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Abstract: Alternative splicing and the expression of intron-containing mRNAs is one hallmark of HIV
gene expression. To facilitate the otherwise hampered nuclear export of non-fully processed mRNAs,
HIV encodes the Rev protein, which recognizes its intronic response element and fuels the HIV
RNAs into the CRM-1-dependent nuclear protein export pathway. Both alternative splicing and Rev-
dependency are regulated by the primary HIV RNA sequence. Here, we show that these processes
are extremely sensitive to sequence alterations in the 5’coding region of the HIV genomic RNA.
Increasing the GC content by insertion of either GFP or silent mutations activates a cryptic splice
donor site in gag, entirely deregulates the viral splicing pattern, and lowers infectivity. Interestingly,
an adaptation of the inserted GFP sequence toward an HIV-like nucleotide bias reversed these
phenotypes completely. Of note, the adaptation yielded completely different primary sequences
although encoding the same amino acids. Thus, the phenotypes solely depend on the nucleotide
composition of the two GFP versions. This is a strong indication of an HIV-specific mRNP code in
the 5′ gag region wherein the primary RNA sequence bias creates motifs for RNA-binding proteins
and controls the fate of the HIV-RNA in terms of viral gene expression and infectivity.

Keywords: HIV gene expression; U1 snRNP; mRNP code; alternative splicing

1. Introduction

Most retroviruses are faced with the problem of expressing all genes from a single,
polycistronic primary transcript (pre-mRNA), which also serves as the genomic RNA to be
packaged in newly formed viral particles [1]. In order to generate various translation tem-
plates, HIV uses alternative splicing to obtain many mRNAs from a single pre-mRNA [2].
A variety of mechanisms have been described as to how the virus maintains its splicing
ratios using HIV reporter constructs [3]. Many of these have served as blueprints to un-
derstand the regulation of cellular alternative splicing. In essence, two major features
determine splice site usage: splicing enhancers/silencers [2] and dynamic RNA secondary
structures [4,5]. Splicing enhancers and silencers are recognized by RNA-binding pro-
teins (RBPs), namely, SR proteins and hnRNPs, respectively [6,7]. Using iCLIP data and
bioinformatics approaches, the term splicing code was established to describe and predict
splicing events [8,9]. An extension of this concept, named mRNP code, takes into account
how the primary RNA sequence dictates all steps of mRNA biogenesis including splicing,
processing, translation, and localization based on differential protein recruitment [10–12].
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Gene expression of HIV is complicated by the use of intron-containing mRNAs for
translation [3]. These mRNAs are normally retained in the nucleus [13]. HIV has evolved an
export adaptor protein named Rev to overcome this restriction [14]. Rev binds to the Rev-
responsive element (RRE) present in all intron-containing viral RNAs and subsequently
engages with the cellular protein export factor CRM-1 [15]. Thus, Rev dispatches the
incompletely spliced viral RNAs to the cellular protein export pathway, resulting in export
of intron-containing viral RNAs.

The sequence features that lead to Rev-dependency have been debated in the last
decades [13,16–18]. The current view is that a combination of unused splice sites (SS) in
the intron-containing RNAs and an HIV-specific sequence bias result in nuclear retention
and ultimately degradation of these transcripts [3,19]. Very recently, we could show that
spliceosomal factors of the B complex function as retention factors for the unspliced HIV
RNA [20].

The HIV genome is particularly Adenosin (A)-rich and Cytidin (C)-low, resulting
in the utilization of codons that are untypical for human cells [18,21]. By converting the
sequence of, for example, HIV gag to the human sequence bias, its expression becomes
Rev-independent without altering the RRE [18]. This conversion changes the nucleotide
bias to Guanosin (G)- and Cytidin (C)-rich sequences. Although this process is usually
termed codon-optimization, the enhanced expression levels observed for modified HIV
and human herpesvirus 8 (HHV 8) lytic RNAs, which are also characterized by a high AT
content, are vastly independent of translation. They stem, rather, from higher RNA levels
in the nucleus and cytoplasm [22,23]. Thus, the altered, optimized RNA sequence may
bind a different subset of RBPs, resulting in an mRNP code that enhances RNA stability
and nuclear export in the absence of Rev [24].

In a previous publication, we inserted GFP downstream of the major viral splice donor
site 1 (SD1) between the matrix and capsid coding sequence to assess translation from
the genomic HIV RNA by flow cytometry [25,26]. In this current work, we moved the
GFP insertion site to the 5′ end of gag, thereby placing the GFP encoding sequence directly
behind either the start codon of gag (matrix) or 45 nts downstream in frame within the
matrix coding region. We observed an intriguing, strong Rev-independent GFP expression
and a concomitant dramatic change in the HIV splicing pattern, leading to the expression
of new HIV RNA isoforms. However, insertion of an adapted GFP gene, which exhibits the
HIV sequence bias, restored the RNA processing pattern of the parental wild-type provirus.
Interestingly, sequence optimization (mimicking sequence composition of human mRNAs)
of the 5′ gag sequence in a complete HIV provirus yielded identical results as the respective
GFP insertions. A silent mutagenesis screen of the whole HIV genome confirmed the
importance of the 5′ region [27]. These findings and the data presented here suggest that
non-homologous sequences can yield identical phenotypes solely based on their nucleotide
composition and recruited RBPs as a consequence. Finally, the 5′ gag region is critical to
maintain the wild-type splicing pattern of HIV and thus its replication fitness.

2. Materials and Methods
2.1. Proviral Constructs

All proviral Ren constructs are based on the molecular HIV-1 clone NL4.3rev-env [25].
The env gene is inactivated by a deletion/frameshift. Rev contains a mutated start and
a stop codon at the end of the first exon. All NL4.3Ren-GFP variants contain a stop
codon after the GFP ORF. huGFP harbors the F64L mutation in combination with a silent
mutation to inactivate a cryptic splice acceptor site. In MAhuGFP/MAhivGFP, the GFP was
placed between the matrix and capsid, and in MA45huGFP/MA45hivGFP 45 nucleotides
downstream of the matrix ATG. For ∆MAhuGFP/∆MAhivGFP, the GFP sequence was
inserted at the start codon of gag. In the huGag construct, the first 717 nt of wt gag were
substituted by a humanized sequence using the BssHII and SpeI fragment from the plasmid
pc_UTR-huGagAB-RRE(NL4-3) [18].
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2.2. Cells and Transfection

HEK293T cells were grown in DMEM supplemented with 10% fetal calf serum,
1 mM sodium pyruvate, and 1% penicillin-streptomycin. The day before transfection,
4 × 105 HEK293T cells were seeded in a 6-well plate and transfected with 1 µg of the
proviral construct, 50 ng tat expression plasmid, 100 ng rev expression plasmid (or empty
vector), and 20 ng ß-Galactosidase expression plasmid or 50 ng dsRed as transfection
control using either the Nanofectin transfection reagent (Capricorn, Ebsdorfergrund, Ger-
many), ViaFect transfection reagent (Promega, Madison, WI, USA), or Lipofectamine 2000
(Thermo Fisher Scientific, Waltham, MA, USA). Cells were harvested 48 h post transfection.
The flow cytometry analysis was performed with the Cytomics FC 500 flow cytometer
(Beckman Coulter, Brea, CA, USA). ß-Galactosidase activity was measured using the Mam-
malian ß-Galactosidase Assay Kit (Thermo Scientific, Waltham, MA, USA) according to
the manufacturer’s protocol. For microscopic analyses, 1 × 106 293T cells were seeded
in a 25 cm2 plate and transfected via calcium phosphate precipitation with 1 µg of the
proviral construct plus 0.5 µg of rev, 0.5 µg tat, and 0.1 µg Gaussia luciferase, which was
measured to control for transfection efficiency [25]. The medium was changed after 12 h
and two days after transfection, cells were examined under a fluorescence microscope.
For titer analysis, the day before transfection, 5 × 106 293T cells were seeded in a 10 cm
plate. Transfections were performed using the calcium phosphate precipitation method
with 5 µg of the proviral construct plus 0.5 µg of rev, 0.25 µg tat, 0.5 µg vsvg, and 0.5 µg
dsRed as transfection control and 8.25 µg of plasmid DNA. Medium was changed 6 h and
the supernatant was harvested 32 and 48 h post transfection.

2.3. Tat-Mediated LTR Activity

LTR-driven expression of the Firefly luciferase reporter gene was quantified with the
Firefly/Renilla Dual-Luciferase System (Promega, Madison, WI, USA). Briefly, 3.5 × 104

293T cells were seeded per well of a white cell culture 96 well plate and transfected one day
later by polyethylenimine with 2 ng CMV-Renilla Luc, 25 ng LTR-Firefly Luc, and 12.5 ng
of proviral construct or tat or mock [25]. Two days post transfection, luciferase activity was
measured and normalized to Renilla as the control for transfection efficiency.

2.4. RNA Preparation and Analysis

RNA methods were performed as described previously [28]. A GAPDH-specific probe
was prepared by EcoRI digestion of a GAPDH plasmid. The RRE probe was generated by
digestion of the HIV-gp-RRE plasmid with EcoRI/BamHI [29]. The Rev exon 2 probe was
generated by a BamHI and HindIII digest of pNLCenv. For the huGFP probe, the SF91 GFP
vector was digested with BamHI and NcoI.

2.5. Identification of Splice Donor

For reverse transcription, 10 µg of total RNA was treated with Turbo DNase (Ambion,
Austin, TX, USA) and purified with RNeasy Minikit (Qiagen, Hilden, Germany). A total
of 800 ng of RNA were reverse transcribed with the QuantiTect Reverse Transcription Kit
(Qiagen, Hilden, Germany). For the final PCR, Ren RT1 for (CTC TCG ACG CAG GAC
TCG GCT TGC) and Ren RT2 rev (CAG GCC ACG CCT CCC TGG AAA G) primers were
used. Reactions were separated on an agarose gel, bands of interest were excised and
purified using the QIAquick Gel Extraction Kit, ligated into pCR2.1 vector (TA-Cloning kit;
Invitrogen, Waltham, MA, USA), and sequenced using M13 forward and reverse primers.

2.6. Western Blotting

For the detection of HIV capsid (p24), cells were lysed with 1X sodium dodecyl sulfate
(SDS) protein lysis buffer (62.5 mM Tris-HCl [pH 6.8], 2% [wt./vol] SDS, 10% glycerol,
50 mM dithiothreitol, 0.01% [wt./vol] bromophenol blue) and boiled for 5 min. Lysates
were then analyzed by immunoblotting. p24 was detected with a rabbit anti-p24 HIV
antibody in a 1:5000 dilution (kindly provided by H.-G. Kräusslich, University Heidelberg,



Viruses 2021, 13, 997 4 of 17

Heildelberg, Germany). Actin was detected with a mouse monoclonal anti-actin antibody
in a 1:1000 dilution (Sigma-Aldrich, St. Louis, MO, USA). Alternatively, cell lysates were
prepared using SDS-containing lysis buffer (50 mM Tris-HCl [pH 7.4], 150 mM NaCl, 40 mM
NaF, 5 mM EDTA, 5 mM EGTA, 1% [vol/vol] Nonidet P-40, 0.1% [wt./vol] sodium de-
oxycholate, 0.1% [wt./vol] SDS), debris was removed by centrifugation and proteins were
detected with mouse anti-Gag/p24CA (183-H12-5C; NIH AIDS Research and Reference
Reagent Program, Los Angeles, CA, USA) and rabbit anti-alpha-tubulin (600-401-880; Rock-
land, Limerick, PA, USA) antibodies. Alpha-Tubulin was detected on the same blots after
stripping with ReBlot Plus Strong Solution (Millipore, Burlington, MA, USA). Detections
were carried out by using a standard enhanced chemiluminescence reaction.

2.7. Titer Analysis ß-Gal/p24 ELISA

Supernatants from VSV-G pseudotyped wild type Ren or RenhuGag proviruses were
harvested 32 and 48 h post transfection and filtered through a 0.22 µm filter. A p24 ELISA
(Architect, Abbott, Wiesbaden, Germany) was used to adjust the supernatants before
titration on HeLa P4 cells containing integrated LTR-driven β-galactosidase. HeLa P4
cells were maintained in DMEM with 2% Hepes buffer and 4 µg/µL Protaminsulfate.
ß-Galactosidase activity was measured after 48 h using the Mammalian ß-Galactosidase
Assay Kit (Thermo Scientific, Waltham, MA, USA) according to the manufacturer’s protocol
for adherent cells in a microplate.

2.8. Bioinformatic Analysis

The analysis of splice sites was performed with Max ent score (http://hollywood.
mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html (accessed on 25 May 2021)). Se-
quence composition (GC content) was calculated using a customized tool implemented
in Object Pascal. Prediction of RNA-binding protein motifs was done using RBPmap
(http://rbpmap.technion.ac.il/ (accessed on 25 May 2021)). For comparison of hivGFP
with wt Gag, the nucleotide identity over the same length excluding start and stop codons
was determined, yielding 31.3% identity. To determine if this value was above random,
a simulation of 100 random amino acid sequences of the same length (i.e., 240 aa) was
performed. Parameters included the natural amino acid frequency and the HIV codon
usage using a sliding-window gene optimization algorithm [30] to obtain a sequence
with the same properties and constraints. The resulting HIV-like random nucleotide se-
quences shared 31.0% identity with hivGFP and wt Gag on average (range 26.1–35.4%).
For reanalysis of published deep sequencing data, fasta files (SRR1852860, SRR1852861,
and SRR1852881 [31]; SRR5179299 to SRR5179322 [32]; SRR528772 to SRR528881 [33]
and ERR1332411 to ERR1332441 [34] SRR8360552 to SRR8360566 and SRR10123175 to
SRR10123179 [35]; SRR10973963 to SRR10973971 [20] were obtained. Reads potentially
harboring the SDcrCA were identified using a simple custom-made algorithm searching
for an exact match with the 15 nt sequence stretch ending with the SDcrCA and being
discontinued downstream. Such reads were manually inspected further to delineate the
splicing pattern.

3. Results
3.1. Substitution of Matrix with huGFP Allows Rev-Independent Expression

We cloned a GFP variant named huGFP (see Materials and Methods) between the
matrix and capsid (MAhuGFP) as previously described to monitor translation of the
genomic RNA by flow cytometry (Figure 1A; [26]). Next, huGFP was inserted further
upstream yielding MA45huGFP and retaining the first 45 nucleotides of the matrix frame
(i.e., 15 amino acids) to preserve the myristoylation site (Figure 1A). In ∆MAhuGFP, the
complete matrix-encoding region was substituted with huGFP (Figure 1A). Stop codons
and a deletion of the 5′ part of CA were introduced downstream of all GFP ORFs to prevent
expression of a fusion protein with Gag/Pol (Figure 1A). Interestingly, insertion of huGFP
at the ATG of the matrix (∆MAhuGFP) resulted in Rev-independent GFP expression, as

http://hollywood.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html
http://hollywood.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html
http://rbpmap.technion.ac.il/
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shown by fluorescence microscopy (Figure 1B). In contrast, the insertion of huGFP between
the matrix and capsid (MAhuGFP) requires Rev for expression (Figure 1B). The insertion,
which keeps the matrix N-terminus (MA45huGFP), showed lower expression levels in the
presence of Rev and some detectable expression without Rev (Figure 1B, middle panel).
Thus, moving the insertion site of the huGFP sequence toward the 5′ end of the gag mRNA
results in Rev-independent GFP expression.

In a more quantitative approach, we monitored huGFP expression by flow cytometry
(Figure 1C). Production of MAhuGFP was strictly Rev-dependent whereas ∆MAhuGFP
expression reached similar levels even in the absence of Rev (Figure 1C, left panel). An
intermediate Rev-dependency was observed for the MA45huGFP reporter despite low
overall GFP expression levels (Figure 1C). Immunoblot analyses of the corresponding
lysates gave identical results, proving again the Rev-independent GFP expression for
MA45huGFP and ∆MAhuGFP (Figure 1D, left panel, lanes 4,6). MA45GFP yielded lower
signals in all methods applied, which argues for protein instability of this particular fusion
protein. However, transfected HeLa cells allowed for slightly more MA45huGFP expression,
which argues for cell type specific effect in addition (Supplementary Figure S2A,B).

The insertion of the sequence-optimized huGFP sequence only led to minor overall
changes in the nucleotide bias of the entire unspliced HIV gag/pol mRNA (1.4% increase
in GC content). However, it massively changed the local sequence composition of the
transcript at the 5′ end (roughly 700 nucleotides and 17.8% increase in GC content). To
revert these specific local changes, the GC-rich huGFP sequence was replaced by hivGFP
(Figure 1A) encoding the same amino acids but utilizing AT-rich codons mimicking the
intronic sequences of HIV (Supplementary Figure S1) [36]. The primary RNA sequence
differed in 229 positions (32%) between huGFP and hivGFP. This caused a decrease in
GC content by 0.9% for the full-length gag/pol RNA and by 12.2% for the 5’ end (both
compared to the wild type), resulting in an even lower GC-content as in the parental
Ren construct. Overall, the hivGFP constructs produced much lower GFP levels in all
transfections (Figure 1D, right panel). Consequently, the MA45hivGFP expression could
neither be detected by FACS nor by western blot (Figure 1C,D; right panels). Importantly,
insertion of hivGFP did not induce Rev-independent expression seen for ∆MAhuGFP,
but rather restored the wild type expression pattern with Rev-dependent GFP production
(Figure 1C, right panel). These results were also corroborated by western blot analyses
(Figure 1D, right panel) and point toward the local sequence composition near the 5′ end
of the HIV genomic RNA as a determinant of Rev-dependent expression.
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Figure 1. Substitution of the matrix-encoding sequence with huGFP allows Rev-independent expression. (A) Depiction
of the proviral HIV-1 construct NL4.3Ren (upper part). The LTRs are marked as yellow rectangles. The Rev response
element is highlighted in blue. Below a magnification of the gag ORF is shown. Matrix (MA) as well as capsid (CA) and
nucleocapsid (NC) are interspaced by the spacer peptides SP1 and 2. At the very C-terminus, the p6 protein is depicted.
Next, a chimeric Gag is shown consisting of a sequence optimized part (light violet, up to the SpeI restriction site) and
wild type sequences. At the bottom, the three different positions of GFP insertions (humanized (hu) or adapted to HIV
nucleotide bias (hiv)) are illustrated: between the matrix and capsid (MAhuGFP/MAhivGFP), after the first 45 nt (i.e.,
15 amino acids) of matrix (MA45huGFP/ MA45hivGFP), and at the ATG of matrix (∆MAhuGFP/∆MAhivGFP). The GFP
ORF is terminated by a STOP codon followed by a small deletion in CA, leaving the rest of Gag untranslated (light gray
dashed rectangles). (B) Light and fluorescence microscopy pictures of HEK 293T cells transfected with the different proviral
constructs with or without a Rev expression plasmid. (C) Flow cytometry analysis of relative GFP expression levels of HEK
293T cells transfected with the indicated constructs. The percentage of GFP expressing cells was normalized to the overall
transfection efficiency using β-galactosidase expression as a control for transfection efficiency (n = 3). Error bars represent
SD. Both the huGFP and hivGFP expression levels were separately normalized to the MAhuGFP + Rev or MAhivGFP + Rev
control, respectively. (D) Western blot using protein extracts from the indicated co-transfections. Detection was performed
with an anti-eGFP antibody. Actin served as a loading control. A size marker in kDa is indicated on the left.
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3.2. The huGFP Sequence Misregulates HIV-1 Splicing in a Position-Dependent Manner

Since the Rev-independency of GFP-expression seems to increase when the huGFP
sequence is moved toward the 5′ end of the gag ORF and thus closer to the major HIV 5′SS,
we sought to analyze the splicing pattern of our constructs. Figure 2A depicts the expected
regular splicing variants. In order to see differential effects of the huGFP-containing
proviruses, we compared them with the parental provirus (Ren) and the hivGFP-bearing
versions. No construct expressed Rev to allow for a comparison in the absence and presence
of co-transfected Rev. In addition, a Tat expression plasmid was co-transfected to ensure
even transactivation levels in cases of disturbed endogenous Tat expression. Moreover, Tat
itself has been implicated to affect splicing [37,38] and thus continuous levels are essential
to analyze splicing phenotypes here.

Three classes of mRNAs were detectable by northern blot for the parental Ren con-
struct (Figure 2B). The genomic RNA with a size of roughly 9 kb, a class of singly spliced
RNA around 4 kb, and the fully spliced RNAs encoding tat, rev, and nef of 2 kb size are
displayed (Figure 2B, upper panel, lane 3). Providing Rev in trans allowed significant
accumulation of singly spliced transcripts and genomic RNA (Figure 2B, upper panel,
lanes 2,3). Concomitantly, the amount of fully spliced transcripts decreased (Figure 2B,
upper panel, lanes 2,3). Very similar results were seen with the MAhuGFP and MAhivGFP
constructs (Figure 2B, upper panel, lanes 4,5 and 10,11). Note that the MAhivGFP lane
(Figure 2B, GAPDH probe, lane 10; -Rev) was underloaded. However, in the ∆MAhuGFP
and less pronounced in the MA45huGFP, cryptic RNAs of approximately 7–8 kb and 3–4 kb
appeared in the absence of Rev (Figure 2B, upper panel, lanes 6,8). In ∆MAhuGFP, the
cryptic RNAs dominated the splicing pattern at the expense of the fully spliced RNAs,
which were only detectable after prolonged exposure (Figure 2B, upper panel, lane 8).
In the presence of Rev, ∆MAhuGFP displayed an almost complete splicing inhibition,
resulting in solely genomic RNA (Figure 2B, lane 9). In contrast, the insertion of hivGFP
reproduced the wildtype splicing pattern irrespective of the GFP position (Figure 2B, upper
panel, lanes 10–15, compared to lanes 2,3), with a tendency to higher levels of the fully
spliced transcripts (∆MAhivGFP; Figure 2B, upper panel, lane 14). Thus, the different local
primary sequence composition might be responsible for the splicing effects observed. Very
similar results were also obtained in northern blots analyzing total RNA from HeLa cells
transfected with the huGFP constructs (Supplementary Figure S2C).

The question remained as to how the cryptic RNAs contribute to Rev-independent
expression of huGFP. To analyze this, we re-probed the northern blot with a huGFP specific
probe. Interestingly, the huGFP sequence can be detected in the genomic RNAs of every
huGFP construct as expected, but also in all cryptic RNAs (Figure 2B, middle panel). Since
the GFP sequence is located at the 5′ end, shorter GFP-containing RNAs must be spliced
in the 3′ part (Figure 2A). Thus, we used an RRE-specific probe to verify the presence of
the env intron in which the RRE is embedded. Now the cryptic RNA signals disappeared,
meaning that the cryptic 7–8 and 3–4 kb RNAs are spliced in the 3′ part (Figures 2A and 2B
lower panel). No signal was observed in the hivGFP lanes due to the differences in the
primary GFP sequence (Figure 2B, middle panel).
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Figure 2. huGFP misregulates HIV-1 splicing in a position-dependent manner. (A) Depiction of the
proviral genome (top panel). The predicted splice variants for the ∆MAhuGFP construct are shown
below. In the upper part, splicing from the regular splice donor 1 (SD1) is depicted and in the lower
part, splicing events from the newly identified cryptic splice donor (SDcrCA) are shown. The sizes
of the RNA variants are given on the left side and the possible combinations of splice donor and
acceptor sites are depicted on the right margin. At the very bottom, the splice sites are shown with
their position on the proviral genome. The primers used for RT-PCR are depicted at the bottom of
the panel as half arrows. (B) Northern blot of total RNA from HEK 293T cells transfected with the
indicated constructs. Membranes were rehybridized with different probes (named on the right-hand
side) specific for Rev exon2, huGFP, RRE, and GAPDH, which served as loading control. The different
splice variant classes are indicated on the left, sizes are given on the right, and an asterisk marks
residual signal from the previous hybridization.
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3.3. The Insertion of huGFP Activates a New Cryptic Splice Donor

The unspliced HIV genomic RNA can undergo multiple alternative splicing events
yielding more than 40 mRNA isoforms [33,39]. In addition, splicing of HIV-1 occurs in
a strict 5′ to 3′ order [40]. To characterize the nature of the cryptic RNAs, RT-PCR using
primers binding upstream of the major 5′SS (SD1) and downstream of 3′SS SA7 was per-
formed (Figure 2A) using total RNA from ∆MAhuGFP transfections. We detected a regular
splice event from SD1 to SA5 and SD4 to SA7 (Figure 2A, SD1SA5-SD4SA7) normally
coding for nef [33,39], which was underrepresented in the northern blot (Figure 2B, upper
panel, lane 8). More importantly, we also detected a new HIV splice event originating
from a new cryptic splice donor site in the capsid (CA) gene (SDcrCA) to SA3 and from
SD4 to SA7, corresponding to the ~3 kb band in the northern blot (Figure 2B). The same
cryptic SD was identified in a study while introducing silent mutations throughout the HIV
genome [27], thus confirming our results. However, the mechanism of activation might
be different. The SDcr is located 227 nt downstream of the huGFP stop codon (Figure 2A).
Hence, the insertion of huGFP but not hivGFP leads to the activation of this cryptic SD
site in CA. The SDcrCA has a Max ent score of 7.3 compared to 10.1 for SD1. Usage
of this cryptic site in combination with regular downstream 3′SS generates seemingly
fully spliced mRNAs lacking all introns but containing the huGFP ORF. Except for the
major SD1, such transcripts would not contain unused splice sites and might consequently
function as huGFP mRNA (Figure 2A, SDcrCASA5-SD4SA7). To determine the usage of
the cryptic SDcrCA in the wild type context, we re-evaluated deep-sequencing data from
previous studies. Emery et al. [32] amplified singly and doubly spliced RNAs. Among the
close to 30 million reads, we identified 11 potential hits. Nine of these represented splice
events were consistent with our observations (i.e., SDcrCAA5-SD3SA7 (seven times) and
SDcrCAA2-SD3A4b-D4A7 (two times)), while the others may represent artifacts. In the
study by Sherrill-Mix et al. [31], we found 25 hits among nearly 700 million reads. However,
only one showed splicing from SDcrCA to an unknown acceptor approx. 700 nt down-
stream in Pol. The other hits involved acceptor sequences upstream of SDcrCA, thus most
likely representing artifacts or unusual trans-splicing events. Sequencing of HIV RNAs
by Nanopore technology obtained several potential hits involving the SDcrCA, though
all of them turned out to be artifacts upon manual inspection [41]. No hits were found
in other sequencing data assessed [20,33,34]. Thus, splicing from SDcrCA represents an
extremely rare, but possible event in the wild type context. However, an altered nucleotide
composition 200 nts upstream makes SDcrCA the dominant splice donor site in the absence
of Rev.

3.4. The Insertion of huGFP Decreased Tat-Mediated LTR Activity

In our initial experiments, Tat was supplied in-trans to ensure even transcriptional
enhancement. The marked reduction of fully spliced HIV RNAs in ∆MAhuGFP (Figure 2B,
upper panel, lane 8 and 9) prompted us to ask if tat mRNA levels and Tat protein quantity
were also reduced. We investigated the capability of our proviral constructs to activate
an HIV-1 LTR promoter-driven Firefly luciferase reporter as a surrogate for Tat quantity.
Shifting the huGFP sequence to the 5′ end of the genomic RNA reduced Tat-dependent LTR-
induction from 20- to 3.5-fold (Figure 3A). In contrast, LTR-induction was constantly high
after cotransfection of all hivGFP containing proviruses (Figure 3A). This argues for pro-
foundly decreased Tat expression levels in co-transfections with ∆MAhuGFP (Figure 3A).
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Figure 3. The insertion of huGFP decreased Tat-mediated LTR activity. (A) LTR promoter-driven
expression of Firefly luciferase was measured after co-transfection of the indicated proviral constructs
and was normalized to CMV-Renilla luciferase expression, which served as the transfection control.
All experiments were done in the absence of Rev. n = 4. Error bars represent SD. (B) Northern blot
of total RNA from HEK 293T cells transfected with the indicated proviral constructs in the absence
of Tat. Membranes were rehybridized with different probes specific for Rev exon 2, huGFP, RRE,
and GAPDH, which served as the loading control. The different splice variants are indicated on the
left, sizes are given on the right, and residual signal from the previous hybridization is marked by
an asterisk.
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In addition, we repeated the northern blot analyses of the huGFP proviruses from
cells without Tat co-transfection. Here, the ∆MAhuGFP construct produced lower levels
of all RNA species compared to the parental provirus (Figure 3B, upper panel, lanes 7,
8). However, insertions further downstream as in MA45huGFP and MAhuGFP produced
similar RNA levels independent of Tat co-transfection (Figure 3B, upper panel, lanes 3–6).
Importantly, the splicing pattern remained identical, irrespective of Tat being present or not
(compare Figures 2B and 3B), arguing for a splicing rather than a transcriptional phenotype.
Thus, the 5′ insertion of the huGFP sequence inhibits the major SD1 and reduces the amount
of fully spliced viral transcripts including the tat mRNA, which in turn leads to lower
transactivation from the LTR-promoter.

3.5. Humanizing 5′ HIV Gag Yields the Identical Phenotype as a 5′ huGFP Insertion

Decreased splicing and generation of cryptically spliced transcripts could be a spe-
cific characteristic of the optimized huGFP sequence. In order to test if a local G/C-rich
nucleotide bias would, in general, induce the same effects, we substituted the first 717 nt
(comparable to the insertion of 723 nts huGFP) of wt gag by a humanized sequence. This
adaptation yielded a provirus encoding the identical Gag amino acid sequence, but with
an 11% increase in the GC content of the gag ORF (huGag) and an overall increase by only
0.7% (Figure 1A).

Northern blot analyses revealed that insertion of the humanized Gag sequence at the
very 5′ end of gag affected the viral splicing pattern in exactly the same way as huGFP in
∆MAhuGFP, although the primary sequences completely differed and encoded the non-
related proteins GFP and Gag (Figure 4A, compare lanes 7 and 8 vs. 9 and 10). Comparison
with the parental provirus demonstrated that huGag induced the expression of cryptically
spliced RNAs in the absence of Rev and reduced the generation of fully spliced transcripts
(Figure 4A, lanes 1 and 2 vs. 9 and 10). This alteration of the splicing pattern in the huGag
provirus should also generate a distinct Gag/Pol protein expression pattern. Immunoblot
analyses using antibodies directed against CA demonstrated a clearly Rev-dependent
expression pattern in the parental provirus (Figure 4B, lanes 1,2). In contrast, the huGag
construct demonstrated Rev-independent expression of several protein variants carrying
the epitope recognized by the monoclonal α-p24 antibody (Figure 4B, lanes 3,4). The band
migrating just below the Pr55 (Gag) (marked with an asterisk; compare lane 2 to lane 3)
might stem from the translation of cryptically spliced RNAs (SDcrCASA5-SD4SA7) of
roughly 3 kb in size (Figure 2A) giving rise to a translation product of 53.5 kDa. The higher
migrating band of around 70 kDa (Figure 4B; marked with an asterisk) could be translated
from an RNA after splicing from SDcrCA to the normally infrequently used SA6 in env [42]
and continuous translation into the env frame. Interestingly, this band was also observed
in the silent mutagenesis screen [27]. Taken together, the local sequence alterations at the
5′ end lead to Rev-independent protein expression as observed with the huGFP insertion
(Figure 1). No fully processed CA protein could be detected (Figure 4B, lane 3), instead,
an intermediate cleavage product appears, which is not readily explained by the splicing
pattern in the absence of Rev (Figure 4A, lane 9). In the presence of Rev, the aberrant Gag
band almost completely disappeared. The pattern is indistinguishable from the parental
construct (Figure 4B, compare lanes 2 and 4). This is consistent with the RNA analysis
showing that Rev leads to the accumulation of genomic RNA only (Figure 4A, lane 10).
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Figure 4. Humanizing 5′ HIV gag sequences yields the identical phenotype as a huGFP insertion. (A) Northern blot of
total RNA from HEK 293T cells transfected with the indicated proviral constructs with huGFP insertions compared to the
splicing pattern of a construct with a humanized 5′HIV gag sequence (Ren huGag). Membranes were hybridized with a
probe specific for Rev exon 2 and rehybridized with a GAPDH probe (both indicated on the right), which served as the
loading control. The different splice variants are indicated on the left and the RNA sizes on the right. (B) Western blot
using protein extracts from the indicated co-transfections. Detection was performed with an anti-p24 antibody. Alpha
tubulin served as a loading control. The newly detected Gag protein isoforms are marked with an asterisk. A size marker in
kDa is indicated on the left. The asterisks mark unknown Gag isoforms. (C) Titer analysis using supernatants containing
VSV-G pseudotyped wildtype Ren- or Ren huGag-derived particles. A p24 ELISA was used to adjust the supernatants
before titration on HeLa P4 cells containing integrated β-galactosidase under the control of an HIV-1 long terminal repeat.
Data from three independent experiments with supernatants from two different harvesting time points per experiment
are shown (n = 6). Error bars represent SD. (D) Analysis of putative binding motifs for hnRNP or SR proteins by RBPmap
(http://rbpmap.technion.ac.il/ (accessed on 05/25/2021)). The first 700 nts of either wild type HIV gag or the humanized
version were analyzed. (E) Model depicting the influence of the mRNP code on the activity of the major SD1. In the case
of huGFP or the humanized Gag sequence, SR proteins preferentially bind and suppress SD1, leading to activation of the
cryptic SD (SDcrCA, in red). In the case of the HIV-like GFP or the wild type Gag sequence, hnRNPs are recruited that
activate the SD1.

http://rbpmap.technion.ac.il/
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Finally, we tested whether the huGag provirus also displayed reduced infectivity.
Supernatants of transfections using the parental Ren construct or the huGag provirus in
the presence of Rev and Tat and VSV-G envelope expressing plasmids were collected.
To rule out differences in particle amount, we normalized for p24 content and titrated
the supernatants on HelaP4 cells harboring an integrated LTR-driven, Tat-dependent
β-galactosidase. As shown in Figure 4C, transduction with huGag leads to very low β-
galactosidase expression levels. Based on our northern blot data (Figure 4A, lane 9 and 10)
we assume that the reduction of fully spliced RNAs by the huGag sequence, which in turn
leads to reduced Tat levels and LTR-induction (compare Figure 3A), is also effective for
integrated proviruses.

In summary, the humanization of the first approx. 700 nts of the gag coding sequence
reproduced the effects of a huGFP insertion. Even though the underlying sequences of
huGFP and huGag only share 36% identity (slightly above random), the effects on the HIV
splicing pattern and Rev-independent protein expression are similar.

4. Discussion

In general, the primary mRNA sequence holds more information than just the codons
for translation. RNA is folded into secondary structures and recognized by RBPs. Thus,
underneath the genetic code, an mRNP code exists. The primary sequence of the HIV
genomic RNA is characterized by an AT-rich nucleotide bias (e.g., in the gag coding region).
This bias constitutes an over-representation of binding motifs for certain RBPs. This HIV-
specific mRNP code is crucial to maintain a favorable ratio of spliced vs. unspliced RNAs
(Figure 2). However, sequences in the pol region tolerate substitutions of Adenosines
without affecting viral replication [43]. It seems that, in particular, the coding region of the
matrix is crucial for the activity of the major 5′ splice site and Rev-dependency. This satel-
lization on 5′ sequences as decision-making determinants was previously observed [44].
Alterations introduced either by silent mutations (huGag, Figure 4 or [27]) or insertion
of a gene carrying a different sequence bias (e.g., huGFP) changes the local nucleotide
composition and in essence, the binding sites for RBPs and/or the secondary structure.
These changes have drastic consequences for the splicing pattern of HIV, leading to new,
cryptically spliced RNAs. These are (i) Rev-independent; (ii) generated from a new 5′

splice site (SDcrCA; Figure 2); and (iii) constitute a new class of singly spliced RNAs with
removal of the env intron, which does not occur in wt. HIV [40]. The usage of cryptic splice
sites can also be enforced by mutations, increasing the stability of the secondary structure
holding the major HIV 5′SS [45].

The Rev-independent expression of our cryptically spliced transcripts can be explained
by the removal of all intronic sequences and thus, inhibitory splicing complexes [20]. This
occurs by functional inactivation of SD1 and simultaneous splicing from the cryptic SD and
additional splicing events in the 3′ region. However, these RNAs should be subjected to
nonsense-mediated RNA decay (NMD), since they are spliced in their 3′UTR with the GFP
stop codon being more than 50 nts upstream of the splice junction. However, this was not
the case. Perhaps the NMD system is overwhelmed in our transient transfection situation.
In addition, 293T cells exhibit inefficient NMD [46]. However, we observed the same
NMD-independent GFP expression in HeLa cells (Supplementary Figure 2). Therefore, an
alternative explanation could be that NMD is not effective on the HIV-derived RNAs, as
has been suggested for Rous-sarcoma virus RNAs [47,48].

The suppression of the major SD1 and simultaneous activation of the cryptic splice site
is probably caused by the recruitment of a different set of RBPs to huGFP or the humanized
gag sequence. Since sequence or codon usage adaption is independent of translation of
HIV [22], we believe that an altered mRNP code is responsible for the observed effects,
as we could also show in α-herpesviruses [23]. We performed an in silico analysis for
the abundance of putative binding motifs for hnRNPs or SR proteins in the wild type or
the optimized huGag sequence. We observed an increase in the number of motifs for SR
proteins in the humanized sequence and a decrease for the hnRNP motifs (Figure 4D).
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Regarding the splicing phenotype, it was shown that sequences in HIV matrix encode a
splicing enhancer for SD1 (Figure 4E and Supplementary Figure S1; [49,50]). This splicing
enhancer is characterized by three hnRNP and two SR protein binding motifs as determined
by our in-silico prediction. However, the humanized Gag sequence as well as the huGFP
insertion delete this enhancer and display a strong bias to SR protein binding motifs. As a
result, splicing at the new cryptic 5′SS occurs (Figure 4E). SR proteins are splicing inhibitory
if they bind in introns (Figure 4E; [51]). Interestingly, the insertion of huGFP between the
matrix and capsid, which is only 400 nts downstream, did not change the splicing pattern as
previously described (Figures 1 and 2; [26]). Our data marked the region downstream of the
matrix ATG as very sensitive to changes in the local nucleotide composition. This is further
corroborated by reversion of the phenotype if the GFP sequence bias was shifted back to
an HIV-like composition (Figures 1 and 2). Although the 5′ gag sequence and the HIV-like
GFP do not share any homology above random (Supplementary Figure S1 and Methods for
detailed analysis), the outcome is similar. In addition, the HIV-like GFP sequence shows
high-scoring binding motifs for hnRNPs. This means that solely the sequence bias and
the resulting mRNP code determine the fate of the HIV RNAs. An alternative explanation
would be the involvement of an RNA secondary structure. However, the hivGFP sequence
is so unrelated to the natural matrix sequence that formation of a similar RNA structure is
highly unlikely.

As above-mentioned, humanization of the HIV wild type matrix region exactly re-
produced the effects of the huGFP insertion (Figure 4). Thus, similar to the relationship
between hivGFP and the wild type HIV sequence, primarily, the sequence bias determines
the fate of the HIV RNAs. Our observations are in full agreement with the work of the
Bieniasz laboratory [27]. Here, activation of the same cryptic splice donor was observed
as well as distorted Gag/Pol protein production in the absence of Rev and a decrease in
viral titer. Both GFP/Nef as in [27] and Tat as in our findings (Figure 4C) depend on the
expression of fully spliced RNAs, which are severely reduced by the sequence alterations
in the 5′ gag region (Figure 4A). The addition of Rev restores expression of the genomic
RNA from proviral constructs containing codon-optimized sequences in the 5′ gag region.
We speculate that Rev removes HIV full-length RNA quickly from the nucleus, leaving not
enough time for (cryptic) splicing to occur [13,52].

The sequence composition of the HIV genomic RNA not only regulates splicing and
Rev-dependency, but also viral packaging [53] and moreover affects recognition by intrinsic
restriction factors [54]. This work, together with the data presented from the whole provirus
silent mutagenesis [27], points to a specific viral mRNP code for HIV that controls the
splicing pattern, viral gene expression, and infectivity.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/v13060997/s1, Figure S1: Sequence alignment of the HIV 5′ coding region. Figure S2: The
huGFP insertion also results in Rev-independent expression in HeLa cells.
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