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Introduction
One of the most challenging aims in biological science is to 
understand the role of genetics in complex human diseases. 
To identify disease genes, a widely used method is genome-
wide association studies (GWAS), which have been used to 
identify a number of polymorphisms that statistically corre-
late with complex diseases. In particular, GWAS attempt to 
detect associations between common single-nucleotide poly-
morphisms and common diseases. However, identifying such 
variants makes only a small contribution to explain disease 
occurrence.1,2 In addition, because of functional redundancy 
and because most proteins do not function in isolation, bio-
logical mechanisms are complicated and are usually studied 
from a network viewpoint.3,4 Studies of protein function 
could be enhanced by network-based analysis that has been 
shown to be useful to gain insight into biological mecha-
nisms. Thus, network-based analysis could also help to find 
new protein functions important for a specific disease. To 
understand the relationship between genes and diseases, sev-
eral studies discovered that partner proteins in a biological 
network tend to share common functions.5,6 In addition, the 
study of Lage et al7 and other studies reveal that most of the 
causative genes of complex diseases are likely to reside in the 
same network modules, eg, pathways8,9 or subnetworks10 of a 
given biological network. The study of Vanunu et  al11 per-
formed network propagation methods, and other studies12–14 

performed literature-based methods and network analysis to 
predict the association between genes and some specific dis-
eases such as prostate and breast cancer, Alzheimer, and type 
2 diabetes mellitus. A common method to infer a protein-
disease relationship is to find shared known diseases between 
2 neighboring proteins. However, several associations between 
proteins and diseases or between diseases and diseases are 
unrevealed and remain a challenging task.

To identify new disease proteins in a protein-protein interac-
tion network, a common method such as a k-nearest neighbor 
(kNN) search was used in the study of Xu et al.15 However, an 
alternative algorithm named the reverse kNN (RkNN) search 
that uses an inverse concept from kNN was invented. The RkNN 
was applied in several applications, eg, geographic information 
systems, databases, and business management.16–18 In biological 
networking, Ning et al19 was the first study to use RkNN to find 
essential proteins in yeast. The concept of RkNN is reversed 
from kNN. Instead of finding neighboring proteins of a query 
protein, the RkNN considers which proteins have the query pro-
tein as their neighbors. With this concept, we could infer that 
those neighbor proteins are influenced by the query protein. If 
the set of neighbors are disease proteins, we could infer that the 
query protein tends to be a disease protein. The RkNN had been 
applied to disease studies and showed superior performance in a 
specific human disease, ie, inflammatory bowel disease.20
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This work is the first study that used RkNN method 
focusing on a large data set of human disease–related pro-
teins to identify new protein-disease associations. We con-
structed a network-based analysis framework on a human 
protein-protein interaction network to identify novel pro-
tein-disease association pairs in several diseases. Using a 
network-based approach, one of the important factors is the 
use of reliable data sets to construct a network and to gain 
true information about disease proteins. Therefore, in this 
study, we used an integrative metadata of protein-protein 
interaction networks from the STRING database21 with 
high confidence scores together with a well-defined disease 
protein data set from our gold standard that contains dis-
ease-related gene annotations from Online Mendelian 
Inheritance in Man (OMIM), UniProtKB, and the GWAS 
study from Phenotype-Genotype Integrator (PheGenI) 
databases.22 In addition, to investigate the network, we used 
an RkNN search and tested statistically to infer protein-dis-
ease associations. Moreover, the results from our inference 
method were extended to find new relationships between 
diseases.

Materials and Methods
Network data and protein-disease annotations

Protein-protein interactions were collected from STRING 
database version 10.21 This database contains both known and 
predicted protein-protein interactions and provides a confi-
dence score for each pair of interactions based on the available 
evidence in several channels, eg, databases, co-occurrence, 
coexpression, gene fusion, and experiments. Thus, our human 
protein-protein interaction network was constructed using 
only reliable interactions having high confidence scores of 
more than 900 as a weighted network. Finally, the network 
contains 17 880 proteins and 203 319 interactions. About 87% 
of these selected interactions have evidence in the database 
channel from STRING. The evidence in the database channel 
was aggregated from KEGG pathway database and then was 
asserted by human expert curators. Therefore, these interac-
tions in our analysis include both the physical and functional 
interactions. For our gold standard of disease proteins, the 
well-defined disease-gene pair data set from the study of 
Menche et al23 was used. Those authors collected disease-gene 
pair annotations from OMIM (www.omim.org), UniProtKB/
Swiss-Prot mapped by Mottaz et  al,24 and the GWAS data 
from the PheGenI databases (https://www.ncbi.nlm.nih.gov/
gap/phegeni).22 Different disease nomenclatures from differ-
ent sources were merged into a single-standard vocabulary 
using the Medical Subject Headings ontology (MeSH; www.
nlm.nih.gov/mesh/). Genes and corresponding proteins were 
mapped. There were 299 diseases with 3173 proteins after fil-
tering out diseases with less than 20 associated genes in our 
gold standard.

Reverse kNN search

A reverse nearest neighbor search is a method to find node(s) 
for which a query node is its/their neighbor. Normally, it has a 
parameter k to indicate the number of considered nearest 
neighbors of the query node. Therefore, we called it an RkNN 
search in general. The concept of the search is to find the 
neighboring nodes that are influenced by a query node. For a 
protein-protein interaction network, the RkNN search was 
employed for finding proteins that are influenced by a query 
protein. The weights of our protein-protein interaction net-
work are the confidence scores from the STRING database. 
Therefore, the distance of each edge connected between 2 pro-
teins is an inversion of the confidence score between 2 proteins. 
The formulation of the RkNN search is as follows.

Let distance be the distance between 2 proteins and let P be 
a set of proteins in a network. The k-nearest neighbors of a 
protein q is the k-closest proteins to q. It is defined by kNN(q) 
such that

∀ ∈ ∀ ∈ −
<

p k q p P k q
distance q p distance q p

NN NN
.
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The set of RkNN of query protein q is defined as follows:

R NN NN .k q p P q k p( ) { | ( )}= ∈ ∈

In other words, p in the set of RkNN(q) is a protein that is 
influenced by protein q. Therefore, with the same parameter k, 
RkNN and kNN of a query protein provide different sets of 
proteins. Instead of simply finding k-nearest proteins to a query 
protein such as kNN search, RkNN attempts to identify a set of 
proteins that the query protein is their kNN. Therefore, the 
RkNN always provides a smaller set of influenced proteins, 
whereas the kNN provides the set of k-nearest (or closest) pro-
teins to a query protein. With a larger list of nearest neighbors 
by kNN, some irrelevant neighbors that might not affect the 
query protein may be included and add some noise to the pre-
cision of the prediction.

Statistical test for inferring protein-disease 
associations

After the RkNN gives a set of proteins influenced by a query 
protein, the enrichment test is performed on this set of influ-
enced proteins to their known diseases according to our gold 
standard. Protein q whose RkNN proteins are statistically over-
represented with a disease is inferred as related to that disease. 
This statistical test was performed using the 1-sided Fisher 
exact test, and the P value criterion was defined as .01. In this 
study, a set of RkNN proteins of a query protein was examined 
for all 299 diseases, and all proteins in the network were used as 
query proteins. Finally, we obtained a list of protein-disease 
pairs. To measure the performance of protein-disease 

www.omim.org
www.ncbi.nlm.nih.gov
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association identification, precision was calculated as the ratio 
of the number of true protein-disease pairs detected to the 
number of protein-disease pairs identified.

Clustering method

To identify highly connected and dense regions in the protein-
disease association network, we employed the clustering algo-
rithm MCODE,25 which is a plug-in of Cytoscape software.26 
MCODE calculates the local neighborhood density of a pro-
tein in the network and assigns a value to the protein. Clusters 
are constructed around the top-weighted protein nodes by 
iteratively adding high-scoring protein nodes to the cluster. 
Only dense clusters are selected for the final set of partitions.27 
In this study, we used a default node cutoff value of 0.2, a 
K-core value of 2, and the Haircut algorithm to exclude nodes 
with a low degree of connectivity from the cluster. The score of 
a cluster was computed as a product of the subgraph density 
and the number of nodes in the cluster.

Results
To find a relationship between an unknown disease-related 
protein and diseases, we used the basic concept of disease infer-
ence based on neighboring proteins. Briefly, the concept 
hypothesized that proteins that are directly connected in a 
protein-protein network could share a common disease. With 

this hypothesis, a computational framework was constructed to 
analyze disease proteins using the interaction network. An 
overview of this framework is shown in Figure 1. To predict 
protein-disease associations, a network of protein-protein 
interaction was constructed. With this network, a set of influ-
enced proteins of a query protein was discovered by the RkNN 
method. Integrating with information from known disease 
proteins, we could infer groups of diseases that might be related. 
The validation of these relationships could be performed by 
text-mining PubMed.

Protein-protein interaction network to protein-
disease associations

A protein-protein interaction network for humans was con-
structed using the information from the STRING database.21 
Only interactions with high confidence scores of more than 
900 were collected and combined to yield a network of 10 573 
proteins and 203 319 interactions. This network follows the 
scale-free network with the exponent value of the fitted power-
law distribution of 1.5521 (see Figure 2) and has the basic net-
work properties shown in Table 1. Notice that this network is 
quite dense with hubs (high-average degree nodes of 22.7426) 
and low clusters (low-average clustering coefficient of 0.2673). 
This indicates the robustness of the network with perturbation 
and that the communication in local networks depends on 

Figure 1.  Overview of the method. The framework starts by constructing a protein-protein interaction network using the information from the STRING 

database.21 Integrating the protein-disease annotations from Menche et al,23 we applied the reverse k-nearest neighbor algorithm to the network for 

identifying influenced proteins for each protein in the network. Then, an enrichment analysis of the diseases that were significantly related to the 

influenced proteins was undertaken, and the association between each protein and each disease was inferred. Later, the protein-disease pair candidates 

were used for finding disease-disease associations. Finally, all candidate pairs, either protein-disease pairs or disease-disease pairs, were validated by 

text mining the PubMed database.
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neighboring nodes rather than on the connections among 
neighbors. Thus, inferring information from the neighboring 
nodes is of great value. Moreover, finding such a dominated 
neighboring node would be important, as we did in this study 
using an RkNN search.

The RkNN finds a set of proteins influenced by a protein of 
interest (see “Materials and methods”). Associated diseases of 
these influenced proteins were sought using an enrichment test 
with the Fisher exact test. If the influenced proteins were 
enriched with P < .01 on a set of disease-related proteins, that 
disease should also be related to the query protein. A set of 
influenced proteins of a query protein was tested for all sets of 
proteins of 299 diseases. Finally, only the diseases for which the 
related proteins were enriched by the influenced proteins were 
selected to be related to the query protein. The RkNN search 
was performed with different values of parameter k ranging 
from k = 1 to k = 30. For each parameter k, each protein in the 
network was used as a query protein and the list of predicted 
associations was produced. To find an optimal parameter k, the 
precision of our predictions was calculated (see “Materials and 
methods”) using known disease proteins from the gold stand-
ard. We found that when k = 1, the RkNN method yielded the 
best precision of 0.36. The precision gradually declined when 
the value of k increased. With this optimal parameter k, we 
obtained 1502 candidate pairs of which 546 pairs were found 
in the gold standard.

Interestingly, the optimal k parameter equals 1 (k = 1) with 
the RkNN search. This result occurs due to the special charac-
teristics of the searching method. With k = 1, it is possible to 
find more than one influenced protein. In contrast, the stand-
ard kNN always gives a single protein when selecting a 

parameter k = 1. Therefore, choosing parameter k = 1 in an 
RkNN search could obtain proteins that are exactly related to 
the query protein. The other issue concerns the precision of our 
method. We found that the number of known protein-disease 
pairs is very small. With our gold standard, we have 29 775 
protein-disease pairs. Considering overall 299 diseases and a 
total number of 10 573 proteins in our network, we have all 
possible 3 161 327 protein-disease pairs. That means, if we ran-
domly detect 100 protein-disease pairs, there will be approxi-
mately one (100 × 29 775/3 131 552) protein-disease pair that 
might be the true protein-disease relationship. This indicated 
that random selection yields a precision of only 0.0095 or 1%.

Protein-disease association candidates

To find further supporting evidence for our predictions, we 
validated our results using a text-mining search. Each predicted 
pair of a disease protein and a disease name was queried on 
PubMed at the National Center for Biotechnology Information 
(NCBI) database (www.ncbi.nlm.nih.gov). The query key-
words consisted of a protein symbol denoted according to the 
HUGO Gene Nomenclature Committee (www.genenames.
org) and a disease name nomenclature from the MeSH data-
base. Precision was calculated by counting the number of pre-
dictions that found at least one report in the NCBI database 
divided by the number of predictions. Interestingly, the RkNN 
search found literature support for 596 pairs from all 1502 can-
didate pairs (giving a precision of 596/1502 = 0.3968). 
Combining the results from our gold standard and the litera-
ture search, we found 316 predicted pairs in both the gold 
standard and the literature search (see Figure 3). However, 230 
of 1502 predicted pairs were found in the gold standard but not 
found in the literature search. For the pairs found in the litera-
ture search but not in the gold standard, we obtained 280 pre-
dicted pairs, but 676 predicted pairs were not found in both the 
gold standard and the literature search. Table 2 shows the list of 
potential protein-disease association candidate pairs that were 
not found in the gold standard but had more than 30 reports in 
PubMed. The complete list of all candidate pairs can be found 
in Supplementary Table S1.

Effectiveness of RkNN over the standard searches

To demonstrate the effectiveness of the RkNN search in find-
ing only influenced proteins among neighbors of a query pro-
tein rather than the standard kNN search, the same process was 
undertaken using the kNN search instead of the RkNN. The 

Figure 2.  Degree distribution of our protein-protein interaction network is 

scale free.

Table 1.  Network properties of the constructed protein-protein interaction network.

No. of 
nodes

No. of 
interactions

Average of clustering 
coefficient

Average of 
degree

Average of closeness 
centrality

Average of 
betweenness

17 880 203 319 0.2673 22.7426 5.62E–09 7989.8160

www.ncbi.nlm.nih.gov
www.genenames.org
www.genenames.org
http://journals.sagepub.com/doi/suppl/10.1177/1177932217720405


Suratanee and Plaimas	 5

set of neighbor proteins of a query protein were used for per-
forming the enrichment test. With the same P value cutoff and 
the same gold standard set, the precision of each parameter k 
was calculated. The comparison of the RkNN and the kNN 
results is shown in Figure 4. Notice that for all ranges of param-
eter k, the RkNN outperformed the kNN. The highest preci-
sion when performing the kNN when k = 4 was 0.21, which is 
lower than the precision when performing RkNN. For the lit-
erature validation, we obtained a higher precision of 0.3968 for 
the RkNN search compared with the kNN search that yielded 
a precision of 0.2752 (found literature of 2435 predictions 
from all 8849 predictions). Furthermore, to demonstrate how 
important it is to use a reliable interaction data set, we con-
ducted the same procedure on a random interaction network. 
This network was generated to contain the same number of 
proteins and interactions and to be a scale-free network as well. 
Both an RkNN search and kNN searches were applied to the 
random network. This scenario was repeated 5 times and 
yielded very-low-average precisions (less than 0.007) for both 
search methods for all values of parameter k. This precision 
value of 0.007 from this random experiment corresponds to the 
random selection, as mentioned above, that yielded a precision 
of 0.0095. Therefore, our method, with a precision of 0.36 for a 
large set of unbalanced data, as in this case, is very high com-
pared with random detection.

Robustness of the method to the interfered network

To validate the robustness of our method, we investigated the 
effective of the predictions when the network was perturbed. 
The original network was interfered by removing important 
nodes in the network and then used the interfered network to 
perform our analysis framework resulting in the precisions of 
their predictions. These important proteins were defined as 
proteins that have high degree value. The first interfered net-
work was constructed by removing 366 proteins whose node 
degrees were more than 300. The second and the last experi-
ments were performed on the interfered networks by removing 
443 proteins having node degrees more than 200 and 1111 
proteins having node degrees more than 100, respectively. The 
same tendencies of the results as the original network were 
found for these 3 experiments. The capability of our method 

with RkNN outperformed the method with kNN for all values 
of parameter k for the first and the second experiments. For the 
last experiment, when removing proteins having node degree 

Figure 3.  Venn diagram of the number of protein-disease association 

pairs.

Table 2.  List of potential candidate pairs of proteins and disease with 
more than or equal to 30 publications found in the PubMed.

Protein name 
(HUGO)

Disease (MeSH) No. of articles 
found in 
PubMed

PTH Bone diseases 830

APOB Insulin resistance 632

GATA1 Leukemia 427

AKT1 Leukemia 253

MUC16 Ovarian neoplasms 252

APOB Metabolic syndrome x 244

MPL Myeloproliferative 
disorders

231

CXCR4 Myocardial infarction 213

DAG1 Muscular dystrophies 212

ABCB1 Prostatic neoplasms 138

HBB Pathological conditions, 
signs, and symptoms

120

COL4A5 Pathological conditions, 
signs, and symptoms

113

GHRH Dwarfism 108

DOT1L Leukemia 106

MAPK14 Neoplasms 94

MYOD1 Sarcoma 86

APOB Myocardial ischemia 65

CDK5 Amyotrophic lateral 
sclerosis

60

VWF Blood platelet disorders 54

CTNNB1 Type 2 diabetes mellitus 54

DLG1 Pathological conditions, 
signs, and symptoms

53

MAP2K1 Lung neoplasms 49

PALB2 Ovarian neoplasms 49

APOB Hyperinsulinism 49

CBL Diabetes mellitus 47

TLR7 Virus diseases 45

TFAP2C Death 41

HLA-DQA1 Graves disease 35

FGF8 Limb deformities, 
congenital

30

HLA-C Ankylosing spondylitis 30
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more than 100, our method with RkNN outperformed the 
method with kNN at only for small values of parameter k and 
the rest of the performances were similar when the values of k 
became larger. These results illustrated the robustness of our 
method with RkNN on the interfered network. Figure 5 shows 
the results of these 3 experiments.

Clusters of the protein-disease association network

The protein-disease association network was constructed using 
the resulting protein-disease association candidates. This net-
work consists of 633 nodes of proteins and 246 nodes of dis-
eases and 1502 interactions between proteins and diseases. The 
MCODE clustering algorithm25 (see “Materials and meth-
ods”) was applied to the network to find highly interconnected 
subgroups. We identified 10 interesting clusters that contain 23 
proteins and 24 diseases, whereas the other proteins and dis-
eases were isolated separately. The complete list of the clusters 
is shown in Table 3. The complete picture of these 10 clusters 
is shown in Figure 6.

The cluster with the highest score of 3.6 consisted of 6 nodes 
and 9 interactions. These 6 nodes comprised 3 proteins—pre-
mRNA processing factor 8 (PRPF8), retinal guanylate cyclase 
2D (GUCY2D), and phosphodiesterase 6G (PDE6G)—and 3 
diseases—(1) retinal diseases, (2) retinal degeneration, and (3) 
eye diseases, hereditary. Each protein in this cluster links to all 3 
diseases related to retinal and eye disease. GUCY2D is well 
known to be related to retinal disease, retinal degeneration, and 
eye diseases. Mutations in GUCY2D are the cause of inherited 
retinal degeneration.28,29 There is evidence that mutations in 
PRPF8 and PDE6G are related to retinal diseases and retinal 
degeneration.30,31 However, we could not found a relationship 
with hereditary eye diseases.

The second cluster yielded a cluster score of 0.333. This 
cluster comprised 7 nodes, containing 3 proteins and 4 diseases, 
and 10 interactions. The 3 proteins were as follows: (1) GATA-
binding protein 1 (GATA1), (2) AKT serine/threonine kinase 
1 (AKT1), and (3) MYB proto-oncogene, transcription factor 
(MYB). The 4 diseases were as follows: (1) lymphoproliferative 
disorders, (2) lymphatic diseases, (3) leukemia, and (4) immu-
noproliferative disorders. In this cluster, AKT1 and GATA1 
interacted with all 4 diseases. AKT1 regulates many processes, 
including metabolism, proliferation, cell survival, growth, and 
angiogenesis.32–34 It is activated in acute lymphoblastic leuke-
mia35 and is a promising target for combination therapy in 
acute myeloid leukemia.36 Although we could not find litera-
ture to support a direct relationship between AKT1 and immu-
noproliferative disorders, we found that AKT1 is implicated in 
X-linked lymphoproliferative disease type 1 (XLP1), a rare 
inherited immunodeficiency disorder.37 GATA1 is a crucial 
regulator of megakaryocyte differentiation. Deficiency of 
GATA1 leads to megakaryoblastic leukemia.38 In addition, 
GATA1 transcription factor is required for murine dendritic 
cell (DC) development. Dendritic cell–specific GATA1 knock-
out mice had lower DC migration toward peripheral lymph 
nodes.39 Similar to AKT1, we could not find a direct relation-
ship between GATA1 and immunoproliferative disorders. 
MYB was predicted to be connected to lymphoproliferative 
and immunoproliferative disorders. MYB was found to play a 
key role in the regulation of hematopoiesis40 that is possible to 
relate to these 2 diseases. Lymphoproliferative disorders are 
related to conditions in which lymphocytes are excessively pro-
duced and they present as a subclass of immunoproliferative 
disorders in the MeSH database.

The third cluster, with a score of 3.0, comprised 5 nodes and 
6 interactions. Sad1 and UNC84 domain containing 2 (SUN2) 

Figure 4.  Performance of identifying protein-disease associations using RkNN and kNN methods. The barplots illustrate the precision of protein-disease 

association predictions by the RkNN and kNN methods. The precisions of both methods are compared by varying parameter k from 1 to 30. The fractions 

of the number of true protein-disease association detected to the number of identified protein-disease association are presented on the top of each bar. 

kNN indicates k-nearest neighbor; RkNN, reverse k-nearest neighbor.
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Figure 5.  Performance of identifying protein-disease associations using RkNN and kNN methods on the interfered network. (A)-(C) show performances 

of the methods on the interfered network by removing proteins that have node degree more than 300, 200, and 100, respectively. kNN indicates k-nearest 

neighbor; RkNN, reverse k-nearest neighbor.
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and dystroglycan 1 (DAG1) were the 2 protein nodes. The 3 
diseases in this cluster were as follows: (1) muscular disorders, 
atrophic, (2) muscular diseases, and (3) muscular dystrophies. 
SUN2 is one of the SUN proteins that are members of the 
linker of nucleoskeleton and cytoskeleton (LINC) complex. 
The LINC complex and the nucleoskeleton are essential for 
nuclear movement and positioning in the muscle cell.41 Variants 
in SUN1 and SUN2 were identified in patients with Emery-
Dreifuss muscular dystrophy.42 However, evidence of an associ-
ation of the SUN protein to muscle atrophy was not found. 
Mutations of DAG1 and at least 17 other genes interrupt the 
extracellular matrix receptor function of dystroglycan that is a 
glycosylated basement membrane receptor involved in main-
taining processes of skeletal muscle.43 Its mutation was also 
found in patients with mild muscular dystrophy and asympto-
matic hyperCKemia.44 It was also found that abnormal glyco-
sylation of α-dystroglycan is a common pathomechanism of 
Fukuyama-type congenital muscular dystrophy, muscle-eye-
brain disease, and Walker-Warburg syndrome.45 To summarize 
these above details, we concluded the status based on literature 
of the predicted associations in Supplementary Table S2.

Disease-disease association candidates

In addition to identifying protein-disease associations, we also 
inferred disease-disease associations from our protein-disease 
candidate pairs. From our predictions of a relationship between 
a query protein and diseases, if that query protein is already 
known its related disease, we could infer a relationship between 

the disease of the query protein and its predicted disease. With 
the disease-disease relationship predictions, we identified 6142 
disease-disease pairs. Interestingly, we found that 67% (4120 
predictions) of our predictions have literature evidence in 
PubMed. The complete list of predicted disease-disease rela-
tionships, including information from literature searches, is 
shown in Supplementary Table S3.

Conclusions and Discussion
This study developed an analysis framework to infer associa-
tions between proteins and diseases based on a protein-protein 
interaction network with an integration of disease-related 
genes. The RkNN search was employed to find a set of influ-
enced proteins of a query protein. Protein-disease associations 
were then identified statistically with known disease proteins. 
Our framework with an RkNN search outperformed a stand-
ard nearest neighbor search with a much higher precision. All 
protein-disease pair candidates were verified by literature 
searches and we found literature support for 596 pairs. It is to 
note that the number of literature supporting predicted pairs 
could be changed depending on time. However, this is irrele-
vant because the number of found literature for a pair that 
really has an association should be significantly higher than the 
number of found literature for a pair that is not involved. The 
results from the cluster analysis of these candidates revealed 10 
promising groups of diseases, eg, a group of eye and retinal dis-
eases, a group of lymphatic, lymphatic, and immunoprolifera-
tive diseases, and a group of muscular dystrophies. These 
clusters can be used to be further investigated experimentally. 

Table 3.  List of 10 clusters consisting of clustering score, the number of nodes and edges, and the lists of proteins and diseases in each cluster.

Cluster Score No. of nodes No. of edges Proteins as 
nodes

Diseases as nodes

1 3.6 6 9 GUCY2D, PRPF8, 
PDE6G

[retinal diseases], [retinal degeneration], [eye 
diseases, hereditary]

2 3.333 7 10 GATA1, AKT1, MYB [lymphoproliferative disorders], [lymphatic diseases], 
[leukemia], [immunoproliferative disorders]

3 3 5 6 SUN2, DAG1 [muscular disorders, atrophic], [muscular diseases], 
[muscular dystrophies]

4 3 5 6 DOT1L, TAL1, TCF3 [precursor cell lymphoblastic leukemia-lymphoma], 
[leukemia, lymphoid]

5 2.667 4 4 CBL, GRPEL2 [glucose metabolism disorders], [diabetes mellitus]

6 2.667 4 4 GATA4, PKP2 [cardiovascular abnormalities], [heart defects, 
congenital]

7 2.667 4 4 TP53, IL10RA [inflammatory bowel diseases], [gastroenteritis]

8 2.667 4 4 FGG, SERPINC1 [blood coagulation disorders, inherited], [hemorrhagic 
disorders]

9 2.667 4 4 PPIB, COL2A1 [bone diseases, developmental], 
[osteochondrodysplasias]

10 2.667 4 4 APOB, TPP1 [lipid metabolism, inborn errors], [lipid metabolism 
disorders]

http://journals.sagepub.com/doi/suppl/10.1177/1177932217720405
http://journals.sagepub.com/doi/suppl/10.1177/1177932217720405
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Furthermore, not only did we infer protein-disease associa-
tions, but we also extended our association results to find dis-
ease-disease associations. This investigation resulted in more 
than half of all predicted disease-disease association pairs that 
were listed and verified with publications. An issue concerning 
results of disease-disease association prediction is about com-
mon etiology. We should consider the single etiology of disease 
pairs to avoid artifacts. Unfortunately, a database of etiology for 
a large set of human diseases does not exist at the moment.

We examined our method using another database as our gold 
standard. With this experiment, we selected DisGeNET data-
base,46 one of the largest databases of genes and variants involved 
in human diseases. This database integrated data from text-min-
ing method, information on Mendelian and complex diseases, 
and data from animal disease models. The results showed the 
same tendency that our method with RkNN outperformed the 
method with kNN. Performing our framework with DisGeNET 
database could show the good capability of our method. However, 

the precisions of the methods with RkNN and kNN were slightly 
reduced. We gained the highest precision of 0.22 and 0.14 for 
our method with RkNN and kNN, respectively. These declined 
precisions might be a result of using noise data as our gold stand-
ard. This database contained both experimental and computa-
tional information that might have some irrelevant data. The 
results are shown in Supplementary Figure S1.

One important process in our method is the statistical 
enrichment test. With this step, we need to be cautious of the 
number of disease-related proteins. The number of proteins to 
perform the enrichment test should not be too small to avoid 
statistical bias. In addition, our method took more computa-
tional time than standard method. To find influenced proteins, 
we first need to know the set of kNN of a query protein. 
Therefore, this RkNN method is a further step after we obtained 
results from the kNN search. That means, it certainly took more 
computational time than kNN method. However, it is worth 
doing more tasks to increase the precision of the method.

Figure 6.  Clustering results. (A)-(J) present ten promising clusters found in the protein-disease association network.

http://journals.sagepub.com/doi/suppl/10.1177/1177932217720405
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In conclusion, based on an integration of protein-disease 
data, a protein-protein interaction network, and an effective 
RkNN search method, novel protein-disease associations can 
be identified effectively. Our method is efficient to identify 
protein-disease associations on an interaction network that 
gives us opportunities to discover common pathological causes 
and mechanisms in different diseases. It might be useful for 
disease diagnosis and treatment suggestions for one disease 
based on other related diseases. In addition, it can be general-
ized to other association studies to enhance knowledge in bio-
medical science.
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