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Abstract:  Ischemia refers  to a  reduced supply of  oxygen and nutrient  to the vital  organ of  the
body. Reperfusion to the ischemic organ is the only way to salvage injury due to ischemia. Paradox-
ically, reperfusion itself induces the injury, which is more severe than the previous injury referred
to as ischemia-reperfusion injury. Ischemia-reperfusion injury is the major cause of mortality in the
case of ischemic diseases. The major hurdle for a clinician to treat ischemia is the reperfusion in-
jury, which is encountered in different surgical as well as non-surgical situations. Several therapies,
such as anti-platelets, anti-thrombolytic agents have been developed to contain ischemia-reperfu-
sion injury, but with limited success. Over some time, some conditioning techniques such as pre-
conditioning and postconditioning have been used by clinicians to overcome ischemia-reperfusion
injury. The present review focuses on the clinical applications of different conditioning techniques
in diverse pathological conditions of ischemia-reperfusion injury.
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1. INTRODUCTION
Cardiovascular  Diseases  (CVD’s),  including  hyperten-

sion, heart failure, stroke, and coronary artery disease, are
the major cause of mortality all over the world. WHO 2016
report  says  that  around  17.4  million  people  died  due  to
CVD’s, and the number is projected to 23.3 million by the
end of 2030 [1]. Besides this, about 12.7% of global mortali-
ty is due to Ischemic Heart Disease (IHD), mainly in devel-
oping countries [2, 3].

Ischemia is a condition of restricted blood supply to the
tissue  with  a  subsequent  shortage  of  oxygen  along  with
other nutrients vital for normal cellular metabolism and via-
bility [4]. Ischemia can affect many organs such as the heart,
brain, kidney, lungs, liver, intestine, etc [5]. IHD is the sud-
den  interruption  or  insufficiency  of  blood  supply  to  the
heart, followed by sudden death. Restoration of blood supp-
ly  is  perhaps  is  an  immediate  intervention  to  salvage  is-
chemic injury, however sudden restoration of blood supply
after prolonged ischemia causes more severe and lethal in-
jury, better known as reperfusion injury [6]. It is estimated
that  Ischemia-Reperfusion  (IR)  injury  is  responsible  for
around  30%  of  the  deaths  of  ischemic  patients  in  tertiary
care.

A lot of research has been done to contain IR injury and
its detrimental effects. Over time, some conditioning tech-
niques like preconditioning and postconditioning are devel-
oped and have been applied clinically with variable success.
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This  particular  article  aims  to  provide  information  on  the
available data of clinical studies related to different condi-
tioning  techniques  applied  in  various  pathological  condi-
tions of IR injury. The work also focuses on delineating the
protective mechanism of conditioning techniques in IR in-
jury. The review will also pinpoint the clinical applicability
of pharmacological conditioning in IR injury of various or-
gans.

2. ISCHEMIA-REPERFUSION (IR) INJURY
Restoration of blood flow to the ischemic organ is the on-

ly way to preserve the ischemic organ from irreversible tis-
sue damage [6, 7]. Paradoxically, rapid reperfusion of the in-
farcted organ induces the death of cells of the organ and ex-
acerbates  the  extent  of  injury  of  that  particular  organ,  a
phenomenon known as IR injury [4]. The concept of IR in-
jury  was  first  postulated  in  the  1960s  and is  now encoun-
tered  in  many  surgical  as  well  as  non-surgical  situations
such  as  organ  transplantation,  cardiopulmonary  bypass
surgery, aneurysm repair, stroke, myocardial infarction, trau-
ma,  shock,  hemorrhage  [8-10],  traumatic  head  injury,
carotid endarterectomy and deep hypothermic circulatory ar-
rest [11].

2.1. Pathological Mechanism of Ischemia and IR Injury
(Fig. 1)

Ischemia is the main target of many pathological situa-
tions, as discussed above. Ischemia of longer duration leads
to  a  variety  of  cellular,  metabolic  and  ultra-structural
changes such as altered membrane potential, increased intra-
cellular calcium and sodium overload [12], cellular swelling,
increase  hypoxanthine,  decrease  Adenosine  Triphosphate
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(ATP),  phosphocreatine  and  glutathione  level.  When  is-
chemia  occurs  in  any  particular  organ,  than  aerobic
metabolism switches to anaerobic metabolism. This further
decreases oxidative phosphorylation that subsequently caus-
es failure in the re-synthesis of energy-rich molecules such
as ATP and phosphocreatine. In addition to this, it also in-
creases the accumulation of hypoxanthine in that particular
organ. Moreover, ATP-operated ion channels function is al-
so impaired that further leads to increase in the entry of calci-
um, sodium, and water into the cell [13, 14]. During normal
physiology, hypoxanthine gets oxidize to xanthine by xan-
thine  dehydrogenase,  but  during  the  ischemic  phase,  xan-
thine dehydrogenase gets convert into xanthine oxidase. Xan-
thine  dehydrogenase  utilizes  Nicotinamide  Adenine  Dinu-
cleotide (NAD) as its substrate, while xanthine oxidase uses
oxygen  as  its  substrate.  Therefore,  during  the  ischemic
phase,  xanthine oxidase is  unable to convert  the hypoxan-
thine to xanthine, subsequently causing excess hypoxanthine
in that particular organ. In addition to this, during the reper-
fusion phase, oxygen re-enters into that tissue, which causes
the conversion of excess hypoxanthine (accumulated during
the  ischemic  phase)  to  xanthine  by  xanthine  oxidase  [15].
This process further leads to the generation of large amounts
of reactive oxygen species (ROS) such as superoxide anion
(O2−), hydrogen peroxide (H2O2), and hydroxyl radical (OH−)
[16].  This  free  radical  activates  the  intracellular  signaling
pathway and causes membrane injury and finally leads to IR
injury [17]. In addition to this, during reperfusion, oxygen
will  re-introduce into the cells and start  damaging cellular
proteins  as  well  as  Deoxyribonucleic  Acid  (DNA),  which
are also other main factors of IR injury [18]. Some studies
showed that  oxidative  stress,  neutrophil,  leukocyte  activa-
tion, and excessive intracellular osmotic load together are in-
volved in the pathogenesis of IR injury [19, 20]. Beside th-
ese pathological mechanisms, several endogenous mediators
such as caspase-3, caspase-8 [21, 22], calpains [23], inter-
leukin-6  (IL-6)  [24]  and  tumor  necrosis  factor-α  (TNF-α)
[25] also play an important role in the pathogenesis of IR in-
jury (Fig. 1).

Development  of  several  therapeutic  strategies  like  pri-
mary percutaneous coronary intervention (PPCI) and throm-
bolytic approaches such as new generations of antiplatelet
drugs and antithrombotic agents have been major steps for-
ward to clinically handle ischemic injury [26, 27]. However,
until today, neither pharmacological therapies nor non-phar-
macological interventions have been ultimately successful in
protecting the organ against  IR injury [28,  29].  Over  time
some conditioning techniques have been developed involv-
ing brief episodes of ischemia followed by reperfusion ei-
ther before (preconditioning) or after (postconditioning) res-
toration of blood supply in the affected region to mitigate IR
injury [30, 31].

3. ISCHEMIC PRECONDITIONING (IPC)
The concept of IPC was first introduced in 1986 by Mur-

ry et al. IPC is a protective strategy in which brief episodes
of ischemia and reperfusion protects the organ from subse-
quent  prolonged ischemia [32,  33].  It  is  hypothesized that

the brief episodes of non-lethal ischemia decrease the rate of
ATP depletion during subsequent ischemic episodes and that
intermittent reperfusion may be beneficial to the ischemic or-
gan by washing out catabolites that have accumulated dur-
ing  ischemia  [34].  Several  preclinical  and  clinical  studies
have been done to demonstrate the decrease in infarct size
using a protocol of repetitive occlusion and reperfusion be-
fore  a  prolonged  ischemic  insult  [35,  36].  It  has  been
suggested that preconditioning results in the generation and
release  of  various  endogenous  ligands  such  as  adenosine
[37], bradykinin [38, 39], opioids [40], norepinephrine [41]
and  acetylcholine  [42]  with  subsequent  activation  of  their
corresponding receptors [43]. Activation of these receptors
further  initiates  several  signaling  cascade  such  as  Phos-
phatidylinositol-3-Kinase (PI3K) [44], Akt [45], Protein Ki-
nase-C  (PKC),  endothelial  Nitric  Oxide  Synthase  (eNOS)
[46], glycogen synthase kinase-3β (GSK-3β) phosphoryla-
tion, extracellular receptor kinase (ERK1/2), p38 mitogen-ac-
tivated protein kinase (MAPKs) [47] and Janus kinase-sig-
nal transducer activated transaminase (JAK–STAT3), which
eventually provide protection in IPC [48, 49]. IPC is docu-
mented to have two windows of protection:

3.1. First Window of Protection (FWOP)
This  is  an  acute  phase  of  protection  and  it  may  start

within 5 min of reperfusion and last up to 4-6 hours [32]. In
this phase, signaling is believed to occur through the activa-
tion of ERK [50] and Akt [45].

3.2. Second Window of Protection (SWOP)
This is also referred to as a delayed phase of protection,

and it begins within 12 hours of reperfusion and lasts up to
72 hours [51]. In this phase, signaling is believed to occur
through the activation of some transcription factors, includ-
ing Activation Protein (AP-1), hypoxic-inducible factor-1α
(HIF-1α), and STAT.

3.3. Remote Ischemic Preconditioning (RIPC)
RIPC  is  potentially  the  most  attractive  and  safest  is-

chemic conditioning technique because it avoids the target
lesion and non-culprit vessels that may cause further injury
[52]. RIPC may also be a non-invasive technique in which
transient, repeated episodes of ischemia and reperfusion ap-
plied to remote organ, renders the tissue resistant against sus-
tained ischemic insult [53, 54]. Such protection-at-distance
was subsequently extended from cardiac to non-cardiac tis-
sue, and reduction of infarct size has been elicited from sev-
eral organs, including the brain, kidney, intestine, skin, and
skeletal muscle [53, 55].

3.4. Clinical Applications of Preconditioning

3.4.1. Evidence
Several  clinical  studies have given the evidence of the

cardioprotective effect of preconditioning in patients under-
going mitral valve surgery, vascular surgery, and pediatric
surgery. A clinical trial study of 30 patients suffering from
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Fig. (1). Pathological mechanism of ischemia and the ischemia-reperfusion injury; ATP: adenosine triphosphate; ADP: adenosine diphos-
phate; AMP: adenosine monophosphate; ROS: reactive oxygen species; ONOO: peroxynitrite; AIF: apoptotic inducing factor; iNOS: induci-
ble nitric oxide synthase; NF-κB: nuclear factor kappa-B; TNF-α; tumour necrosis factor-α; IL: interleukin; ICAM: intracellular adhesion
molecule; VCAM: vascular cell adhesion molecule; MMP: matrix metalloproteinase; NO: nitric oxide. (A higher resolution / colour version
of this figure is available in the electronic copy of the article).

rheumatic heart disease undergoing mitral and aortic valve
replacement was included. Patients were subjected to precon-
ditioning by giving two cycles of 2 minutes ischemia of ve-
na cava and aorta followed by 3 minutes reperfusion. There
was a significant improvement in myocardial contractility,
decrease  in  the  release  of  creatinine  kinase-MB (CK-MB)
along with the decreased incidence of ventricular fibrillation
[56].

Another study was conducted in which 40 patients suffer-
ing from rheumatic heart disease undergone double valve re-

placement  therapy  by  using  cold  blood  cardioplegic  tech-
niques. Among these, 20 patients were subjected to precondi-
tioning with two cycles of 3 min aortic cross-clamping and
followed by 2 min of reperfusion before the cardioplegic ar-
rest. Significant reduction in the release of CK-MB, produc-
tion of ROS was noticed and improvement in cardiac func-
tion [57].

Another study, carried out by Lin et al. described the pro-
tective effect of IPC in IR injury of the lower limb. Thirty pa-
tients  were  included  undergoing  lower  extremity  surgery
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and divided into two groups. Lower limb IR injury was in-
duced by application of a tourniquet on unilateral thigh fol-
lowed by reperfusion. Preconditioning was provided by giv-
ing three cycles of 5 min of ischemia and 5 min of reperfu-
sion. The Protective effect was assessed in terms of signifi-
cant reduction of malondialdehyde (MDA), IL-6, and IL-8
levels from 2 hours to 24 hours after the release of the tourni-
quet in comparison to the control group [58].

Rakic  and  co-workers  carried  out  a  single-center  ran-
domized control trial to check the hepatoprotective effect of
IPC on the patients of colorectal cancer who underwent liver
resections. Patients were subjected to preconditioning of liv-
er through three cycles of 15 min ischemia by portal  triad
clamping  and  10  min  reperfusion  followed  by  subsequent
reperfusion. The hepatoprotective effect of preconditioning
was observed by a significant reduction of serum transami-
nase, bilirubin, and albumin levels of patients in comparison
to the control group [59].

In  addition to  this,  several  other  studies  confirmed the
implication of different preconditioning protocols using up-
per and lower limb ischemia in the protection of myocardial
necrosis  as  well  as  in  improvement  in  cardiac  function
[60-62].

3.5. Clinical Applications of RIPC
RIPC is a non-invasive, simple, safe, and cheap interven-

tion clinically. Therefore, RIPC is more applicable in clini-
cal  settings  as  compare  to  preconditioning  and  provides  a
similar protective effect.

3.5.1. Evidence
A number of clinical trials have been carried out on the

patients undergoing ventricular septal defect repair [63], PP-
CI  [64],  coronary  angioplasty,  elective  abdominal  aortic
aneurysm repair [65], acute myocardial infarction and coro-
nary artery bypass surgery [66, 67] to investigate the role of
RIPC.

A randomized control trial carried out by Candilio and
co-workers investigated the protective effect of RIPC on the
patients undergoing cardiac surgery. A total of 180 patients
undergoing  cardiac  bypass  surgery  or  valve  replacement
were selected and divided into two groups. RIPC was provid-
ed through tying blood pressure cuff on the upper arm and
upper thigh by giving two cycles of inflation of 5 min and
deflation of 5 min, followed by subsequent reperfusion. The
cardioprotective effect  of  RIPC was assessed by a signifi-
cant reduction of incidence of perioperative myocardial in-
jury and postoperative arterial fibrillation in comparison to
patients who did not receive RIPC [68].

In another study, Wu and co-workers observed the car-
dioprotective effect of limb IPC on the patients undergoing
mitral valve replacement. Patients were subjected to RIPC
through three cycles of 5 min of inflation and 5 min of defla-
tion by tying a pressure cuff on the right upper arm. Cardio-
protection through RIPC was assessed by a significant reduc-
tion  of  cardiac  troponin-1  level  in  comparison  to  control
group patients [61].

In addition to this, Sales et al. examined the protective ef-
fect of RIPC in brain tumor patients undergoing elective sur-
gical resection. They employed 60 patients in their study, di-
vided into two groups based on tumors type (glioma or me-
tastasis). Three cycles (each consist of 5 min of inflation and
5 min of deflation) of RIPC was applied by inflating a blood
pressure cuff at 200 mmHg placed on the upper arm after in-
duction of anesthesia. The protective effect of RIPC was as-
sessed  by  the  reduction  of  incidence  of  postoperative  is-
chemic lesions in comparison to the control group [69]. Be-
sides this, RIPC is also found to be applicable in brain in-
juries such as elective decompression surgery [70] and kid-
ney transplantation [71].

Li et al.  evaluated the protective effect of RIPC on in-
testinal  and  pulmonary  injury  in  the  patients  undergoing
open infrarenal abdominal aortic aneurysm repair. They se-
lected  62  patients  undergoing  infrarenal  abdominal  aortic
aneurysm  repair  and  were  divided  into  2  groups.  Patients
were subjected to RIPC by giving three cycles of 5 min of is-
chemia and 5 min of reperfusion through blood pressure cuff
tied  on  the  left  upper  arm,  followed  by  reperfusion  of  24
hours.  The  protective  effect  of  RIPC on  the  lung  was  ob-
served as a significant increase in arterial-alveolar oxygen
tension ratio in RIPC patients as compared to control group
patients. The intestinal protection by RIPC was assessed by
a significant reduction in serum TNF-α, IL-1 (inflammatory
mediators), and MDA (oxidative stress) levels as compared
to the control group [72].

In another study, Wu et al. checked the protective effect
of RIPC on IR injury occurring after kidney transplantation.
For this, 48 patients undergoing kidney transplantation were
included  and  divided  into  2  groups.  RIPC  was  provided
through three cycles of 5 min ischemia and 5 min reperfu-
sion by clamping of the external iliac artery. Renal protec-
tion by RIPC was assessed through reduction of serum level
of creatinine and improved glomerular filtration rate at dif-
ferent time intervals of 2 hours, 12 hours, 7 days, 14 days
and 30  days  after  kidney  transplantation  in  comparison  to
control group patients [73].

Robertson  and  co-workers,  carried  out  a  pilot  ran-
domized controlled study to investigate the protective effect
of RIPC on liver IR injury in the patients undergoing liver
transplantation. Forty patients were selected and subjected
to RIPC through three cycles of 5 min ischemia and 5 min
reperfusion by tying a pneumatic tourniquet on the left thigh
before liver transplantation. The protective effect was indi-
cated by a significant reduction of IL-2, IL-6, IL-10, and TN-
F-α level after liver transplantation [74].

3.6. Pharmacological Preconditioning
Several pharmacological agents such as adenosine [75],

bradykinin, acetylcholine [76], angiotensin-II [77], opioids
[40],  norepinephrine  [78],  platelet-activating  factor  (PAF)
[79], alcohol and volatile anesthetics [80] are reported to re-
duce the severity of IR injury. Some studies indicated that
pharmacological  conditioning  is  a  safer  way  of  protection
against IR injury [81-83]. During pharmacological precondi-
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tioning, a therapeutic agent is administered before the major
ischemic event. Although, this therapeutic agent itself elimi-
nates from the body it further activates several initiators, me-
diators, and triggers which confer the protection to the organ
from IR injury [84].

3.6.1. Clinical Applications of Pharmacological Precondi-
tioning

3.6.1.1. Evidence
A  study  done  by  Beck-Schimmer  and  co-workers,  de-

monstrated the protective effect of sevoflurane precondition-
ing  in  the  patients  undergoing  liver  surgery.  In  this  ran-
domized  trial,  they  included  64  patients  undergoing  liver
surgery  and  among  these,  30  patients  were  subjected  to
sevoflurane preconditioning before inflow occlusion. Liver
protection was assessed by a significant decrease in postoper-
ative serum transaminase, alanine transaminase, and aspar-
tate transaminase levels [85].

Barros et al. conducted a randomized double-blind study
to investigate the protective effect of L-alanyl-glutamine pre-
conditioning in the IR injury of the liver during liver trans-
plantation. Thirty- three patients undergoing liver transplan-
tation were selected and divided into two groups. Among th-
ese, half of the patients received 50 gm L-alanyl-glutamine
and  normal  saline  was  administered  to  the  rest  of  the  pa-
tients through a portal vein before liver transplantation. The
protective effect of L-alanyl-glutamine preconditioning was
indicated in terms of significant reduction of MDA level in
L-alanyl-glutamine treated patients in comparison to normal
saline-treated patients [86].

Yu and co-workers demonstrated the protective effects
of dexmedetomidine preconditioning in the IR injury of the
lung.  Sixty  patients  were  selected  and  divided  into  two
groups.  Patients  were subjected to  intravenous infusion of
dexmedetomidine at a dose of 0.125 ml/kg for 10 min and
control group patients received an equal volume of normal
saline. After 10 min, patients of both groups were subjected
to ischemia by occluding sciatic nerve with tourniquet fol-
lowed by reperfusion. The protective effect of pharmacologi-
cal preconditioning was indicated by a significant reduction
of serum IL-6, IL-8, and TNF-α level as compared to control
group patients [87].

Another study carried out by Xu et al. investigated the
protective effect of remifentanil preconditioning in patients
undergoing coronary artery bypass surgery. A total of 24 pa-
tients undergoing coronary bypass surgery were selected and
divided into two groups. Remifentanil was administered by
infusion at the dose 5 µg/kg in 50 ml after anesthesia induc-
tion in preconditioning group patients and normal saline was
administered in control group patients. Cardioprotection was
determined by a significant reduction of serum cardiac tro-
ponin-1  level  after  an  operation  in  comparison  to  control
group patients [88].

In addition to this, another study investigated the protec-
tion of sevoflurane preconditioning to improve endothelial
dysfunction induced by the IR injury of the forearm. For con-

ducting this study, 5 male healthy volunteers were selected
and  subjected  to  forearm ischemia  of  15  min  followed by
reperfusion of 30 min to induce IR injury. Sevoflurane was
given through inhalation from 15 min before ischemia until
5  min after  the  onset  of  reperfusion.  The protective  effect
was measured in terms of decreased activation of leukocytes
after sevoflurane preconditioning in comparison to the con-
trol group [89].

3.7. Disadvantages of IPC
The major drawback of this therapeutic strategy is that it

needs to be applied before the index ischemic event, which,
in the case of clinical practices, is impossible to predict. IPC
is an invasive intervention because it is applied directly to
the ischemic organ or tissue, which may not be feasible in
all clinical settings [90].

4. ISCHEMIC POSTCONDITIONING (IPOSTC)
IPostC was first described by Zhao et al. in a dog model

of myocardial IR injury [91]. IPostC is a relatively newer ap-
proach involving brief episodes of ischemia/reperfusion af-
ter prolonged ischemia immediately at the onset of reperfu-
sion  to  reduce  infarct  size  [92-94].  It  is  also  found  that
IPostC decreases the generation of ROS, mitochondrial calci-
um overload, inflammation, and improve endothelial func-
tion [95]. Moreover, IPostC is also demonstrated to activate
pro-survival  kinases  such  as  PI3K  [96,  97],  eNOS  [98],
ERK1/2 [99], GSK-3β, beta-catenin and reperfusion injury
salvage  kinase  (RISK)  pathway  like  Akt/protein  kinase  B
[100, 101]. At the molecular level, several initiators; media-
tors and triggers have been suggested to mediate the protec-
tive effect of IPostC. PostC like preconditioning is believed
to have two phenomena of protection, i.e.,  an early phase,
which  starts  immediately  after  the  major  ischemic  events
and  a  delayed  phase,  which  appears  after  24  hours  of  is-
chemic events.

4.1. Remote Ischemic Postconditioning (Ripostc)
RIPostC is the phenomenon in which conditioning stimu-

lus  (brief  ischemia-reperfusion  episodes)  is  given  through
the distant organ at the onset of reperfusion of the main is-
chemic organ [102]. RIPostC appears to be more applicable
in clinical settings because it is applied at the onset of reper-
fusion; can be performed on non-vital organs; can avoid the
risk of ischemic postconditioning on vital organs and is suit-
able for long term rehabilitation [103, 104]. Basic protective
mechanism  of  RIPostC  is  the  activation  of  eNOS,  PI3K
[105], Akt, GSK-3β, T-LAK-cell-originated protein kinase
(TOPK) [106, 107] pathways and improvement in endoge-
nous antioxidant enzyme activity [108] and inhibition of δ-
protein kinase-C (δ-PKC) [109] in IR injury model of differ-
ent organs in animals.

4.2. Clinical Applications of Postconditioning

4.2.1. Evidence
Several clinical studies evaluated postconditioning in pa-

tients undergoing cardiac surgery for the treatment of Con-
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gestive Heart Disease (CHD) [110-112]. Luo et al. demons-
trated the effect of postconditioning on the patients suffering
from rheumatic heart disease and undergoing valve replace-
ment. Fifty adult patients were randomly selected and sub-
jected to three cycles of 30 sec. ischemia and 30 sec. reperfu-
sion by using aortic re-clamping and de-clamping started 30
sec. after cardioplegic arrest. After this, they were found to
have a significant reduction of CK-MB and lactate levels in
comparison to the control group as a sign of myocardial pro-
tection [111].

In another study, Li et al. carried out a randomized trial
to check the protective effect of postconditioning in cardio-
protection in patients undergoing treatment of tetralogy of
fallot.  They  employed  99  patients  with  tetralogy  of  fallot
and subjected to postconditioning performed by aortic clamp-
ing after reperfusion and found a significant reduction in tro-
ponin-1 and lactate levels [112]. Cardioprotective effect of
postconditioning  was  subsequently  confirmed  by  other
studies on the patients suffering from myocardial infarction,
tetralogy of fallot, and other cardiac diseases [113-116].

In another study, Ricca and co-workers demonstrated the
protective effect of IPostC in liver IR injury that occurs dur-
ing liver transplantation. For conducting this study, 100 pa-
tients undergoing liver transplantation were selected and di-
vided into two groups. IPostC was provided by three cycles
of 1 min ischemia (by occluding hepatic artery) and 1 min
reperfusion. Hepatoprotection was assessed by improved his-
tology of liver and better tolerance to IR injury of postcondi-
tioning  treated  patients  as  compared  to  control  group  pa-
tients [117].

In another study, the protective effect of IPostC was in-
vestigated  in  endothelial  dysfunction  induced  by  ischemi-
a-reperfusion of the forearm. IR injury was induced by infla-
tion of a blood pressure cuff around the upper arm (brachial
artery) to a pressure of 200 mm/Hg for 20 min followed by
reperfusion.  At  the  onset  of  reperfusion  after  global  is-
chemia, postconditioning was provided by giving three cy-
cles of 30-sec ischemia and 30-sec reperfusion by inflating
and deflating a pressure cuff on the upper arm. The protec-
tive effect of postconditioning was indicated by reduced en-
dothelial dysfunction induced by IR injury in comparison to
the control group [118].

4.3. Clinical Applications of RIPostC

4.3.1. Evidence
Zhong and co-workers investigated the cardioprotective

potential of RIPostC on the children undergoing open-heart
surgery  for  repair  of  congenital  heart  defects.  Total  of  69
children  undergoing  open-heart  surgery  were  selected  and
randomized into two groups. RIPostC was provided through
three cycles of 5 min ischemia and 5 min reperfusion by us-
ing a blood pressure cuff on the lower limb at the onset of
aortic de-clamping. Cardioprotection through RIPostC was
assessed by a significant reduction of serum cardiac tropon-
in-1 and CK-MB levels in comparison to the control group
[119].

In  another  study,  the  protective  effect  of  RIPostC was
checked in the improvement of graft function in kidney trans-
plantation.  For  this  study,  60  patients  undergoing  kidney
transplantation were selected and divided into the patients re-
ceived RIPostC and patients did not receive RIPostC. At the
onset of reperfusion, RIPostC was given through three cy-
cles of 5 min ischemia and 5 min reperfusion on the upper
limb. The protection of graft function through RIPostC was
indicated by a significant reduction of serum creatinine level
and improvement of Glomerular Filtration Rate (GFR) after
24 hr of kidney transplantation [120].

In  addition  to  this,  Kim  and  co-workers  conducted
another study to evaluate the protective effect of RIPostC on
graft function and Acute Kidney Injury (AKI) after liver tran-
splantation. Total of 78 patients undergoing liver transplanta-
tion were included and randomized into RIPostC treated pa-
tients  and  non-treated  patients.  RIPostC  was  provided  by
four cycles of 5 min ischemia and 5 min reperfusion through
upper limb at the onset of reperfusion after liver transplanta-
tion. After 28 days of surgery, graft function was assessed
by determining serum bilirubin, and liver enzyme level and
AKI was also investigated. The protective effect of RIPostC
was evidenced by improved AKI but there was no signifi-
cant improvement in bilirubin and liver enzyme level [121].

Cao et al. demonstrated the cardioprotective effect of RI-
PostC on the IR injury of the patients undergoing PPCI for
acute  ST-segment  Elevation  Myocardial  Infarction
(STEMI). For this, 80 patients undergoing PPCI were select-
ed and divided into two groups. Patients were subjected to
RIPostC by giving four cycles of 5 min ischemia and 5 min
reperfusion by inflation and deflation of cuff through upper
arm just after PPCI. Cardioprotection through RIPostC was
indicated by a significant reduction of serum CK-MB, creati-
nine, nitric oxide (NO), and stromal cell-derived factor-1a
(SDF-1a) level at the different time interval of 0.5, 8, 24, 48
and  72  hours  after  PPCI  as  compare  to  control  group  pa-
tients [122].

4.4. Pharmacological Postconditioning
Unlike pharmacological preconditioning, pharmacologi-

cal postconditioning is the therapeutic strategy in which ther-
apeutic agent is administered after the major ischemic event
or at the onset of reperfusion. Several studies have been giv-
en evidence of the protective effect of pharmacological post-
conditioning in different clinical settings [123, 124].

4.5. Clinical Applications of Pharmacological Postcondi-
tioning

4.5.1. Evidence
Zhang and co-workers demonstrated the cardioprotective

effect of morphine postconditioning in IR injury of the pa-
tients undergoing Tetralogy Of Fallot (TOF). For this study,
89  children  undergoing  correction  of  TOF  were  involved
and randomized into two groups. Patients were subjected to
administration of morphine (0.1 mg/kg) via  a cardioplegia
needle  into  the  aortic  root  for  direct  delivery  to  the  heart
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within 3 min before removal of aorta cross-clamp. Cardio-
protection provided via morphine postconditioning was evi-
denced by a significant reduction of cardiac troponin-I level
and improved cardiac function at the different time intervals
of 4, 8, 12, 24, and 48 hours after reperfusion in comparison
of control group patients [123].

In another study, the hepatoprotective effect of propofol
postconditioning  was  investigated  on  IR  injury  in  the  pa-
tients undergoing liver transplantation. Total of 37 patients
undergoing  liver  transplantation  were  involved  and  ran-
domized  into  two  groups.  Propofol  postconditioning
(2mg/kg) was provided by infusion within 10 min of reperfu-
sion after liver transplantation. The protection through propo-
fol postconditioning was evidenced by a significant increase
in heme oxygenase-1 (HO-1) and NADPH: quinone oxidore-
ductase-1  (NQO1)  expression  and  decreased  in  oxidative
stress 24 hours after surgery in comparison of control group
patients [124].

Zuo et al. conducted a randomized clinical study to eval-
uate the protective effect of sufentanil postconditioning on
IR  injury  in  the  patients  undergoing  mitral  valve  replace-
ment (MVR). Total of 53 patients undergoing MVR were se-
lected and divided into two groups. To the 24 patients, bolus
infusion of sufentanil (0.2 μg/kg) was given through aortic
root  cardioplegia  perfusion catheter  and to  the  rest  29  pa-
tients; normal saline was administered 5 min before aortic
declamping after  surgery.  The protective effect  was deter-
mined by a significant reduction of serum CK-MB and cardi-
ac troponin-1 levels and improved other parameters of heart
functioning including heart rate, mean arterial pressure, cen-
tral venous pressure, cardiac output, stroke volume and dura-
tion of mechanical ventilation 24 hours after surgery in com-
parison to control group patients [125].

5. PRECONDITIONING AND POSTCONDITIONING:
VIS-À-VIS

The basic difference between preconditioning and post-
conditioning is that preconditioning has to be applied before
the major ischemic event while postconditioning is applied
after the main ischemia or at the onset of reperfusion. Both
preconditioning  and  postconditioning  have  two  phases  of
protection. In the case of preconditioning, both the 1st and 2nd

phases are active and involve the release/activation of some
endogenous mediators to confer the protection. However, in
postconditioning, 1st phase is passive but the 2nd phase is ac-
tive.  From a  clinical  point  of  view,  preconditioning is  not
much feasible clinically because it has to be applied before
the major ischemic event and which is very difficult to pre-
dict in clinical conditions. However, postconditioning theo-
retically appears to be more feasible at clinical level because
it is applied after the major ischemic event and this is indeed
dually supported by some recent clinical usefulness success
of postconditioning.

6. ISCHEMIC PERCONDITIONING (IPERC)
Schmidt et al. first reported the concept of IPerC in ex-

perimental  studies  [126]  and  later,  Botker  et  al.  reported

IPerC in clinical studies [127]. IPerC is the phenomenon in
which conditioning stimulus is applied during the main is-
chemic event and normally it is applied in a remote organ.
The basic protective mechanism of IPerC is the inhibition of
oxidative stress and activation of ATP sensitive potassium
(KATP) channels [126], Akt, ERK1/2, PI3K, and eNOS [128]
pathways.

6.1. Clinical Applications of IPerC

6.1.1. Evidence
In  a  randomized  clinical  trial,  the  salvaging  effect  of

IPerC was assessed before hospital admission of 333 adult
patients  suffering  from  acute  myocardial  infarction.  They
were randomly selected and divided into patients receiving
PPCI with remote perconditioning and without remote per-
conditioning. Remote perconditioning was provided (during
ambulance transport to the hospital) by giving four cycles of
5 min inflation and 5 min deflation by using a blood pres-
sure cuff. Beneficial effects of perconditioning were noted
as increased myocardial salvage index 30 days after PPCI in
comparison to the patients did not receive perconditioning
[127].

Li and co-workers demonstrated the protective effect of
IPerC on IR injury in patients undergoing valve replacement
therapy. Total of 81 patients subjected to valve replacement
were  involved  in  the  study  and  randomized  into  three
groups. IPerC was done in the lower limb through four cy-
cles  of  4  min  ischemia  and  4  min  reperfusion  during  the
surgery  by  inflating  to  600  mm/Hg  and  deflating  using  a
tourniquet. The cardioprotection was assessed through a sig-
nificant reduction of serum cardiac troponin-1 level at differ-
ent time intervals of 30 min, 4, 12, and 72 hours after un-
clamping in comparison to control group patients [129].

In  addition  to  this,  another  study  was  carried  out  to
check the protective effect of IPerC on multi -organ injury,
including heart, liver, kidney, and lung in the patients with
rheumatic heart disease undergoing valve replacement thera-
py. Patients were subjected to IPerC by giving three cycles
of 5 min ischemia and 5 min reperfusion through the right
thigh during the surgery. The clinical parameters for heart,
liver,  kidney,  and  lung  were  evaluated  after  48  hours  of
surgery. The level of cardiac troponin-1 in serum was signifi-
cantly reduced in comparison to the control group patients.
The  incidence  of  acute  lung  and  liver  injury  was  also  re-
duced by perconditioning but there was no improvement in
renal injury [130].

7. DISCUSSION
A large number of studies indicated above have been car-

ried out over the last decade to establish conditioning tech-
niques as one of the main interventions to prevent deleteri-
ous effects of IR injury in various pathological conditions.
The clinical studies involving different experimental proto-
cols of conditioning techniques under different experimental
conditions have been observed to provide substantial protec-
tion in multi-organs viz, heart, liver, kidney, brain, intestine,
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etc. IR injury [68, 111, 119, 127]. Preconditioning, the old-
est technique in the category has seen limited clinical suc-
cess; on the contrary, techniques like RIPC, postcondition-
ing have been fairly successful in clinical set up [85, 123,
124]. However, a substantial clinical success with all these
techniques is still warranted. Further, a critical review of the
published studies hints towards an important role of various
downstream  pathways  such  as  PI3K,  ERK,  Akt,  MAPK,
eNOS, GSK-3β, etc. at the molecular level in the protective
mechanism of these techniques [44-46, 97, 98]. Although, a
lot of insight has been given into the role of the above path-
ways, still in-depth research is needed to delineate the appro-
priate  molecular  mechanism of  various  conditioning  tech-
niques so that these techniques are applied clinically in the
best possible manner.

CONCLUSION
Studies over the last decade have documented that condi-

tioning techniques can be of great value in containing IR in-
jury. Both preconditioning and postconditioning have been
successfully applied to some extent in clinical settings to pre-
vent injury due to ischemia and reperfusion. However, the
clinical feasibility of preconditioning is limited as it has to
be applied before an ischemic event which is difficult to pre-
dict in clinical practice. In contrast, postconditioning looks
practically more feasible and applicable in clinical settings
since it can be applied after the ischemic event. Currently,
the focus of future research is to investigate molecular mech-
anisms of postconditioning so that it can be translated into
clinical practice.
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