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ABSTRACT

DNA cytosine-5 methyltransferases (C5-MTases)
are valuable models to study sequence-specific
modification of DNA and are becoming increasingly
important tools for biotechnology. Here we describe
a structure-guided rational protein design combined
with random mutagenesis and selection to change
the specificity of the HhaI C5-MTase from GCGC
to GCG. The specificity change was brought about
by a five-residue deletion and introduction of two
arginine residues within and nearby one of the
target recognizing loops. DNA protection assays,
bisulfite sequencing and enzyme kinetics showed
that the best selected variant is comparable to
wild-type M.HhaI in terms of sequence fidelity and
methylation efficiency, and supersedes the parent
enzyme in transalkylation of DNA using synthetic
cofactor analogs. The designed C5-MTase can be
used to produce hemimethylated CpG sites in
DNA, which are valuable substrates for studies of
mammalian maintenance MTases.

INTRODUCTION

Recognition of specific target sequences in the genome by
dedicated proteins plays key roles in controlling the flow
of genetic information in the cell. On the other hand, the
ability of such proteins to target specific genomic loci
makes them valuable tools for modern molecular
biology and nanotechnology. In this regard, enzymes
capable of both recognizing and modifying a specific
DNA sequence are especially interesting. One important
class of such enzymes are DNA methyltransferases
(MTases), which catalyze the transfer of the methyl
group from the cofactor S-adenosyl-L-methionine
(AdoMet) to their target nucleotides within 2–8 bp
sequences in DNA (1). DNA MTases recognizing short
sequences have been used as non-destructive chromatin
foot-printing agents in vivo or in vitro (2). Targeted heri-
table gene silencing can be achieved by MTases fused with
sequence-specific Zn-finger domains (3,4). Formation of

irreversible inhibitory complexes between DNA cytosine-
5 methyltransferases (C5-MTases) and nucleotide analogs
such as 5-fluorocytosine in DNA can be used for the
design of covalently functionalized DNA-based nanostruc-
tures (5). Recently, novel approaches for sequence-specific
functionalization and labeling of DNA using synthetic
analogs of the cofactor AdoMet have been proposed (6).
More than 900 different MTases are known recognizing
over 200 different targets (7). Since the repertoire of nat-
urally occurring enzymes still lacks many useful sequences
and sequence types, engineering of enzymes with novel
predetermined specificities is increasingly desirable.

C5-MTases, which modify the fifth position of the
cytosine ring in the target sequence, proved valuable
models to study sequence-specific recognition of DNA
modifying enzymes and epigenetic phenomena in higher
eukaryotes. C5-MTases share a common mechanism of
catalysis which involves flipping of the target cytosine
from the DNA helix to the active site followed by its
covalent activation. This is manifested by their high
degree of sequence and structural homology in the larger
catalytic domain. In contrast, the recognition of the specific
DNA target is carried out by a highly variable region that
folds to form a smaller domain. Thus the catalytic and
DNA recognition functions are largely segregated in two
distinct domains (8,9). This notion is partially supported by
the construction of catalytically active hybrid enzymes by
swapping target recognition domains (TRDs) between
MTases with different specificities (10,11).

In spite of low sequence conservation in TRDs, certain
structural similarities indicate that C5-MTases use similar
strategies for their target recognition. Crystal structures of
M.HhaI (12) and M.HaeIII (13) show that these enzymes
recognize their targets via two distinct recognition loops
(Loops 1 and 2) which form multiple base-specific contacts
with two distinct segments of their target sequences
(Figure 1). Modular organization of TRDs themselves
suggested that novel specificities could potentially be
created by swapping loop regions between different
MTases, however, such experiments typically yielded
enzymes with diminished catalytic activity and relaxed
target specificity (14,15). During earlier work on
swapping segments of TRD between monospecific DNA
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C5-MTases we found that hybrid MTases, in which the C-
terminal recognition loop (Loop 2) of M.HhaI was
exchanged, often retained the ability to methylate DNA
although with lower efficiency (15). One such hybrid,
M.HhaI-L2Bsp (Figure 1), obtained by replacing recogni-
tion Loop 2 of M.HhaI with a short fragment
from M.Bsp6I (target site GCNGC) showed a marked
preference to methylate GCG targets. The asymmetric
nature of the GCG sequence allows the generation of
hemimethylated CG sites in DNA, which can be
uniquely used to study the action of eukaryotic mainte-
nance DNA methyltransferases (16).

Here we report detailed analysis of the sequence
specificity of the hybrid M.HhaI-L2Bsp MTase, as well as
application of directed evolution to dramatically improve
its sequence fidelity and catalytic efficiency. Moreover
we show that the newly constructed GCG-specific MTase

is able to transfer extended groups from synthetic AdoMet
analogs (17,18) paving the way for its potential use for
studies of eukaryotic CpG methylation and targeted
DNA labeling.

MATERIALS AND METHODS

Materials

All restriction enzymes, DNA polymerases, Exonuclease I,
ProteinaseK, Shrimp alkaline phosphatase, �DNA
(dam�, dcm�), pBR322 DNA and kits for molecular
biology were obtained from Fermentas and were used
according to manufacturer’s instructions. Sodium bisulfite,
AdoMet and poly[dG-dC]�poly[dG-dC] were purchased
from Sigma. Commercial AdoMet was further purified to
remove contaminating AdoHcy by passing through a short

Figure 1. Recognition of the GCGC target sequence by the HhaI methyltransferase. (A) Top—schematic representation of contacts between the
target recognition loops (Loops 1 and 2) of M.HhaI and the DNA bases in the GCGC target site; DNA contacting residues are underlined; lines
represent direct H-bonds to the DNA bases, dotted lines indicate nucleobase contacts through a water molecule; residues of the conserved TL
dipeptide are boxed; target cytosine C2 is shown in bold; residues in Loops 1 and 2 are colored red and blue, respectively; bottom—aligned Loop 2
sequences of from WT M.HhaI and its engineered variants with altered target specificity; �L2 represents the randomized library; randomized
positions are bold; an additional mutation outside Loop 2 is bold underlined. (B) and (C)—stick models depicting interactions of M.HhaI with
the fourth and third target G:C base pair, respectively, based on a crystal structure of the M.HhaI-DNA-AdoHcy complex (PDB code 3mht).
Deleted residues are marked with �, other coding as in A.
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column of C18-Reversed phase Silica gel 100 (Fluka).
[methyl-3H]AdoMet was obtained from Amersham
Biosciences. Oligonucleotides were from MWG Biotech
or Fermentas (HPSF grade). The AdoPentyn cofactor
was synthesized starting from pentyn-2-ol-1 and purified
to an over 85% chiral purity of the S,S-isomer
(Lukinavicius et al., manuscript in preparation) following
previously described procedures (17,19).

Plasmids, strains and protein expression

Expression of mutant MTases was carried in Escherichia
coli strains ER1727 (F0 lac proA+B+ lacIq �(lacZ)M15/
fhuA2 �(lacZ)r1 glnV44 trp-31 mcrA1272::Tn10 (Tcr)
his-1 rpsL104 (Strr) xyl-7 mtl-2 metB1 �(mcrC-mrr)102::
Tn10 (Tcr)), ER2267 (F0 proA+B+ lacIq �(lacZ)M15
zzf::mini-Tn10 (KanR)/�(argF-lacZ)U169 glnV44
e14�(McrA�) rfbD1? recA1 endA1 spoT1? thi-1
�(mcrC-mrr)114::IS10) and ER2566 (F� �� fhuA2 [lon]
ompT lacZ::T7 gene 1 gal sulA11 �(mcrC-mrr)114::IS10
R(mcr-73::miniTn10-TetS)2 R(zgb-210::Tn10) (TetS)
endA1 [dcm]) (20) (New England Biolabs). ER2566 was
modified by transferring an episome from ER2267 to
endow cells with a lacIq gene (G.Mitkaite, unpublished
observations). WT M.HhaI, HhaI-L2Bsp and HhaI-�L2
mutants were all expressed as an enhanced solubility (21)
variant �324GH6, in which the C-terminal FKPY
tetrapeptide is substituted by a C-terminal Gly-His6 tag
by polymerase chain reaction (PCR) mutagenesis using
p�324G as template and the following primers: 50-TTTT
CGCAATGATCTCAATATTC-30 (direct) and 50-TTAG
TGGTGGTGGTGGTGGTGGCCATTTAATGATGA
AC-30 (reverse; 21 nts coding for a His6 tag and a stop
codon are underlined) to give plasmid p�324GH6.
pHH�BE was constructed by digesting p�324GH6 with
R.BspTI and R.Eco91I, blunt-ending with Klenow
fragment and recirculization (Figure S1) to give a 36 nt
in-frame deletion in the hhaIM gene, involving recogni-
tion Loop 2 of M.HhaI.
Escherichia coli cells were grown in minimal M9

medium supplemented with histidine, methionine, tryp-
tophan (10 mg/ml each), thiamine (6 mg/ml), carbenicillin
(100mg/ml) and kanamycin (30 mg/ml) at 37�C overnight.
For protein overexpression and purification, the ER2267
strain bearing an appropriate plasmid was grown at 37�C
until OD600nm �0.6–0.8, then the culture was cooled down
to 16�C and IPTG added to a 0.4mM concentration.
Before harvesting, the culture was further cultivated at
16�C overnight. For the determination of L2Bsp
specificity in vivo, the mutant MTase was overexpressed
in ER1727: the cells were grown in LB medium supple-
mented with ampicillin (100 mg/ml) and tetracycline
(10mg/ml) at 37�C until OD600nm �0.6–0.8, then IPTG
was added to a final concentration 0.4mM, the cells
were cultivated at 37�C for additional 2 h and harvested
by centrifugation.

Construction of the randomized MTase library

For the HhaI-�L2 library construction pHH�BE
linearized with R.BspTI was used as template in the
PCR reaction with the following primers: 50-ATTACCT

TAAGTGCTNNSNNSGGANNSNNSGGTTACCTAG
TAAACGGG-30 (direct; randomized codons are shown in
bold; the BspTI site is italicized) and 50-ATCAACAGGA
GTCCAAGCTCAGC-30 (reverse). The resulting 267 bp
PCR product was cloned into pHH�BE using the
R.BspTI and R.HindIII sites (Figure S1). The ligation
mixture was deproteinized with chloroform and
precipitated with ethanol. One hundred and fifty micro-
liters of ER2566 lacIq cells were electroporated with 1 mg
of the ligated DNA, inoculated into 200ml of supple-
mented M9 minimal medium and grown at 37�C over-
night. The resulting total plasmid DNA was isolated,
sequenced and used in biochemical selection.

Selection of the HhaI-"L2 library

Total plasmid DNA was digested with R.Hin6I and
R.Bsh1236I, deproteinized, ethanol precipitated and
�0.5mg was electroporated into 150 ml of ER2566 lacIq

cells. The cells were plated onto five M9 agar plates and
incubated at 37�C overnight. The resulting colonies were
washed off from the plate, total plasmid DNA was
isolated and the biochemical selection repeated.

Protein expression and purification

Cells were disrupted by sonication in bufferA (20mM
Na-PO4 pH 7.4, 1M NaCl and 1mM PMSF). The
supernatant was loaded onto 5ml HiTrap ChelatingTM

column (Amersham Pharmacia Biotech AB) and eluted
with a 3–300mM linear gradient of imidazole in
bufferA. After extensive dialysis to remove AdoMet, the
protein was concentrated and stored at �20�C in a buffer
containing 20mM Na-PO4 pH 7.4, 0.5mM EDTA,
100mM NaCl, 2mM 2-mercaptoethanol and 50%
glycerol. Concentration of proteins was determined
using a Coomassie G-250 assay with BSA as standard.
The molecular mass of each mutant was verified by
electrospray mass spectrometry.

Analysis of methylation specificity by restriction
endonuclease cleavage

Methylation reactions were typically performed in a 20 ml
of reaction buffer (50mM MOPS pH7.4, 0.5mM EDTA,
15mM NaCl, 0.2mg/ml BSA, 2mM 2-mercaptoethanol)
containing 1.2 mg � DNA and 300 mM AdoMet (or syn-
thetic analog AdoPentyn). The amount of MTase was
varied from 3.1 mM to 12 nM in 2-fold dilutions which
corresponded to MTase: GCG sites ratio from 1:1 to
1:512 (equivalent to MTase:GCGC ratios from 8:1 to
1:64). Methylation reaction was allowed to proceed for
1 h then the MTase was inactivated by heating at 80�C
for 15min. DNA protection assays were performed as
previously described (17).

Analysis of methylation specificity by bisulfite sequencing

For the determination of the methylation specificity
in vivo, plasmid DNA isolated from overexpressing cells
was analyzed. For the analysis of methylation specificity
in vitro, 5 mg of pBR322 was methylated with 775 nM and
48 nM L2Bsp or �L2 mutant (MTase:target sites ratio of
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1:4 and 1:64, respectively) in 120 ml of reaction mixture for
1 h at 37�C. Approximately 0.5–1 mg DNA fragmented
with R.Alw44I or R.PagI in 20 ml was denatured by
adding 3 ml of 2N NaOH and incubating for 30min at
37�C, and 500ml of freshly prepared sodium bisulfite
solution was added. Samples were incubated for 5 h at
55�C, and the temperature was raised to 95�C for 3min
every hour to maintain denaturation of DNA and then
processed as described previously (22).

PCR was performed using modified-DNA specific
primers (Table S2). In the case of specificity in vivo
analysis of L2Bsp, all six fragments indicated in Table S2
were analyzed. In vitro methylation specificity was
investigated after PCR amplification of an upper strand
fragment corresponding to the 3369–3967 positions of
pBR322 using NG-VP1 and NG-VA3 primers. PCR
product was subcloned into R.SmaI-digested pUC19.
DNA from individual clones was sequenced using M13/
pUC dir (�46), 22-mer and/or M13/pUC rev (�46),
24-mer primers (Fermentas) and analyzed with BiQ
Analyzer software v0.91 beta (23).

Steady-state kinetic analysis

Methylation reactions were carried out in the methylation
buffer (50mM Tris–HCl pH 7.4, 0.5mM EDTA, 10mM
NaCl, 2mM 2-mercaptoethanol and 0.2 mg/ml of BSA) at
37�C. KAdoMet

M measurements of HhaI-�L2 MTases were
performed with constant MTase (4 nM) and poly[dG-
dC]�poly[dG-dC] DNA (1.5 mM double-stranded GCGC
sites) and varying [methyl-3H]AdoMet (0.5Ci/mmol) con-
centration. KDNA

M measurements were performed with
constant MTase (25 or 50 pM) and [methyl-3H]AdoMet
(500 nM or 750 nM; 16.1Ci/mmol) and varying DNA con-
centration. Reactions were incubated for 10–60min at
37�C and processed as previously decribed (21,24,25).
Data were analyzed by non-linear regression fitting to a
Michaelis–Menten equation using Grafit 5.0.6 (Erithacus
Software) or Dynafit software (26).

Fluorescence spectroscopy

Affinity of mutant MTases towards cofactor AdoMet
was determined by measuring tryptophan fluorescence
quenching upon cofactor binding as described previously
(24). Titration data were fitted to the equation for single
site binding using Grafit 5.0.6.

RESULTS

Sequence specificity of M.HhaI-L2Bsp in vivo

In preliminary studies, we found that the previously
constructed HhaI-L2Bsp hybrid MTase (further referred
to as L2Bsp) preferentially methylates GCG targets (15).
To determine the in vivo specificity of the L2Bsp variant
at single nucleotide resolution, we performed bisulfite
sequencing of plasmid DNA isolated from E. coli
ER1727 cells overexpressing L2Bsp. Plasmid DNA was
treated with bisulfite and PCR-amplified fragments were
cloned into R.SmaI-digested pUC19. Both strands of
three fragments from the pMB1 replicon and the

b-lactamase gene were analyzed in individual clones. The
total length of analyzed regions spanned 1577 nucleotides
which included 32 different GCG sites. The methylation
status of each GCG site was assayed by sequencing 16–32
independent clones. Control sequencing of a plasmid
encoding no active M.HhaI variant revealed no non-
converted cytosines besides those in three CCWGG sites
methylated by the endogenous EcoDcm MTase.
Consistent with earlier results (15), the GCG sites
proved the major targets of L2Bsp (Figure 2), although
the extent of methylation at individual GCG sites varied
from 40 to 100% (Figure S2); no clear correlation between
the methylation efficiency and the nature of flanking
sequences could be established. However, significant
methylation was observed at non-GCG sites: certain
GCA sites were methylated as efficiently as 40%, and
GCC and GCT were occasionally found to be methylated
up to 25%. We concluded that the specificity of L2Bsp is
more degenerate than was thought previously and should
be defined as GC[G/a]. Therefore the utility of L2Bsp as a
molecular tool was limited due to its promiscuous
specificity, which manifested as substantial methylation
of sequences outside the desired CG consensus.

Strategy for designing a proper GCG-specific
methyltransferase

In the L2Bsp variant, the recognition Loop 2 of M.HhaI
has become shorter by five amino acids. Based on the crys-
tal structure of the M.HhaI-DNA complex (Figure 1) we
concluded that the truncation of the Loop 2 and the
associated loss of recognition contacts to the fourth G:C
pair is most likely responsible for the change in sequence
specificity of the L2Bsp hybrid towards the GCG sites.
We also assumed that the new sequence elements that
come from M.Bsp6I are too short and out of context to
form any structural elements for DNA target recognition.
Thus, in order to obtain a more efficient GCG-specific
MTase, we decided to retain a five-residue deletion and
to optimize the sequence of the truncated Loop 2 by
directed molecular evolution. We went on to create a
protein library in which four residues in the truncated
Loop 2 were randomized; a Gly residue was retained in
the center of the random region (XXGXX) (Figure 1)
to ensure a certain degree of folding flexibility in the
redesigned loop.
Mutagenesis was carried out by PCR with a degenerate

mutagenic primer carrying four NNS codons in positions
to be randomized (Figure 3). Linearized pHH�BE, which
contained a 36 nt deletion in the Loop 2 and encoded a
catalytically inactive protein, was used as the PCR
template (Figure S1). The lack of homology to the degen-
erate part of the primer precluded potential sequence bias
from the template. The randomized PCR fragment was
inserted in-frame into pHH�BE, and transformation of
ER2566 lacIq E. coli cells with the resulting plasmid pool
yielded a total of �6� 106 clones in liquid culture (deter-
mined by aliquot plating). The cells were grown at 37�C
in M9 minimal medium with background level of tran-
scription (no IPTG added to growth medium). These
growth conditions permitted complete methylation of
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plasmid DNA (protection against R.Hin6I cleavage
in vitro) in cells expressing WT M.HhaI, but little
methylation was rendered by L2Bsp (not shown). The
total plasmid DNA was isolated, and sequencing of the
randomized region showed no significant nucleotide bias
in the four codons. Restriction endonuclease mapping
confirmed the correct overall structures of the plasmid
DNA (data not shown).
Selection was carried out by digesting the total plasmid

DNA with two 5-methylcytosine sensitive restriction
endonucleases, R.Hin6I [GCGC; cytosines whose
methylation blocks DNA cleavage are underlined,
methylation sensitivity profiles provided in ref. (7)] and

R.Bsh1236I (CGCG) (14 and 8 target sites on the
pHhaI-�L2 plasmid, respectively). The digested plasmid
DNA was again transformed into E. coli cells and
�2� 104 clones were obtained. Plasmid DNA from
nine individual colonies was analyzed with R.Bsh1236I,
which showed only four transformants expressing active
methyltransferases. The remaining clones were combined,
a total plasmid DNA was isolated and the selection pro-
cedure was repeated. After the second round of selection,
�1500 transformants were obtained. Thirty-five individual
clones were tested with R.Bsh1236I and most showed a
higher degree of protection than the original L2Bsp
expressing plasmid. Sequencing of 28 clones revealed
only two sequence variants (SGGRC—22 clones
and SAGRC—1 clone) in the randomized region
(Figure 1A). Notably, nearly all possible codons for Ser,
Gly and Arg were found in the mutant genes indicating
that the selected variants did not arise from a single pre-
cursor or due to nucleotide bias in the library. A third
protein variant (five clones) contained an additional
inadvertent mutation, K273R, 10 codons outside of the
randomized region.

Representatives of all three variants were selected
(referred to as �L2–6, �L2–9 and �L2–14) and corre-
sponding plasmids were analyzed with R.Bsh1236I to
compare their methylation efficiency in vivo under back-
ground level of transcription with that of the original
L2Bsp (Figure S3). All three selected variants showed
a much stronger protection against the cleavage as
compared to L2Bsp; notably, the highest degree of pro-
tection came from the �L2–14 variant, which contained
the K273R mutation. All three �L2-mutant MTases
(clones �L2–6, �L2–9 and �L2–14), WT M.HhaI and
the L2Bsp control were expressed in E. coli and purified
to near-homogeneity by Ni2+ chelating affinity column
chromatography for further characterization in vitro.

Figure 3. Directed evolution of GCG-specific C5-MTases. A schematic representation of random library selection for active GCG-specific MTases.
The MTase encoding gene is shown as a grey arrow, the recognition Loop 2 is shown in black; open and filled circles indicate nonmethylated and
methylated GCG sites, respectively.

Figure 2. Bisulfite sequencing analysis of the in vivo sequence specificity
of M.HhaI-L2Bsp. Plasmid DNA was isolated from E. coli cells
overexpressing M.HhaI-L2Bsp and analyzed by bisulfite sequencing.
The analyzed region spanned 1577 bases and contained 134 GCN
sites. Methylation of each site was assayed by sequencing 16–32 inde-
pendent clones and the methylation density at each position was deter-
mined as a ratio of methylated cytosines over the total number of
sequence reads. An average methylation density at GCX (A) and
GCNX (B) sequences is shown (the target cytosine residues are
underlined) and the number of individual target sites is indicated under-
neath each sequence.
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Catalytic efficiency and sequence-specificity
of selected MTases

For initial characterization of the catalytic activity and
sequence-specificity of the M.HhaI mutants, a DNA pro-
tection assay was used (17). Serial 2-fold dilutions starting
with equimolar amounts of MTase and target sites were
used to methylate bacteriophage � DNA, which was then
challenged with a set of individual 5-methylcytosine-
sensitive restriction endonucleases (listed in Table S1)
and analyzed by agarose gel electrophoresis. Enzymatic
turnover rates were estimated based on the minimal
molar ratio of MTase to its target sites that is required
for complete protection of DNA in 1 h (end-point assay).

All mutant MTases methylated DNA in vitro and
complete protection from R.Hin6I could be readily
achieved although at different enzyme dilutions (Figure
S4A). In support of our in vivo results, L2Bsp proved
the least active mutant, whereas the �L2–14 was the
most efficient enzyme. The mutant MTases methylated a
broader range of targets than the WT HhaI (Figure 4A).
A complete protection from GCG-specific REases that do
not have GCGC in their sites (R.Bsh1236I (CGCG) and
R.MluI (ACGCGT) was achieved, consistent with the
specificity switch from GCGC (WT) to GCGN. Again,
�L2–14 was found to be the most efficient MTase,
whereas �L2–6 and �L2–9 showed very similar
methylation efficiency. Similarly, off-target methylation
at GC[A/T] sites was assessed by digestion with R.BseXI
(GC[A/T]GC). We found that methylation of these sites
was evident only at high MTase concentrations with the
selected mutants (Figure S4). Since no complete protec-
tion could be achieved at the non-cognate sites, direct
comparison of the methylation efficiency at specific

and non-specific sites was only possible by theoretical cal-
culation of end-point dilutions assuming that, on average,
five 2-fold dilutions separate a starting and a full protec-
tion point (data not shown). The derived ratios of the
target/off-target methylation, which can only provide
rough estimates are shown in Figure 4B, indicating that
the �L2–14 mutant is similarly faithful as the WT
M.HhaI, whereas the L2Bsp hybrid shows a 10-fold
lower sequence fidelity.
Since the use of restriction endonucleases for specificity

assessment is undermined by the limited repertoire of
available sequence specificities and by significant errors
inherent in the determination of end-point fragmentation
patterns, bisulfite sequencing of the modified DNA was
employed to define more precisely the recognition targets
of the �L2-MTases. pBR322 DNA was methylated
in vitro, treated with bisulfite and the region of interest
was amplified with converted-DNA specific primers.
We analyzed a 538 bp fragment in the b-lactamase gene
(upper strand positions 3398–3935 on pBR322) which
contains 9 GCG sites and 37 GC[A/T/C] sites. For
initial analysis, the PCR-amplified fragment was directly
sequenced which allowed us qualitatively describe sites as
methylated, unmethylated or partially methylated but
gave no information about the methylation density of a
particular site. When small amount of MTases were used
for reaction (MTase:GCG molar ratio 1:64) eight, seven
and five out of nine GCG sites were completely
methylated by �L2–14, �L2–9, �L2–6, respectively
(other GCG sites were nearly fully or partially
methylated). No methylation in other positions was
observed, and no non-converted cytosines were present
in a control sample derived from pBR322 incubated
without MTase. In contrast, L2Bsp methylated only
three out of nine GCG motifs completely, while weak
partial methylation at several GCA positions was clearly
evident. Such a wide spread of modification densities
observed with the different enzymes appeared suitable
for quantitative analysis of their methylation specificity.
The specificity of L2Bsp and �L2–14 was investigated

more thoroughly by cloning the PCR amplified fragments
and sequencing individual clones. A total of 18 and 19
clones were sequenced for the two MTases, respectively.
The methylation density at a particular site was determined
as the ratio of number of methylated cytosines found to a
total number of reads. The bisulfite sequencing data are
summarized in Figure 5. In addition to GCG, L2Bsp
methylated GCA sites quite efficiently and displayed
several cytosines in GCC and GCT sites. Consistently
with the direct PCR product sequencing data, only two
out of nine GCG sites were methylated completely under
these conditions. As the amount of MTases in the
methylation reaction was increased (MTase:GCG ratio
1:4) some methylated cytosines were found outside the
GCG sequences in DNA methylated by all variants. 5-
methylcytosines were detected almost exclusively in GCN
sites indicating that the third position of the target was the
most degenerate. Analysis of DNA methylation by �L2–
14 revealed only a tiny fraction of methylated cytosines
outside the GCG targets (4 occurrences in 703 reads
through GC[A/T/C] sites) (Figure 5). Comparison of

Figure 4. DNA protection analysis of the in vitro specificity of the
HhaI-�L2 MTases. (A) Apparent number of enzymatic turnovers
executed at different target sites. Serial 2-fold dilutions starting with
equimolar amounts of MTase and target sites were used to methylate
bacteriophage � DNA, which was then challenged with a set of
5-methylcytosine-sensitive restriction endonucleases (Figure S4).
Enzymatic turnover rates (turnovers per hour) were estimated based
on a minimal molar ratio of MTase to its target sites that is required
for a complete protection of DNA in 1 h. (B) The sequence fidelity of
the �L2-methyltransferases, expressed as the ratio of methylation
turnover rates at GCGC to GC[A/T]GC sites.
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relative methylation densities of GCG versus non-GCG
sites, Rspec, again shows that the engineered MTase is
�10-fold more specific than the original L2Bsp hybrid
(Rspec=170 and 17, respectively).

Kinetic characterization of selected MTases

In order to better understand the observed changes in
catalytic efficiency and specificity, kinetic parameters were
determined for L2Bsp, the three �L2-mutants and WT
M.HhaI. Steady-state kinetic analyses were carried out
with poly[dG-dC]�poly[dG-dC] DNA as previously
described (27,28). Our data presented in Table 1 show
that all variants, including the WT HhaI, have similar
kcat values (smaller than 4-fold difference), whereas the
most prominent differences between the mutants are man-
ifested in KDNA

M . With its KDNA
M of nearly four orders of

magnitude higher than that of WT M.HhaI, L2Bsp
clearly indicated its DNA binding capacity to be severely
impaired. This notion is in good agreement with our DNA
binding studies, which showed no detectable MTase-DNA
complexes in gel shift assays even in the presence of
AdoHcy (data not shown). Upon optimization of the
Loop 2, the interaction between MTases and DNA has
improved significantly, as KDNA

M decreases in the order
L2Bsp>>�L2–6��L2–9>�L2–14 (Table 1). Altoge-
ther, our experiments show that the �L2–14 variant is
the most catalytically efficient GCG-specific MTase.
In addition to increased KDNA

M , all mutants showed sub-
stantially higher KAdoMet

M values as compared to WT
M.HhaI (Table 1). This may appear somewhat surprising
as changes in the TRD are not expected to disrupt any

protein contacts with the cofactor. To rule out this possi-
bility, we determined K

AdoMetðbinaryÞ
D in the binary complex

by monitoring Trp41 fluorescence changes upon cofactor
binding (28). Indeed we found that K

AdoMetðbinaryÞ
D is virtu-

ally unaffected by the deletion of the Loop 2 (Table 1) and
is similar for all mutants and the WT M.HhaI. This
suggested that the observed increases in KAdoMet

M may be
related to a faster release of cofactor from the closed
ternary complex. It was previously shown that the rate
limiting step in the catalytic cycle of M.HhaI is the disso-
ciation of the ternary product complex (MTase-
methylated DNA-AdoHcy), which leads to faster
product formation in the first turnover (burst) as
compared to the steady state rate (24). We therefore, per-
formed a similar pre-steady-state kinetic experiment
(Figure S5), but observed no pre-steady-state burst with
the �L2–14 mutant. Altogether, our findings indicate that
the rate limiting step in this mutant is different from WT
M.HhaI, consistent with an enhanced cofactor exchange
in the ternary complex (25).

Figure 5. Bisulfite sequencing analysis of in vitro specificity of the L2Bsp and �L2–14 MTases. pBR322 DNA was methylated with L2Bsp (top)
or �L2–14 (bottom) at a MTase to GCG target sites ratio of 1:64 and subjected to bisulfite modification. Methylation densities at individual
46 GCN sites were determined by sequencing of a 538 nt pBR322 fragment in individual clones obtained after cloning the bisulfite-converted DNA.
The methylation density is expressed as a ratio of methylated cytosines observed to a total number of sequence reads.

Table 1. Kinetic and thermodynamic parameters of WT and truncated

variants of M.HhaI

M.HhaI
variant

KAdoMet
D

(mM)
KAdoMet

M
(mM)

KDNA
M

(nM)
kcat
(min�1)

kcat/K
DNA
M

(M�1 s�1)

WT 4.2±0.2 0.03±0.01 0.17±0.02 0.89±0.05 9 � 107

L2Bsp 6.1±0.3 4.0±0.5 1300±200 0.27±0.01 3 � 103

�L2–6 8.4±0.9 1.2±0.1 13.5±4.2 0.45±0.01 6 � 105

�L2–9 7.5±0.8 1.3±0.2 4.8±1.4 0.23±0.01 8 � 105

�L2–14 6.9±0.5 0.9±0.1 1.7±0.3 0.98±0.03 1 � 107
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DNA transalkylation using synthetic AdoMet analogs

Synthetic AdoMet analogs with extended sulfonium-
bound propargyllic side chains have been used for
methyltransferase-directed sequence-specific derivatiza-
tion and labeling of DNA (17,18). The novel approach,
named mTAG, envisions many useful applications.
However, as the side chain is extended in length, wild-
type DNA MTases, such as M.HhaI, become increasingly
inefficient. Simple steric engineering of the cofactor
binding pocket (replacing bulky amino acids with Ala or
Ser residues) enabled M.HhaI to use such cofactor analogs
as alkyl donors (17). Tyr254, which is part of the Loop 2,
was one of such replacements around the cofactor pocket
(Lukinavičius et al., in preparation). Meanwhile, the �L2-
MTases inherently contain a Ser at this position, suggest-
ing that they may be more active than the WT M.HhaI in
the transalkylation reactions. Therefore, the �L2–14
mutant was tested for its ability to transfer a pentynyl
chain from a synthetic cofactor analog, AdoPentyn
(Figure 6C). DNA protection assays showed that the
apparent alkylation rate of the engineered MTase is �8
turnovers per hour, which is an at least 100-fold improve-
ment as compared to WT M.HhaI (compare Figure 6A
and B), and is only �8-fold lower than the rate observed
with AdoMet (see Figure S4). Digestion of the modified
DNA with R.Bsh1236I indicated that the sequence
specificity of �L2–14 remained unaltered with both
cofactors (Figure 6B). These experiments demonstrate
that the designed MTase can catalyze an efficient
transfer of methyl groups as well as extended linear
chains to the GCG sites in DNA.

DISCUSSION

The sequence specificity of C5-MTases is largely defined
by their TRD. X-ray structures of reaction complexes
for two C5-MTases (M.HhaI GCGC and M.HaeIII
GGCC) are available to date (12,13), which revealed
that a target DNA sequence is recognized via two recog-
nition loops located in the TRD; the 50 part of the
target site (on the target strand) is contacted by the

N-terminal recognition loop (Loop 1), whereas the
30 part of target sequence is recognized by Loop 2
(Figure 1). Attempts to create enzymes with novel
specificities by recombining loop regions among multi-
specific (14) or mono-specific (15) C5-MTases showed
that changes in the recognition Loop 1 always lead to
inactive enzymes, whereas changes in Loop 2 were often
tolerated, but yielded enzymes with diminished catalytic
activity and degenerate target specificity. The specificity of
the chimeric MTases typically resembled the sequence
defined by Loop 1. For example, our previously
constructed hybrid M.HhaI-L2Bsp, in which Loop 2 of
M.HhaI was replaced by a putatively equivalent region
from M.Bsp6I (GCNGC), turned out to be a weak
GCG-methylating enzyme (15). Altogether, one can
conclude that an exchanged foreign element becomes
functionally inactive in the context of another enzyme
and that dysfunction of Loop 1, which carries structural
elements associated with target base flipping, would be
more critical for the catalytic activity than inactivity of
Loop 2, which interacts with distal bases in the target
sequence. Therefore, for the loop exchange approach to
succeed, a proper ‘accommodation’ of the transferred
element is required. This could in principle be achieved
by using rational structure-based design and/or directed
evolution. Given that scarce structural information is
currently available, precise identification of recognition
loop boundaries and DNA contacting residues using
computational methods may be challenging (28) and
thus in vitro selection of random libraries presents a
powerful alternative.
In this work, our ultimate target sequence specificity

was GCG. Starting from M.HhaI, our task appeared
as a ‘functional deletion’ of Loop 2, which is responsible
for recognition of the fourth base pair (Figure 1).
This recognition is mediated by two hydrogen bond
contacts from the main chain atoms of the Loop 2.
Directed evolution of DNA-contacting residues in Loop
2 did not yield any active mutants with altered target
specificities (29) suggesting that the most promising way
to disable Loop 2 is its truncation. As this was in part

Figure 6. Enzymatic transalkylation of DNA using synthetic cofactor analogs. � DNA was incubated with decreasing amounts (two-fold serial
dilutions) of WT (A) or �L2–14 (B) M.HhaI in the presence of cofactor analog AdoPentyn for 1 h at 37�C, then digested with R.Hin6I or
R.Bsh1236I and analyzed by agarose gel electrophoresis. Numbers above lanes indicate molar ratios of MTases to their target sites (GCGC or
GCG, respectively). (C) Chemical structure of the AdoMet cofactor and its synthetic analog AdoPentyn.
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achieved in the L2Bsp hybrid, our task was thus reduced to
structural ‘accommodation’ of the largely dysfunctional
Loop 2. However, at this starting point, the presence of
the truncated Loop 2 in the L2Bsp hybrid somehow preclu-
ded optimal functioning of Loop 1, which manifested in
a substantial promiscuity at the third nucleotide (methy-
lation of GC[A/C/T] sequences along with the GCG target
sites). While the exact reason for the enhanced off-target
specificity is not clear, two contributing factors can be
envisioned. Recognition of the GCG trinucleotide by
M.HhaI relies on Loop 1, except for one water mediated
contact between the side chain hydroxyl of Ser252 and the
N7 atom of the G3 (Figure 1C). It is thus possible that
replacement of Ser252 for threonine in the hybrid
perturbs the recognition of the C3:G3 pair. Although the
water mediated contact to N7 of G3 is not discriminatory
per se (any purine base could make such a contact), it may
aid the recognition of the C3 by Gln237 via proper posi-
tioning of the base pair within the protein scaffold. The
second possibility is that Loop 2 induces structural
perturbations of adjacent regions in the protein and the
target DNA leading to altered interactions between Loop
1 and the DNA. Both possibilities were taken into consid-
eration in the selection design.
It came as no surprise that elimination of two hydrogen

bonds from the protein–DNA interface upon truncation
of the Loop 2 resulted in a decreased affinity of the L2Bsp
hybrid towards DNA. This is manifested by its poor
catalytic efficiency, a lack of a detectable MTase–DNA
complex band in gel-shift assays (not shown), and by
increased KDNA

M . Although such changes seem inevitable
when an enzyme with a lower specificity is designed, a
possible solution to this problem is to compensate for
the lost specific contacts by introducing new nonspecific
contacts (or enhancing existing ones) between the
DNA and the protein. This is well illustrated by the occur-
rence of an arginine residue in all selected �L2-MTases
(see Figure 1A). Although we cannot predict the exact
conformation of the truncated Loop 2, the proximity of
the added Arg to the phosphodiester backbone is likely
to account for �100-fold lower KDNA

M values in �L2–6
or �L2–6 versus L2Bsp. Moreover, the most active
variant, �L2–14, contained another substitution outside
the randomized region, which resulted in a several-fold
improvement in both kcat and KDNA

M . The latter mutation
maps to the IX conserved motif, where either Arg or Lys is
typically present in other DNA MTases. M.HhaI-DNA
crystal structures show that Lys273 points towards the
DNA although its positively charged nitrogen atoms is
�5 Å apart from the phosphodiester backbone (not
shown). The longer side chain of arginine may bring the
positively charged moiety closer to the phosphate leading
to an enhanced interaction with the DNA.
In addition to increased KDNA

M , all the mutants showed
100-fold higher KAdoMet

M values as compared to WT
M.HhaI (Table 1). Higher KAdoMet

M may result from
destabilizing the closed conformation of the catalytic
loop (residues 81–99 in M.HhaI) or otherwise enhancing
accessibility of the cofactor pocket both leading to a faster
cofactor exchange in the ternary reaction/product
complex (25,28). Inspection of the crystal structures (12)

indicates that such Loop 2 truncations, and replacement
of Tyr254 with a smaller residue (Thr or Ser) in particular,
would surely create a wider solvent channel in the cofactor
pocket. Moreover, these mutations remove a stabilizing
contact between Gln82 in the catalytic loop and Tyr254
in TRD, which is likely to shift the equilibrium of the
catalytic loop towards an open conformer. Since essen-
tially no improvement of KAdoMet

M occurred upon evolution
of the truncated Loop 2 (only 4-fold lower values in �L2-
MTases as compared to L2Bsp), one can conclude that
either the lost structural feature cannot be recovered in
the current structural framework, or further rounds of
directed evolution under conditions of low AdoMet
concentrations are required. From the point of practical
utility, this parameter is quite satisfactory for both in vivo
and in vitro applications. In addition, this endows the
�L2-MTases with a valuable feature to accommodate
AdoMet analogs in the active site for targeted transfer
of extended groups to DNA (6,18) (Figure 6).

The GCG specificity is unique as no natural C5-MTase
is known to recognize this target. Methylation of this
asymmetric target leads to the formation of hemime-
thylated CG sites, which are preferred substrates for
eukaryotic maintenance DNA methyltransferases (1).
Previously, in vivo methylated plasmid DNA obtained
from cells overexpressing M.HhaI-L2Bsp was used as a
substrate to study the processivity of the mouse Dnmt1
MTase (16). Thus in the context of recently reported
specificity changes of M.SinI (30) and M.HaeIII (31),
the obtained GCG-MTase has a high potential to
become a valuable molecular tool for studies of various
aspects of eukaryotic DNA methylation. Although
the catalytic efficiency (kcat/K

DNA
M , see Table 1) of

the designed MTase is 10-fold lower than that of the
WT M.HhaI (28,32), it is comparably efficient or even
supersedes certain C5-MTases such as M.HaeIII
(3� 104) (31), M.SinI (3� 105) (30) or M.SssI (104–105)
(33,34), some of which are widely used to produce
methylated DNA molecules for epigenomic and biochem-
ical studies. Its sequence fidelity in vitro is also comparable
with that of currently characterized WT C5-MTases
(30–32). The methylation fidelity defined as the ratio of
methylation of target/off-target sites is typically around
two orders of magnitude when nano- to micromolar
concentrations of enzyme is used [Figures 4 and 5; (32)].
At these practically useful concentrations and typical
KDNA

M values in the nM range ([MTase] >KDNA
M ), the def-

inition of fidelity as a ratio of kcat/K
DNA
M values for specific

over non-specific sites is not particularly informative, since
the specificity is largely controlled by kcat with little con-
tribution from the DNA binding affinity.

In summary, this work represents the first example of
enzyme engineering effort leading to a dual specificity
change in a DNA methyltransferase. The newly designed
MTase is an efficient sequence-specific enzyme that is
able to use synthetic AdoMet analogs for the transfer
of extended groups onto DNA. The endowed unique
features envision useful practical applications of the
designer MTase, such as (i) in vitro or in vivo generation
of hemimethylated CpG-sites for studies of maintenance
methylation in mammals and (ii) attaching larger
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chemical entities to DNA for synthesis of DNA-based
nanoparticles.
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his gift of the AdoPentyn cofactor, Goda Mitkaite_ for
constructing the E. coli ER2566 lacIq (Kmr) strain,
Migle_ Gudeliauskaite_ for her help with construction of
the p�324GH6 plasmid, and Fermentas Life Sciences for
valuable support. They also thank Janusz Bujnicki and
Jan Kosinski for structural analyses and stimulating
discussions during early stages of the project.

FUNDING

Howard Hughes Medical Institute grants [5500317,
55004123 to S.K.]; and the Lithuanian State Science and
Studies Foundation [P-03/2007 to S.K.]. Funding for open
access charge: Lithuanian State Science and Studies
Foundation [P-03/2009 to S.K.].

Conflict of interest statement. None declared.

REFERENCES

1. Grosjean,H. (2009) DNA and RNA Modification Enzymes: Structure,
Mechanism, Function and Evolution. Landes Bioscience, Austin.

2. Kilgore,J.A., Hoose,S.A., Gustafson,T.L., Porter,W. and
Kladde,M.P. (2007) Single-molecule and population probing of
chromatin structure using DNA methyltransferases. Methods, 41,
320–332.

3. Carvin,C.D., Parr,R.D. and Kladde,M.P. (2003) Site-selective in
vivo targeting of cytosine-5 DNA methylation by zinc-finger
proteins. Nucleic Acids Res, 31, 6493–6501.

4. Smith,A.E. and Ford,K.G. (2007) Specific targeting of cytosine
methylation to DNA sequences in vivo. Nucleic Acids Res., 35,
740–754.

5. Singer,E.M. and Smith,S.S. (2006) Nucleoprotein assemblies for
cellular biomarker detection. Nano Lett., 6, 1184–1189.

6. Klimasauskas,S. and Weinhold,E. (2007) A new tool for
biotechnology: AdoMet-dependent methyltransferases. Trends
Biotechnol., 25, 99–104.

7. Roberts,R.J., Vincze,T., Posfai,J. and Macelis,D. (2007) REBASE–
enzymes and genes for DNA restriction and modification.
Nucleic Acids Res., 35, D269–D270.

8. Lauster,R., Trautner,T.A. and Noyer-Weidner,M. (1989) Cytosine-
specific type II DNA methyltransferases. A conserved enzyme core
with variable target-recognizing domains. J. Mol. Biol., 206, 305–312.

9. Posfai,J., Bhagwat,A.S., Posfai,G. and Roberts,R.J. (1989)
Predictive motifs derived from cytosine methyltransferases.
Nucleic Acids Res., 17, 2421–2435.

10. Trautner,T.A., Balganesh,T.S. and Pawlek,B. (1988) Chimeric
multispecific DNA methyltransferases with novel combinations of
target recognition. Nucleic Acids Res., 16, 6649–6658.

11. Klimasauskas,S., Nelson,J.L. and Roberts,R.J. (1991) The sequence
specificity domain of cytosine-C5 methylases. Nucleic Acids Res.,
19, 6183–6190.

12. Klimasauskas,S., Kumar,S., Roberts,R.J. and Cheng,X. (1994)
HhaI methyltransferase flips its target base out of the DNA helix.
Cell, 76, 357–369.

13. Reinisch,K.M., Chen,L., Verdine,G.L. and Lipscomb,W.N. (1995)
The crystal structure of HaeIII methyltransferase covalently

complexed to DNA: an extrahelical cytosine and rearranged base
pairing. Cell, 82, 143–153.

14. Lange,C., Wild,C. and Trautner,T.A. (1996) Identification of a
subdomain within DNA-(cytosine-C5)-methyltransferases
responsible for the recognition of the 50 part of their DNA target.
EMBO J., 15, 1443–1450.

15. Vilkaitis,G. and Klimasauskas,S. (1998) Construction and analysis
of monospecific DNA cytosine-C5 methyltransferases with chimeric
target recognition domains. Biologija, 51–54.

16. Vilkaitis,G., Suetake,I., Klimasauskas,S. and Tajima,S. (2005)
Processive methylation of hemimethylated CpG sites by mouse
Dnmt1 DNA methyltransferase. J. Biol. Chem., 280, 64–72.

17. Dalhoff,C., Lukinavicius,G., Klimasauskas,S. and Weinhold,E.
(2006) Direct transfer of extended groups from synthetic cofactors
by DNA methyltransferases. Nat. Chem. Biol., 2, 31–32.

18. Lukinavicius,G., Lapiene,V., Stasevskij,Z., Dalhoff,C., Weinhold,E.
and Klimasauskas,S. (2007) Targeted labeling of DNA by
methyltransferase-directed transfer of activated groups (mTAG).
J. Am. Chem. Soc., 129, 2758–2759.

19. Dalhoff,C., Lukinavicius,G., Klimasauskas,S. and Weinhold,E.
(2006) Synthesis of S-adenosyl-L-methionine analogs and their
use for sequence-specific transalkylation of DNA by
methyltransferases. Nat. Protocols, 1, 1879–1886.

20. Dila,D., Sutherland,E., Moran,L., Slatko,B. and Raleigh,E.A.
(1990) Genetic and sequence organization of the mcrBC locus of
Escherichia coli K-12. J. Bacteriol., 172, 4888–4900.

21. Daujotyte,D., Vilkaitis,G., Manelyte,L., Skalicky,J., Szyperski,T.
and Klimasauskas,S. (2003) Solubility engineering of the HhaI
methyltransferase. Protein Eng., 16, 295–301.

22. Vilkaitis,G. and Klimasauskas,S. (1999) Bisulfite sequencing
protocol displays both 5-methylcytosine and N4-methylcytosine.
Anal. Biochem., 271, 116–119.

23. Bock,C., Reither,S., Mikeska,T., Paulsen,M., Walter,J. and
Lengauer,T. (2005) BiQ Analyzer: visualization and quality control
for DNA methylation data from bisulfite sequencing.
Bioinformatics, 21, 4067–4068.

24. Vilkaitis,G., Merkiene,E., Serva,S., Weinhold,E. and
Klimasauskas,S. (2001) The mechanism of DNA cytosine-5
methylation. Kinetic and mutational dissection of HhaI
methyltransferase. J. Biol. Chem., 276, 20924–20934.

25. Merkiene,E. and Klimasauskas,S. (2005) Probing a rate-limiting
step by mutational perturbation of AdoMet binding in the HhaI
methyltransferase. Nucleic Acids Res., 33, 307–315.

26. Kuzmic,P. (1996) Program DYNAFIT for the analysis of enzyme
kinetic data: application to HIV proteinase. Anal. Biochem., 237,
260–273.

27. Wu,J.C. and Santi,D.V. (1987) Kinetic and catalytic mechanism of
HhaI methyltransferase. J. Biol. Chem., 262, 4778–4786.

28. Vilkaitis,G., Dong,A., Weinhold,E., Cheng,X. and Klimasauskas,S.
(2000) Functional roles of the conserved threonine 250 in the target
recognition domain of HhaI DNA methyltransferase. J. Biol.
Chem., 275, 38722–38730.

29. Lee,Y.F., Tawfik,D.S. and Griffiths,A.D. (2002) Investigating the
target recognition of DNA cytosine-5 methyltransferase HhaI by
library selection using in vitro compartmentalisation. Nucleic Acids
Res., 30, 4937–4944.

30. Timar,E., Groma,G., Kiss,A. and Venetianer,P. (2004) Changing
the recognition specificity of a DNA-methyltransferase by in vitro
evolution. Nucleic Acids Res., 32, 3898–3903.

31. Cohen,H.M., Tawfik,D.S. and Griffiths,A.D. (2004) Altering the
sequence specificity of HaeIII methyltransferase by directed evolution
using in vitro compartmentalization. Protein Eng. Des. Sel., 17, 3–11.

32. Youngblood,B., Buller,F. and Reich,N.O. (2006) Determinants of
sequence-specific DNA methylation: target recognition and catalysis
are coupled in M.HhaI. Biochemistry, 45, 15563–15572.

33. Subach,O.M., Maltseva,D.V., Shastry,A., Kolbanovskiy,A.,
Klimasauskas,S., Geacintov,N.E. and Gromova,E.S. (2007) The
stereochemistry of benzo[a]pyrene-20-deoxyguanosine adducts
affects DNA methylation by SssI and HhaI DNA
methyltransferases. FEBS J., 274, 2121–2134.
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