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Combination of gene set 
signatures correlates with response 
to nivolumab in platinum‑resistant 
ovarian cancer
Ryusuke Murakami1,2,8, Junzo Hamanishi1,8*, J. B. Brown3,4,8, Kaoru Abiko1,5, Koji Yamanoi1, 
Mana Taki1, Yuko Hosoe1, Ken Yamaguchi1, Tsukasa Baba1,6, Noriomi Matsumura1,7, 
Ikuo Konishi1,5 & Masaki Mandai1

Based on our previous phase II clinical trial of anti‑programmed death‑1 (PD‑1) antibody nivolumab 
for platinum‑resistant ovarian cancer (n = 19, UMIN000005714), we aimed to identify the biomarkers 
predictive of response. Tumor gene expression was evaluated by proliferative, mesenchymal, 
differentiated, and immunoreactive gene signatures derived from high‑grade serous carcinomas 
and a signature established prior for ovarian clear cell carcinoma. Resulting signature scores were 
statistically assessed with both univariate and multivariate approaches for correlation to clinical 
response. Analyses were performed to identify pathways differentially expressed by either the 
complete response (CR) or progressive disease (PD) patient groups. The clear cell gene signature was 
scored significantly higher in the CR group, and the proliferative gene signature had significantly 
higher scores in the PD group where nivolumab was not effective (respective p values 0.005 and 0.026). 
Combinations of gene signatures improved correlation with response, where a visual projection of 
immunoreactive, proliferative, and clear cell signatures differentiated clinical response. An applicable 
clinical response prediction formula was derived. Ovarian cancer‑specific gene signatures and related 
pathway scores provide a robust preliminary indicator for ovarian cancer patients prior to anti‑PD‑1 
therapy decisions.

Ovarian cancer, the leading cause of death among gynecological malignancies, includes high-grade serous (75%), 
endometrioid (10%), clear cell (10%), and mucinous (3%) carcinomas in histopathological  subtyping1. Standard 
first-line chemotherapy employs a combination of taxane and platinum agents. Clear cell ovarian carcinoma, 
with an increased prevalence in East Asian populations, is notably resistant to  chemotherapy2,3.

Many cancer types have been studied in depth to identify transcriptome profiles in bulk tumor tissue that 
correlate with response to chemotherapy. In ovarian cancer, we have previously shown that the correlation 
between tumor microenvironment and subtype-specific transcriptome profiles, resulting in the “Classification 
of Ovarian Cancer” (CLOVAR) gene expression  signatures4, could be indicative of antitumor and prognostic 
response to individual small molecule chemotherapeutic  agents5. Particularly, the ovarian mesenchymal subtype 
has the worst prognosis but is responsive to  taxane6,7.
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Gene expression continues to be a central focal point as cancer therapy strategies broaden to incorporate 
the emerging use of immune checkpoint inhibitors that target the immunosuppressive resistance mechanisms 
of  tumors8.

In a recent study, Liu et al. reported the results of a phase II study (n = 38) combining the immune checkpoint 
anti-programmed death-1 (PD)-1 inhibitor nivolumab and bevacizumab in relapsed ovarian cancer. In this 
study, patients were stratified according to tumor resistance or sensitivity to  platinum9, and the findings showed 
that platinum-sensitive patients responded better than platinum-resistant patients. Concurrently, we previously 
executed a 19-patient phase II study of nivolumab exclusively for platinum-resistant recurrent ovarian cancer. 
In this study, two patients, including one patient with clear cell carcinoma, demonstrated a complete response 
(CR) to the therapy, contributing to an overall response rate of 15% and a disease control rate of 45%10. Although 
tumor expression of the programmed death-1 ligand 1 (PD-L1) is predictive of the therapeutic response in certain 
tumor types such as melanoma and non-small cell lung  cancer11–15, we found that PD-L1 expression alone was 
not sufficiently predictive of response in the case of ovarian  cancer10,16.

Despite reports that immune checkpoint inhibitor therapy is demonstrating remarkable and durable response 
in a number of solid and hematological  cancers17–21, response rates are still far from  optimal9, and therefore, 
there is a pressing need to develop appropriate predictive  biomarkers22. This is notable for ovarian cancer, where 
regulatory approval for clinical therapy by immune checkpoint inhibitors has not occurred in any  country23.

Although gene-specific expression can be used to determine consistent expression-response correlations, 
it is also possible to consider tumor- and immune-contextualized functional groups of gene expression and 
their correlations with specific  outcomes24,25. This is important when considering that ovarian cancer has been 
demonstrated to be difficult to analyze solely by individual transcript  levels10,16 and is compounded by the fact 
that heterogeneous bulk tissue RNA analysis is still the most practical strategy for clinical settings. Furthermore, 
given that the combination of small molecule and anti-PD-1 antibody therapy regimens are expected to be 
effective as a treatment strategy, the availability of a prognostic and predictive biomarker suggesting response 
or resistance to ovarian cancer immunotherapy based on tumor and immune expression is highly beneficial for 
routine clinical practice.

In this study, we report the development and results of a systematic method to leverage gene expression meas-
ured in platinum-resistant ovarian tumors by recasting individual gene transcript levels into functionally related 
groups that can subsequently be complementarily combined to predict a response to immune checkpoint inhibi-
tor therapy. Despite limited sample size, we find that combinations of clear cell-specific26, CLOVAR immunoreac-
tive, differentiated, mesenchymal, and  proliferative4 gene set signatures rationally map the expression-response/
resistance space for the samples available. We also identified clear cell carcinoma signature and immune-related 
pathways differentially expressed in CR and progressive disease (PD) subgroups. In addition to providing an 
interpretable and actionable result, the methodology is sufficiently straightforward that it can easily be applied 
to future studies with larger cohorts to improve decision-making and subsequent response rates to immune 
checkpoint inhibitor therapy for this challenging subclass of gynecological malignancies.

Materials and methods
Patient samples. Patients with platinum-resistant recurrent ovarian cancer were enrolled in a clinical trial 
of nivolumab, anti-PD-1 antibody, at Kyoto University from 2011 to 2015 (n = 20, UMIN000005714)10. The study 
was approved by the Kyoto University Graduate School and Faculty of Medicine, Kyoto University Hospital 
Ethics Committee (approval number: G531), in which donors provided written informed consent in accord-
ance with institutional and national guidelines. Patient tumor samples were obtained by surgical dissection and 
stored as paraffin-fixed formalin-embedded (FFPE) tissue following recommendations of best practices for 
FFPE-based gene expression  measurement27. One patient experienced thyroiditis-induced fever and tachycardia 
after receiving the first nivolumab dose and discontinued further treatment. This patient was excluded from the 
overall response analysis and data analyses, resulting in 19 patients being available for statistical investigations.

Clinical response was measured at 8 weeks following the onset of anti-PD-1 therapy (Response Evaluation 
Criteria in Solid Tumours (RECIST) 1.1  criteria28). Histological subtyping was performed. Other characteristics 
including but not limited to dose group, adverse events, and cancer antigen 125 levels during the course of treat-
ment have been comprehensively presented in the  literature10.

Gene expression measurement. Total RNA was extracted from the FFPE tumor samples by a DNA/
RNA FFPE Kit (Qiagen, Valencia, CA, USA). 90 ng of RNA were analyzed using a GeneChip Human Transcrip-
tome Array 2.0 (microarray) in accordance with the protocol of the SensationPlus FFPE Amplification and WT 
Labeling Kit (Affymetrix/Thermo Fisher Scientific, Waltham, MA, USA).

Statistical analyses. Normalization of gene expression was performed using the Single Space Transforma-
tion Robust Multi-Average (SST-RNA) method available in Expression Console v1.41. Normalized expression 
was quality-checked following recommendations for microarray  processing29 and subsequently input for single-
sample Gene Set Enrichment Analysis (ssGSEA)30. In summary, ssGSEA converts the raw expression values of 
a single sample into ranks based on expression value, and, for each gene set (signature) in a collection of signa-
tures, outputs a score reflecting the relationship between the constituent genes of the signature and their ranks 
among all the genes in a sample. The use of multi-gene groups is advantageous in counteracting fluctuation in 
expression and misinterpretation of direct expression value ranks.

In the first expression analysis, we subjected patient samples to analysis by ssGSEA constrained to the applica-
tion of five oncological gene signatures. Four well-studied signatures corresponding to CLOVAR immunoreactive, 
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proliferative, mesenchymal, and differentiated gene expression subtypes in high grade serous  carcinoma4, and a 
clear cell carcinoma-specific  signature26 constituted the gene sets tested. All gene sets are in the public domain.

Values output by ssGSEA were normalized to the range 0–1 inclusive (affine transformation), per oncologi-
cal signature. Significance of differential ssGSEA pathway scores amongst the CR/partial response (PR)/stable 
disease (SD)/PD groups was detected using a one-way analysis of variance (ANOVA) test. Rejection of the null 
hypothesis that all groups were equal for a given signature was determined when the probability of such (p 
value) was less than a cutoff of 0.05. As a secondary investigation, we normalized the oncological signatures by 
the “z-scale” transformation (subtraction from the mean and subsequent division by the standard deviation), 
followed by affine scaling per patient sample.

In a second gene expression analysis, the samroc  method31 for detecting significance between pairs of groups 
was used to identify differential pathways. Gene sets based on the publicly available Molecular Signatures Data-
base version 6.1 (https:// softw are. broad insti tute. org/ gsea/ msigdb/), containing 21,425 pathways, were used. 
CR-other and PD-other analyses were initially performed, as well as a CR + PR versus SD + PD subsequent 
comparison necessary due to the study sample size available. The latter comparison also confirmed the sensitiv-
ity of the CR-other result as a function of the sample size. Raw probability values of null hypotheses that groups 
were equal (p values) were compensated for multiple hypothesis testing (of the 21,425 pathways) by using the “p. 
adjust” function built into the R statistical environment (http:// www.r- proje ct. org), resulting in false discovery 
rate (FDR) q-values. A threshold of q < 0.05 was used to reject the null hypothesis.

Weights in fitting signature scores versus clinical response. Weights for a linear combination of the 
five ovarian cancer-specific signatures were obtained by solving a least-squares fitting equation a * X = b available 
from the “linalg.lstsq” solver built into the NumPy matrix processing library (www. scipy. org), an extension of 
the Python programming language. The matrix X contained the raw 0–1 ssGSEA scores as described above and 
therefore was of shape 19 × 5. The vector b (of length 19) was set to follow the RECIST 1.1 criteria for changes in 
tumor volume, and therefore, quantities in b corresponding to tumor growth evaluation criteria were PD = 0.2, 
SD = 0, PR =  − 0.3, and CR =  − 1.0.

Ethics approval and consent to participate. This study was approved by the Kyoto University Gradu-
ate School and Faculty of Medicine, Kyoto University Hospital Ethics Committee (Approval Number: G531), 
in which donors provided written informed consent in accordance with institutional and national guidelines.

Results
Correlation between gene signature groups and clinical response. Nineteen patients, histologi-
cally comprising 14 with high-grade serous carcinomas (73%), three with endometrioid carcinomas (16%), and 
two with clear cell carcinomas (11%), were analyzed; these ratios were concordant with prior  publication1. There 
were two patients with CR, one with PR, six with SD, and 10 with PD; the response rate was consistent with that 
of an independent  study16. One patient demonstrated a complete elimination of the primary target lesion but 
experienced a para-aortic metastasis. Therefore, this patient was given a special designation of “SD (CR)” while 
being allocated in the PR group for signature-response analyses. The pair of complete responders had CA125 
levels that exponentially decayed over the time course of treatment.

ANOVA analysis between tumors of the response groups revealed that the pair of patients with CR had 
significantly increased clear cell gene signature scores (Fig. 1 upper left, p = 0.005). Aside from one PD patient 
whose expression yielded a high clear cell score, scores of the PD patients were systemically reduced. Conversely, 
tumors from the PD patients had significantly higher CLOVAR proliferative gene signature scores compared to 
those from the other groups (Fig. 1 upper right, p = 0.026). There was no overlap in the proliferative signature 
score values or confidence intervals between the CR and PD groups. Considering these results, the clear cell and 
proliferative gene signatures are suggestive of positive or negative response to anti-PD-1 antibody treatment in 
ovarian cancer.

Although not statistically significant at a cutoff value of p = 0.05, clear trends were observed in the scores of 
the other signatures tested. These included the increased immunoreactive signature scores in the patients with 
CR and PR (Fig. 1, bottom left), the higher differentiation signature scores in the patients with CR (Fig. 1, bottom 
center, p = 0.054), and the increased mesenchymal signature scores in the patients with PD (Fig. 1, bottom right).

For reference, we also performed signature significance testing by stratifying samples into their clear cell, 
serous, and endometrial histopathological subtypes. A figure analogous to Fig. 1 is provided as Supplementary 
Fig. S1. Besides the anticipated result that the clear cell samples had higher clear cell signature scores than the 
other samples, there were no significant correlations. One patient with a serous carcinoma also exhibited hall-
marks of the clear cell subtype when a sample of the tumor was viewed under the microscope; this patient had 
an increased clear cell signature score (Supplementary Fig. S1).

Mutual complementarity effects of gene signature groups. Unsupervised hierarchical clustering of 
patients and signatures was performed (Fig. 2). After additional annotation with clinical response, a reasonable 
trend between the signature groups and their response was obtained. Although the immunoreactive, differenti-
ated, and mesenchymal gene signatures did not yield probability values that passed the p = 0.05 threshold to be 
considered significant (Fig. 1), Fig. 2 suggests that the combination of both significant and statistically non-
significant gene signature scores provides complementary points of evidence and improved decision-making 
support over the evidence suggested by any individual signature score. For example, although the patients with 
PD dominantly had increased scores in the proliferative gene signature, consideration of the proliferative and 
mesenchymal signatures in parallel provided more complete coverage of the PD patients than either signa-

https://software.broadinstitute.org/gsea/msigdb/
http://www.r-project.org
http://www.scipy.org
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Figure 1.  Significance testing of ovarian signature scores stratified by clinical response. ssGSEA was applied 
with gene signature sets tailored to ovarian cancer, resulting in per-signature scores normalized to the range 0–1. 
The clear cell signature is significant in complete responders and the proliferative signature was significantly 
different in patients who exhibited progressive disease. The PR* group comprises one patient classified as PR by 
RECIST protocols and one exceptional patient (see “Methods”). Image was created using Prism version 8.3.0 
(https:// www. graph pad. com/).

Figure 2.  Complementarity of gene signatures in predicting clinical response. Gene signature groups were 
biclustered, and patient clinical responses were annotated. An additional annotation track of histopathological 
subtype is provided. Score values were normalized by centering on the mean for each signature, and average 
linkage was used to create the dendrogram. Combinations of signature groups reinforce prediction of clinical 
response to therapy. Image was created using Python 3.0. (https:// www. python. org/ downl oad/ relea ses/3. 0/).

https://www.graphpad.com/
https://www.python.org/download/releases/3.0/
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ture alone. Consideration of the combined clear cell, differentiated, and immunoreactive signatures better sug-
gests a response (non-PD) than any isolated signature value. Similar heatmaps with patients grouped by clinical 
response or by an additional per-patient normalization prior to clustering are available in Supplementary Fig. S2 
and Supplementary Fig. S3, respectively.

Based on the trends of Figs. 1, 2, Supplementary Fig. S2, and Supplementary Fig. S3, we attempted to quantify 
the weights for each signature score that could subsequently be combined to forecast response to nivolumab. 
By solving a least-squares fit of the score-response data, we derived the following response predictor with a 
functional form:

where a negative response score indicates a positive response to treatment (reduction in tumor volume) and a 
positive score indicates a lack of response. Further analyses confirmed that the weights were invariant to any 
uniform scaling of the response group categories. This formula could be applied as-is in a clinical setting when 
tumor bulk RNA expression is measured and ssGSEA signature values are computed from the result. A new fitting 
of weight constants (a) can be updated upon acquisition of new data simply by extending the patient-signature 
matrix (X) and the vector of patient responses (b).

A visual interpretation of a patient’s ssGSEA scores is helpful to both the physician and the patient. Given 
the signs and magnitudes of the weights computed in the formula above, analyses were subsequently performed 
to project a combination of the three gene signature scores as a point in a three-dimensional coordinate space, 
with coloring of points by clinical response. As demonstrated in Fig. 3, a projection using the combination of 
immunoreactive, proliferative, and clear cell signatures provides a quick visual guide to the prediction of anti-
tumor response via spatial clustering. Supplementary Fig. S4 is an animation demonstrating a 360-degree view 
of this three-dimensional projection.

For further analysis, ssGSEA values of individual signatures (Fig. 1) were evaluated by histogram, and their 
pairwise correlations were computed by Pearson’s product moment correlation (Supplementary Fig. S5). We 
observed from the individual signature score distributions that the clear cell gene signature is distinctively 
bimodal, whereas the CLOVAR subtype signatures follow more of a Gaussian or skewed distribution. With 
respect to the pairwise signature correlation, a negative correlation (r =  − 0.69) was observed between the 
proliferative and clear cell gene signatures, which is an anticipated finding but critically serves as a necessary 
negative control for the investigation. A positive correlation between the differentiated and clear cell signatures 

RESP = −0.439 × CLE + 0.013 × DIFF

− 0.364 × IMR + 0.308 × MES + 0.350 × PRO

Figure 3.  Three-dimensional signature score projection. Expansion from two-dimensional to three-
dimensional projection improves response demarcation. A 360-degree viewpoint animation of the project is 
available as supplementary data. Points are colored using the same annotation as Fig. 1. Figure 3 image was 
created using R statistical environment version 3.6.0 (http:// www.r- proje ct. org).

http://www.r-project.org
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(r = 0.65) supports the view that clear cell carcinoma is a well-differentiated subtype, as previously  reported32. 
When restricted to genes reported as upregulated in the literature, the differential-clear cell signature correla-
tion increases (r = 0.75).

Differential pathways in response groups. A secondary ssGSEA analysis was performed to search for 
additional gene signatures and pathways that correlated with patient responses. As the CR and PD patients were 
significantly different in ANOVA analyses based on the CLOVAR and clear cell signatures (Fig. 1), CR-vs-other 
and PD-vs-other samroc analyses were performed for 21,425 pathways (see “Materials and Methods” section).

Using the collection of genes that had higher average expression in the CR patients than in the other response 
groups, samroc analysis corroborated the effectiveness of the clear cell-specific signature (Supplementary 
Table S1). In the downregulated genes of the CR group, pathways associated with positive regulation of stem cell 
differentiation and epithelial-to-mesenchymal transition were detected as significant (Supplementary Table S2), 
thus inferring the suppression of these well-known tumor growth processes.

From the tissues of the PD patients, samroc analysis of upregulated genes identified not only the serous-
specific proliferative gene signature but also gene sets characterizing pathways for positive regulation of extra-
cellular matrix organization and mesenchymal cell proliferation (Supplementary Table S3). The PD group also 
demonstrated downregulation of pro-inflammatory cytokines, including tumor necrosis factor binding, regu-
lation of interleukin synthesis, cytokine secretion and inflammatory response, and B-cell mediated immunity 
(Supplementary Table S4).

We repeated the analyses by combining the CR group and the partial responder and querying how the sam-
roc detection of pathways would be affected. Although some new pathways emerged as significant only in the 
CR + PR upregulated gene group, there was a reasonable overlap within the original CR-only analysis, including 
the clear cell signature (Supplementary Fig. S6 and Supplementary Table S5). Analysis of the downregulated 
genes in the CR + PR group returned pathways having more overlap with the CR-only group than the number of 
new pathways unique to only the CR + PR group. Those commonly downregulated pathways once again included 
regulation of stem cell differentiation, mesenchymal-to-epithelial transition, and regulation of cell–cell adhesion 
mediated by cadherin (Supplementary Fig. S7 and Supplementary Table S6).

Discussion
Ovarian cancer has proven to be a challenging cancer type to treat, as it has multiple subtypes that confer dif-
fering responses to therapy. The platinum-taxane regimen was conceived with the hypothesis that it could cover 
the variety of subtypes, although resistance to the regimen is common. We have previously shown that the 
mesenchymal subtype was sensitive to taxane but not to platinum, whereas the proliferative subtype was sensi-
tive to  platinum5. The introduction of targeted agents such as bevacizumab has shown improved response in 
proliferative subtype  patients33 and platinum-resistant mesenchymal subtype patients. The mechanistic role of 
immune checkpoint inhibitors in the subtype-therapy-response dynamic and the effectively selection of patients 
has been an open question.

In this study, we thus aimed to establish a systematic and reusable method to capture a systems-level biological 
insight from a limited number of ovarian tumor transcriptomes. Individual gene sets demonstrated informative 
trends, and could be combined into an interpretable linear combination to contribute to the holistic subtype-
therapy-response dynamic in the context of nivolumab. The obtained linear combination readily and signifi-
cantly explained the outcomes of the PD group in the proliferative and mesenchymal subtypes, which have poor 
prognoses. These two subtypes are currently being addressed with the use of  bevacizumab33. Additionally, the 
formula indicated that response to nivolumab could be expected through increased immunoreactivity and clear 
cell signature scores. This latter fact is particularly interesting, as it covers the subtypes in which bevacizumab 
is not efficacious.

Due to a number of factors beyond our control, the study had a limitation in that it had a small sample size, 
and our findings must be contextualized as a prospect. Nonetheless, in combination with recent reports of ovar-
ian cancer therapy response studies, immune checkpoint inhibitor therapy and the subtype-treatment-response 
dynamic can be enriched by our results.

Recently, Moore et al. presented the first results of the phase III IMagyn050/GOG3015/ENGOT-OV39 trial. In 
this trial, the addition of atezolizumab to bevacizumab and platinum-taxane chemotherapy failed to significantly 
improve progression-free survival (PFS) in patients with newly diagnosed advanced ovarian cancer. However, 
results from exploratory PFS analyses demonstrated a trend favoring atezolizumab in a subgroup of patients 
with 5% or more PD-L1-expressive immune cells. Here, the median PFS with the atezolizumab regimen was 
not obtained, as compared to the median of 20.2 months in the bevacizumab/chemotherapy arm (hazard ratio 
[HR] 0.64; 95% confidence interval [CI] 0.43–0.96; significant). Furthermore, in histological subgroup analyses, 
patients with clear cell carcinoma showed favorable PFS (HR 0.64; 95% CI 0.33–1.24; not significant) in the 
atezolizumab arm (n = 29) compared to the placebo arm (n = 22), which could warrant further evaluation due to 
small sample  size34. These findings of clinical benefit via atezolizumab in the immune cell PD-L1-high subgroup 
and in the patients with clear cell carcinoma are consistent with our results that response to nivolumab could be 
expected through elevated immunoreactivity and clear cell phenotype.

Additional studies on the general strategy of treatment by combinations of small molecule and immune 
checkpoint inhibitor antibodies are underway. For example, an investigation in recurrent platinum-resistant 
ovarian cancer therapy by combining the recent PARP inhibitor niraparib with pembrolizumab has recently been 
 reported35. A major effort for advanced ovarian cancer tumor therapy using targeted small molecule inhibitors 
with a candidate anti-PD-1 antibody is also ongoing (NCT03737643, ClinicalTrials.gov). The study evaluates the 
use of durvalumab treatment in combination with chemotherapy and bevacizumab, followed by maintenance 
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durvalumab, bevacizumab, and olaparib  treatment36. When conducted with appropriate biobanking techniques, 
these and similar studies could immediately apply the methodologies we have proposed in this report and eventu-
ally produce novel biomarkers for improved clinical decision-making, combining with DNA sequencing analyses 
such as tumor mutation burden or microsatellite instability analysis. These advances are highly needed in the 
study of ovarian cancer to populate the data space of the subtype-therapy-response dynamic.

In conclusion, the paired gene signature and pathway analyses have provided starting ground for developing 
reliable predictors of clinical response to immune checkpoint inhibitor therapy in ovarian cancer. The collection 
of signature scores holistically correlated with clinical response to anti-PD-1 antibody therapy, and the math-
ematical model developed could be implemented for immediate clinical application. Aggregation of cases will 
contribute to the fine-tuning of the subtype-therapy-response dynamic established in this study.

Data availability
The datasets generated and analyzed during the current study are available from the corresponding author upon 
reasonable request.

Received: 28 March 2021; Accepted: 12 May 2021

References
 1. Prat, J. New insights into ovarian cancer pathology. Ann. Oncol. 23(Suppl 10), x111-117. https:// doi. org/ 10. 1093/ annonc/ mds300 

(2012).
 2. Sugiyama, T. et al. Clinical characteristics of clear cell carcinoma of the ovary: a distinct histologic type with poor prognosis and 

resistance to platinum-based chemotherapy. Cancer 88, 2584–2589 (2000).
 3. Sung, P. L., Chang, Y. H., Chao, K. C. & Chuang, C. M. Global distribution pattern of histological subtypes of epithelial ovarian 

cancer: a database analysis and systematic review. Gynecol. Oncol. 133, 147–154. https:// doi. org/ 10. 1016/j. ygyno. 2014. 02. 016 
(2014).

 4. Verhaak, R. G. et al. Prognostically relevant gene signatures of high-grade serous ovarian carcinoma. J. Clin. Investig. 123, 517–525. 
https:// doi. org/ 10. 1172/ jci65 833 (2013).

 5. Murakami, R. et al. Prediction of taxane and platinum sensitivity in ovarian cancer based on gene expression profiles. Gynecol. 
Oncol. 141, 49–56. https:// doi. org/ 10. 1016/j. ygyno. 2016. 02. 027 (2016).

 6. Murakami, R. et al. The mesenchymal transition subtype more responsive to dose dense taxane chemotherapy combined with car-
boplatin than to conventional taxane and carboplatin chemotherapy in high grade serous ovarian carcinoma: a survey of Japanese 
Gynecologic Oncology Group study (JGOG3016A1). Gynecol. Oncol. 153, 312–319. https:// doi. org/ 10. 1016/j. ygyno. 2019. 02. 010 
(2019).

 7. Murakami, R. et al. Establishment of a novel histopathological classification of high-grade serous ovarian carcinoma correlated 
with prognostically distinct gene expression subtypes. Am. J. Pathol. 186, 1103–1113. https:// doi. org/ 10. 1016/j. ajpath. 2015. 12. 029 
(2016).

 8. Galon, J. & Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. 
Drug Discov. 18, 197–218. https:// doi. org/ 10. 1038/ s41573- 018- 0007-y (2019).

 9. Liu, J. F. et al. Assessment of combined nivolumab and bevacizumab in relapsed ovarian cancer: A phase 2 clinical trial. JAMA 
Oncol. https:// doi. org/ 10. 1001/ jamao ncol. 2019. 3343 (2019).

 10. Hamanishi, J. et al. Safety and antitumor activity of anti-PD-1 antibody, nivolumab, in patients with platinum-resistant ovarian 
cancer. J. Clin. Oncol. 33, 4015–4022. https:// doi. org/ 10. 1200/ jco. 2015. 62. 3397 (2015).

 11. Mahoney, K. M., Freeman, G. J. & McDermott, D. F. The next immune-checkpoint inhibitors: PD-1/PD-L1 blockade in melanoma. 
Clin. Ther. 37, 764–782. https:// doi. org/ 10. 1016/j. clint hera. 2015. 02. 018 (2015).

 12. Snyder, A. et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371, 2189–2199. https:// 
doi. org/ 10. 1056/ NEJMo a1406 498 (2014).

 13. Guibert, N. & Mazieres, J. Nivolumab for treating non-small cell lung cancer. Expert Opin. Biol. Ther. 15, 1789–1797. https:// doi. 
org/ 10. 1517/ 14712 598. 2015. 11140 97 (2015).

 14. Patel, S. P. & Kurzrock, R. PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol. Cancer Ther. 14, 847–856. 
https:// doi. org/ 10. 1158/ 1535- 7163. mct- 14- 0983 (2015).

 15. Callahan, M. K., Postow, M. A. & Wolchok, J. D. Targeting T cell co-receptors for cancer therapy. Immunity 44, 1069–1078. https:// 
doi. org/ 10. 1016/j. immuni. 2016. 04. 023 (2016).

 16. Varga, A. et al. Pembrolizumab in patients with programmed death ligand 1-positive advanced ovarian cancer: analysis of KEY-
NOTE-028. Gynecol. Oncol. 152, 243–250. https:// doi. org/ 10. 1016/j. ygyno. 2018. 11. 017 (2019).

 17. Hamanishi, J. et al. PD-1/PD-L1 blockade in cancer treatment: perspectives and issues. Int. J. Clin. Oncol. 21, 462–473. https:// doi. 
org/ 10. 1007/ s10147- 016- 0959-z (2016).

 18. Motzer, R. J. et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373, 1803–1813. https:// doi. 
org/ 10. 1056/ NEJMo a1510 665 (2015).

 19. Borghaei, H. et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N. Engl. J. Med. 373, 
1627–1639. https:// doi. org/ 10. 1056/ NEJMo a1507 643 (2015).

 20. Ansell, S. M. et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N. Engl. J. Med. 372, 311–319. 
https:// doi. org/ 10. 1056/ NEJMo a1411 087 (2015).

 21. Iwai, Y., Hamanishi, J., Chamoto, K. & Honjo, T. Cancer immunotherapies targeting the PD-1 signaling pathway. J. Biomed. Sci. 
24, 26. https:// doi. org/ 10. 1186/ s12929- 017- 0329-9 (2017).

 22. Cogdill, A. P., Andrews, M. C. & Wargo, J. A. Hallmarks of response to immune checkpoint blockade. Br. J. Cancer 117, 1–7. https:// 
doi. org/ 10. 1038/ bjc. 2017. 136 (2017).

 23. Doo, D. W., Norian, L. A. & Arend, R. C. Checkpoint inhibitors in ovarian cancer: a review of preclinical data. Gynecol. Oncol. 
Rep. 29, 48–54. https:// doi. org/ 10. 1016/j. gore. 2019. 06. 003 (2019).

 24. Cristescu, R. et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science (New York, N.Y.) 
362. https:// doi. org/ 10. 1126/ scien ce. aar35 93 (2018).

 25. Ott, P. A. et al. T-cell-inflamed gene-expression profile, programmed death ligand 1 expression, and tumor mutational burden 
predict efficacy in patients treated with pembrolizumab across 20 cancers: KEYNOTE-028. J. Clin. Oncol. 37, 318–327. https:// 
doi. org/ 10. 1200/ jco. 2018. 78. 2276 (2019).

 26. Yamaguchi, K. et al. Identification of an ovarian clear cell carcinoma gene signature that reflects inherent disease biology and the 
carcinogenic processes. Oncogene 29, 1741–1752. https:// doi. org/ 10. 1038/ onc. 2009. 470 (2010).

https://doi.org/10.1093/annonc/mds300
https://doi.org/10.1016/j.ygyno.2014.02.016
https://doi.org/10.1172/jci65833
https://doi.org/10.1016/j.ygyno.2016.02.027
https://doi.org/10.1016/j.ygyno.2019.02.010
https://doi.org/10.1016/j.ajpath.2015.12.029
https://doi.org/10.1038/s41573-018-0007-y
https://doi.org/10.1001/jamaoncol.2019.3343
https://doi.org/10.1200/jco.2015.62.3397
https://doi.org/10.1016/j.clinthera.2015.02.018
https://doi.org/10.1056/NEJMoa1406498
https://doi.org/10.1056/NEJMoa1406498
https://doi.org/10.1517/14712598.2015.1114097
https://doi.org/10.1517/14712598.2015.1114097
https://doi.org/10.1158/1535-7163.mct-14-0983
https://doi.org/10.1016/j.immuni.2016.04.023
https://doi.org/10.1016/j.immuni.2016.04.023
https://doi.org/10.1016/j.ygyno.2018.11.017
https://doi.org/10.1007/s10147-016-0959-z
https://doi.org/10.1007/s10147-016-0959-z
https://doi.org/10.1056/NEJMoa1510665
https://doi.org/10.1056/NEJMoa1510665
https://doi.org/10.1056/NEJMoa1507643
https://doi.org/10.1056/NEJMoa1411087
https://doi.org/10.1186/s12929-017-0329-9
https://doi.org/10.1038/bjc.2017.136
https://doi.org/10.1038/bjc.2017.136
https://doi.org/10.1016/j.gore.2019.06.003
https://doi.org/10.1126/science.aar3593
https://doi.org/10.1200/jco.2018.78.2276
https://doi.org/10.1200/jco.2018.78.2276
https://doi.org/10.1038/onc.2009.470


8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:11427  | https://doi.org/10.1038/s41598-021-91012-w

www.nature.com/scientificreports/

 27. Belder, N. et al. From RNA isolation to microarray analysis: comparison of methods in FFPE tissues. Pathol. Res. Pract. 212, 
678–685. https:// doi. org/ 10. 1016/j. prp. 2015. 11. 008 (2016).

 28. Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 
(Oxford, England : 1990) 45, 228–247.https:// doi. org/ 10. 1016/j. ejca. 2008. 10. 026 (2009).

 29. Yu, J. et al. Multi-platform assessment of transcriptional profiling technologies utilizing a precise probe mapping methodology. 
BMC Genomics 16, 710. https:// doi. org/ 10. 1186/ s12864- 015- 1913-6 (2015).

 30. Barbie, D. A. et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462, 108–112. 
https:// doi. org/ 10. 1038/ natur e08460 (2009).

 31. Broberg, P. Statistical methods for ranking differentially expressed genes. Genome Biol. 4, R41. https:// doi. org/ 10. 1186/ gb- 2003-
4- 6- r41 (2003).

 32. Winterhoff, B. et al. Molecular classification of high grade endometrioid and clear cell ovarian cancer using TCGA gene expression 
signatures. Gynecol. Oncol. 141, 95–100. https:// doi. org/ 10. 1016/j. ygyno. 2016. 02. 023 (2016).

 33. Kommoss, S. et al. Bevacizumab may differentially improve ovarian cancer outcome in patients with proliferative and mesenchymal 
molecular subtypes. Clin. Cancer Res. 23, 3794–3801. https:// doi. org/ 10. 1158/ 1078- 0432. ccr- 16- 2196 (2017).

 34. Moore, K. N. et al. Atezolizumab, bevacizumab, and chemotherapy for newly diagnosed stage III or IV ovarian cancer: placebo-
controlled randomized phase III trial (IMagyn050/GOG 3015/ENGOT-OV39). J. Clin. Oncol. https:// doi. org/ 10. 1200/ jco. 21. 00306 
(2021).

 35. Konstantinopoulos, P. A. et al. Single-arm phases 1 and 2 trial of niraparib in combination with pembrolizumab in patients with 
recurrent platinum-resistant ovarian carcinoma. JAMA Oncol. https:// doi. org/ 10. 1001/ jamao ncol. 2019. 1048 (2019).

 36. Harter, P. et al. DUO-O: a randomized phase III trial of durvalumab (durva) in combination with chemotherapy and bevacizumab 
(bev), followed by maintenance durva, bev and olaparib (olap), in newly diagnosed advanced ovarian cancer patients. J. Clin. Oncol. 
37, TPS5598–TPS5598. https:// doi. org/ 10. 1200/ JCO. 2019. 37. 15_ suppl. TPS55 98 (2019).

Acknowledgements
We would like to thank Editage (www. edita ge. com) for editorial assistance.

Author contributions
Conception, J.H., R.M., J.B., N.M., T.B., K.A., K.Y., K.Y., M.T., I.K., and M.M.; Acquisition of data, R.M., J.H., 
and Y.H.; Data analyses, R.M., J.B., and J.H.; Funding acquisition, J.H.; Investigation, J.H., N.M., T.B., K.A., 
K.Y., Y.H., K.Y., M.T., I.K., and M.M.; Methodology, R.M., J.B., and J.H.; Project administration, J.H. and M.M.; 
Supervision, M.M.; Validation, J.B.; Visualization, R.M., J.H., and J.B.; Writing—original draft, RM, JH, and JB. 
All authors have read and agreed to the published version of the manuscript.

Funding
This work was supported by the Project for Development of Innovative Research on Cancer Therapeutics of the 
Japan Agency for Medical Research and Development grant (15cm0106133h0002). Support from the Japanese 
Society for the Promotion of Science is acknowledged in Grant 17K19591.

Competing interests 
J.H. reports research grants from Ono during the conduct of the study and from Daiichi Sankyo, M.S.D., and 
Sumitomo Dainippon outside of the submitted work. J.B. reports a research grant from Daiichi Sankyo unrelated 
to this work and a potential conflict of interest as a consultant for the pharmaceutical industry. The other authors 
have no conflict of interest to declare.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 021- 91012-w.

Correspondence and requests for materials should be addressed to J.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2021

https://doi.org/10.1016/j.prp.2015.11.008
https://doi.org/10.1016/j.ejca.2008.10.026
https://doi.org/10.1186/s12864-015-1913-6
https://doi.org/10.1038/nature08460
https://doi.org/10.1186/gb-2003-4-6-r41
https://doi.org/10.1186/gb-2003-4-6-r41
https://doi.org/10.1016/j.ygyno.2016.02.023
https://doi.org/10.1158/1078-0432.ccr-16-2196
https://doi.org/10.1200/jco.21.00306
https://doi.org/10.1001/jamaoncol.2019.1048
https://doi.org/10.1200/JCO.2019.37.15_suppl.TPS5598
http://www.editage.com
https://doi.org/10.1038/s41598-021-91012-w
https://doi.org/10.1038/s41598-021-91012-w
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Combination of gene set signatures correlates with response to nivolumab in platinum-resistant ovarian cancer
	Materials and methods
	Patient samples. 
	Gene expression measurement. 
	Statistical analyses. 
	Weights in fitting signature scores versus clinical response. 
	Ethics approval and consent to participate. 

	Results
	Correlation between gene signature groups and clinical response. 
	Mutual complementarity effects of gene signature groups. 
	Differential pathways in response groups. 

	Discussion
	References
	Acknowledgements


