00 0.00 0 0.00 0.00 11 0.43 70 0.07 4
RC 207.2 31 136.27 701.25 0.00 0.00 5 0.00 0.00 7 0.00 0.00 10 0.00 61 2.40 16
RC 207.3 33 139.30 616.51 0.44 0.11 5 0.00 0.00 1 0.00 0.00 11 2.28 1128 0.29 17
RC 207.4 6 165.89 612.85 0.00 0.00 0 0.00 0.00 0 0.00 0.00 3 0.00 0 0.00 0
RC 208.1 38 161.07 605.54 0.33 0.10 5 0.30 0.29 19 0.58 0.36 12 0.55 1141 0.00 10
RC 208.2 29 165.56 601.89 0.18 0.02 4 0.00 0.00 1 0.17 0.54 10 0.00 59 0.67 2
RC 208.3 36 164.94 598.24 1.01 0.04 5 0.00 0.00 12 0.95 0.84 11 3.32 122 2.31 8

Table 5: Computational results on benchmark set 2.

Data set VOL BKV 𝑇 cpu EMA-VP Beam-ACO CA
𝑛 TW width 𝜇RPD 𝜎RPD 𝜇

𝑇
𝜇RPD 𝜎RPD 𝜇

𝑇
𝜇RPD 𝜎RPD 𝜇

𝑇

20 30 48.51 724.7 0 0.00 0.00 1 0.00 0.00 0 0.00 0.00 5
40 53.60 721.5 1 0.00 0.00 1 0.00 0.00 0 0.00 0.00 5

40 20 40.81 982.7 2 0.00 0.00 5 0.00 0.00 0 0.00 0.00 7
40 51.22 951.8 7 0.00 0.00 5 0.00 0.00 0 0.00 0.00 7

60
20 40.33 1215.7 — 0.00 0.00 7 0.00 0.00 0 0.00 0.00 9
30 45.48 1183.2 — 0.00 0.00 8 0.00 0.00 0 0.00 0.00 12
40 49.12 1160.7 — 0.00 0.00 8 0.00 0.00 3 0.00 0.01 14

The results of the benchmark set 2 are presented in
Table 5. These results are the averages of 10 instances of
10 runs, as in the other studies performed by [13, 14]. The
EMA-VP is compared to compressed annealing (CA) [13],
Beam-ACO [13], and the best known values (BKV) [36].

The EMA-VP yields promising results and the optimal values
for the first 4 instances (i.e., 𝑛 = 20 and 𝑛 = 40) and achieved
the best known values for the large instances (i.e., 𝑛 = 60).
Moreover, no variance in the solution quality is reported. As
a result, the EMA-VP is compatible with CA and Beam-ACO
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Table 6: Computational results on benchmark set 3.

Data set Exact EMA-VP Beam-ACO CA Heuristic
𝑛 TW. width VOL Optimal value 𝑇 𝜇RPD 𝜎RPD 𝜇

𝑇
𝜇RPD 𝜎RPD 𝜇

𝑇
𝜇RPD 𝜎RPD 𝜇

𝑇
𝜇RPD 𝜇

𝑇

20

20 106.17 361.2 0 0.00 0.00 1 0.00 0.00 0 0.00 0.00 5 0.00 0
40 87.56 316.0 0 0.00 0.00 1 0.00 0.00 0 0.00 0.00 5 0.00 0
60 86.78 309.8 0 0.00 0.00 1 0.00 0.00 0 0.00 0.00 5 0.00 0
80 76.96 311.0 0 0.00 0.00 1 0.00 0.00 0 0.00 0.00 5 0.00 0
100 54.02 275.2 1 0.00 0.00 1 0.00 0.00 0 0.00 0.00 6 0.00 0

40

20 53.11 486.6 0 0.00 0.00 5 0.00 0.00 0 0.00 0.00 7 0.00 3
40 60.02 461.0 0 0.00 0.00 5 0.00 0.00 0 0.00 0.00 10 0.00 3
60 72.14 416.4 4 0.00 0.00 6 0.00 0.00 0 0.00 0.02 12 0.00 5
80 79.09 399.8 8 0.00 0.00 6 0.00 0.00 1 0.05 0.25 12 0.00 5
100 94.57 377.0 31 0.00 0.00 6 0.00 0.00 4 0.11 0.27 12 0.00 6

60

20 51.06 581.6 0 0.00 0.00 10 0.00 0.00 1 0.00 0.03 13 0.00 8
40 58.64 590.2 1 0.00 0.00 10 0.00 0.00 1 0.12 0.41 16 0.00 37
60 67.29 560.0 7 0.02 0.04 10 0.00 0.02 5 0.04 0.12 16 0.00 11
80 77.25 508.0 47 0.00 0.08 10 0.00 0.02 6 0.24 0.39 16 0.20 18
100 88.08 514.8 200 0.10 0.13 11 0.16 0.19 12 0.33 0.37 16 0.31 26

80

20 51.98 676.6 0 0.00 0.00 14 0.00 0.00 3 0.03 0.24 20 0.00 43
40 59.14 630.0 3 0.00 0.00 15 0.00 0.00 9 0.02 0.03 21 0.00 69
60 68.79 606.4 55 0.00 0.00 15 0.12 0.10 12 0.13 0.26 21 1.72 89
80 72.67 593.8 220 0.33 0.09 15 0.13 0.17 14 0.29 0.29 21 0.10 60

100 20 47.58 757.6 103 0.00 0.00 19 0.00 0.01 9 0.03 0.11 24 0.00 175
40 57.25 701.8 129 0.06 0.02 19 0.03 0.07 12 0.06 0.14 25 0.14 1
60 67.98 696.6 148 0.08 0.02 19 0.01 0.03 13 0.17 0.43 25 0.00 148

150
20 47.82 868.4 2 0.00 0.03 27 0.05 0.06 16 0.12 0.21 36 0.02 420
40 55.76 834.8 116 0.04 0.02 27 0.06 0.06 13 0.11 0.26 36 0.22 5
60 61.56 805.0 463 2.44 0.39 27 2.09 0.21 18 2.10 0.60 37 1.91 630

200 20 47.86 1009.0 7 0.11 0.04 37 0.05 0.03 61 0.13 0.24 50 0.10 1456
40 55.19 984.2 251 0.08 0.06 38 0.08 0.06 80 0.25 0.17 50 0.12 2106
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Figure 10: Ratio of feasible solutions for EMA-VP and EMA-P for
RC 208.1.

for the benchmark set 2. It is important to note that all of the
instances in the problem set are low and average VOLs; thus,
the EMA-VP shows promising convergence rates.

Table 6 reports the results of the EMA-VP for the bench-
mark set 3. The results are presented as averages of 10
instances in each class and 10 runs for each instance. Table 6
compares the EMA-VP with the exact method developed
by Dumas et al. [3], Beam-ACO [14], and CA [13], and the
last column is titled Heuristic, which represents the best
value obtained by the algorithms developed by [9–11]. The
EMA-VP yields the optimal values in 19 out of 27 instances.
The EMA-VP yields results that are better than those of CA
and Heuristic and similar to those of Beam-ACO. EMA-VP
outperforms all other algorithms on instances (𝑛 = 60 and
TW = 100) and (𝑛 = 80 and TW = 60). Moreover, the
EMA-VP surpasses Beam-ACO in instances (𝑛 = 150 and
TW = 20 and TW = 40) with respect to both solution quality
and consistency. On the other hand, Beam-ACO is slightly
better than the EMA-VP in instances (𝑛 = 80 and TW = 80),
(𝑛 = 200 and TW = 20), and (𝑛 = 150 and TW = 60).

For a better evaluation of metaHeuristic algorithms, not
only the solution quality but also the computation times
should be investigated.However, it is not very easy tomake an
objective comparison between metaHeuristics because both
the programming languages and the machine configurations
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Table 7: Mean CPU time (sec) comparison on the benchmarks.

CPU MFlops Benchmark set 1 Benchmark set 2 Benchmark set 3
Reported Normalized Reported Normalized Reported Normalized

EMA-VP ∼500 2.48 2.48 1.43 1.43 13.18 13.18
Beam-ACO ∼2500 2.17 10.85 0.43 2.15 10.74 53.7
CA ∼175 8.33 2.92 8.43 2.95 19.33 6.76
Heuristic ∼200 5.79 2.32 — — 197.18 78.87

are generally not comparable, and, in most studies, the
complexities of the algorithms are not reported. Nevertheless,
an approximate comparison can bemade based on theMFlop
(million floating point operations per second) values of the
processors on which the algorithms were coded and run [37].

The CA algorithm was coded in C++ and implemented
on an Intel Pentium 4 CPU operating at 2.66GHz [13],
Beam-ACO was implemented in C++ on an Intel Xeon
X3350 processor with a 2.66GHz CPU [14], and Heuristic
[11] was coded in FORTRAN and executed on an Intel 486
CPUoperating at 66MHz.TheMFlop values of the processor
speeds based on the benchmark values obtained from the site
http://www.netlib.org/benchmark/linpackjava/timings list
.html and the reported and normalized mean CPU times on
the benchmark sets for the algorithms are summarized in
Table 7. DP [6] is not included in the comparison because
the CPU was not reported in the study. As shown in Table 7,
the EMA-VP is faster than Beam-ACO and Heuristic for all
of the benchmarks. However, the performances of Heuristic
and the EMA-VP are very similar on the benchmark set 1.
Moreover, CA is faster than the EMA-VP on benchmark set 3,
and EMA-VP outperforms CA on the other benchmark sets.
Table 7 clearly shows that, in general, the proposed EMA-
VP is an effective algorithm and outperforms other novel
algorithms in 9 out of 11 test cases in terms of computational
time.

6. Conclusion

This paper has presented an EMA with a variable bounding
strategy (VBS) as a novel constraint handling technique for
solving the traveling salesman problem with time windows.
The EMA is an easy-to-code, straightforward metaHeuristic
algorithm that emulates the attraction-repulsion interactions
of charged particles in analogy to Coulomb’s law in electro-
magnetic theory.The proposed algorithmuses two important
approaches to handle time-window constraints, the penalty
approach and VBS. VBS is one of the main contributions
of this study, in which the upper and lower bounds of
a variable are set using the corresponding time window
for serving a customer. The main goal of using VBS is to
narrow the unbounded search space to a bounded search
space to reach feasible solutions effortlessly. We clearly show
that our approach competes other approaches reported in
the literature. An extensive computational analysis using
well-known benchmark instances shows that the EMA-VP
converges to feasible regions in a search space and finds
the best known or near-optimal results. Furthermore, the

EMA-VP outperforms other novelmetaHeuristics in terms of
computational time. Future work may involve combining the
VBS technique with other metaHeuristics using real-coded
particles as in particle swarmoptimization, differential evolu-
tion, or artificial bee colony algorithms to solve combinatorial
optimization problems that have constraints similar to time
windows, such as scheduling with precedence constraints or
resource constraint project management.
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