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ABSTRACT

Solanum hjertingii is a wild tuber-bearing species classified in the Solanaceae family. The chloroplast
genome of S. hjertingii was completed via de novo assembly using lllumina paired-end sequencing
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data. Total length of the chloroplast genome of S. hjertingii is 155,545 bp consisting of 85,976bp in a

large single copy, 18,383 bp in a small single copy, and 25,593 bp in a pair of inverted repeat regions.
Its structure is circular and typically quadripartite. It contains 158 predicted genes in total, including
105 protein-coding, 45 tRNA, and eight rRNA genes. Maximum likelihood phylogenetic analysis of the
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sequence along with 33 species in the Solanaceae family revealed that S. hjertingii belongs to a large
clade with other Solanum species including S. tuberosum and is most closely grouped in the clade with

S. hougasii and S. stoloniferum in the clade.

The wild tuber-bearing Solanum hjertingii Hawkes 1963 is a
relative of the potato (Solanum tuberosum) originating from
Mexico. It has been identified as a potential source of resist-
ance to blackspot bruising because it exhibits neither enzym-
atic browning nor blackspot caused by impact or
compression damage during harvest or storage (Hawkes
1990; Sim et al. 1997; Culley et al. 2002; Hara-Skrzypiec and
Jakuczun 2013). It was also determined in contemporary
researches to be resistant to both biotic and abiotic stresses
such as Phytophthora infestans, drought and salt (data not
shown). For these reasons, the wild species can be used for
introgression of certain traits into the cultivated potatoes.
However, S. hjertingii and S. tuberosum are not conventionally
crossable, although both are tetraploids. The endosperm
balance numbers (EBNs) for these species are 2 and 4,
respectively (Hawkes 1990; Ortiz and Ehlenfeldt 1992; Cho
et al. 1997). As a result, more advanced methods such as
bridge crossing and somatic hybridization can be used for
potato breeding as applied with other wild Solanum species
(Hermsen 1966; Hermsen and Ramanna 1973; Binding et al.
1982; Iwanaga et al. 1991; Park et al. 2005; Luthra et al.
2019). The bridge crossing method was applied once (Culley
et al. 2002), but somatic hybridization has not yet been tried
with S. hjertingii. Therefore, we have been trying it and devel-
oping molecular markers to identify cytoplasm genome com-
position after obtaining hybrids via somatic hybridization.
The wild S. hjertingii species (PI186559) was obtained from
the Highland Agriculture Research Institute, South Korea
(37°68'05.4"N 128°73'09.1”E) and the specimen deposited at
the National Agrobiodiversity Center, South Korea (http://gene-
bank.rda.go.kr/, Hyun-Jin Park, rosa2125@korea.kr) as voucher
number [T301488. Chloroplast genome sequencing was

performed via the Phyzen bioinformatics pipeline (Kim et al.
2015). Total genomic DNA was isolated from one of the S. hjer-
tingii lines by using a Genomic DNA Extraction kit for plants
(RBC, New Taipei City, Taiwan). An lllumina paired-end (PE) gen-
omic library was constructed with the genomic DNA by follow-
ing the PE standard protocol (lllumina, San Diego, USA) and was
sequenced at Macrogen (http://www.macrogen.com/kor/) using
an lllumina HiSeq2000 platform. Approximately 1.48 Gbp of the
sequence raw data obtained in total was trimmed and low-qual-
ity bases with a raw Phred score of 20 or less were removed
using the CLC quality trim program in the CLC assembly cell
package version 4.2.1 (CLC Inc, Rarhus, Denmark). Finally,
approximately 1.27 Gbp of high-quality PE reads were applied
for de novo assembly using the CLC de novo assembly program
in the same package followed by retrieving the principal contigs
representing the chloroplast genome and arranging the repre-
sentative chloroplast contigs using Nucmer (Kurtz et al. 2004)
and BLASTZ analysis (Schwartz et al. 2003) with the chloroplast
genome sequence of S. hougasii (MF471372, Cho et al. 2018;
Kim and Park 2020a). Gene annotation and manual curation
were performed with the GeSeq program (Tillich et al. 2017) and
BLAST searches. Phylogenetic analysis was performed using the
chloroplast coding sequences of S. hjertingii and 33 published
species belonging to the Solanaceae family by using a max-
imum likelihood method with the Kimura 2-parameter model
and 1,000 bootstrap options in MEGA 6.0 (Tamura et al. 2013).
Total length of the complete S. hjertingii chloroplast gen-
ome (MK690623) is 155,545bp consisting of a large single
copy (LSC) region of 85976bp, a small single copy (SSC)
region of 18,383 bp, and a pair of inverted repeat (IRa and
IRb) regions of 25,593 bp with the typical circular and quadri-
partite structure like most plastids. Overall GC content was
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Figure 1. Maximum likelihood phylogenetic tree of S. hjertingii with 33 species belonging to the Solanaceae family based on chloroplast protein coding sequences.
Numbers in the nodes are bootstrap values from 1000 replicates. The data were partially adopted from Park (2021).

37.88%. The closest Solanum species were S. hougasii
(MF471372) and S. stoloniferum (MF471373, Park 2018; Kim
and Park 2020b) each with a very high sequence identity of
99.97% and 99.96%, respectively. A total of 158 genes were
annotated with an average length of 583.3bp and gene fea-
tures were typically identical to those of higher plants. The
chloroplast genome consists of 105 protein-coding genes, 45
tRNA genes and eight rRNA genes with average sizes of
765.0 bp, 62.0bp and 1131.0 bp, respectively.

Results from phylogenetic analysis revealed that S. hjertin-
gii belongs to the same clade with other Solanum species as
expected, and is most closely grouped in the clade with S.
hougasii and S. stoloniferum (Figure 1). These results can be
explained by the fact that the plastid DNA data generated a
four-clade phylogeny and the three species originating from
Mexico belong to the same clade (Spooner et al. 2008). Their
genome compositions evolutionarily identified by gene and
genomic in situ hybridization (GISH) analyses also support an
AABB genome constitution (allotetraploid) for S. hjertingii and
S. stoloniferum, and AABBPP (allohexaploid) for S. hougasii
(Spooner et al. 2008; Pendinen et al. 2012; Ono et al. 2016).
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