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Topochemical conversion of an imine- into a
thiazole-linked covalent organic framework
enabling real structure analysis
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Stabilization of covalent organic frameworks (COFs) by post-synthetic locking strategies is a

powerful tool to push the limits of COF utilization, which are imposed by the reversible COF

linkage. Here we introduce a sulfur-assisted chemical conversion of a two-dimensional imine-

linked COF into a thiazole-linked COF, with full retention of crystallinity and porosity. This

post-synthetic modification entails significantly enhanced chemical and electron beam

stability, enabling investigation of the real framework structure at a high level of detail. An

in-depth study by electron diffraction and transmission electron microscopy reveals a myriad

of previously unknown or unverified structural features such as grain boundaries and edge

dislocations, which are likely generic to the in-plane structure of 2D COFs. The visualization

of such real structural features is key to understand, design and control structure–property

relationships in COFs, which can have major implications for adsorption, catalytic, and

transport properties of such crystalline porous polymers.
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Covalent organic frameworks (COFs) distinguish them-
selves from conventional polymers by three defining fea-
tures: covalent connectivity, porosity, and crystallinity.

This generation of two- (2D) and three-dimensional (3D) poly-
mers is synthesized under solvothermal conditions by reversible
covalent bond forming reactions1–3. Reversibility of the COF
linkage is key to obtain ordered materials by error correction and
defect healing4–6, but at the same time makes COFs inherently
unstable and rich in defects. This dilemma can be circumvented
by performing a reversible order-inducing step under thermo-
dynamic control and subsequently arresting this order via a post-
synthetic treatment, a concept that has been explored for the
synthesis of crystalline, “unfeasible” zeolites7 as well as to stabilize
the molecular cages formed by dynamic covalent chemistry8. In
order to arrest COFs in their crystalline state (arrested linkage
COFs: ALCOFs) the chemical linkage of the COF needs to be
converted2 from a reversible to an irreversible type of bond in a
topochemical fashion.

The competition between reversibility and stability, which is
dominated by subtle changes in the reaction conditions, often
leads to COFs with only moderate chemical stability and low
crystallinity. As a result, nanocrystalline COFs with ubiquitous
structural disorder are obtained. Such structural disorder is dif-
ficult to probe or even quantify by conventional diffraction
methods such as X-ray powder diffraction (XRPD), while imaging
with transmission electron microscopy (TEM) is difficult due to
the sensitivity of COFs – similar to most soft matter systems – to
the electron beam in comparison to inorganic crystalline mate-
rials1,4,9. In spite of these challenges, analysis of the ideal and
real structure of COFs has been in the focus since the very
beginning of the field, and it continues to attract attention as the
field1,4,9–12.

In 2D COFs, various kinds of out-of-plane disorder are pre-
valent, such as random or poorly defined stacking sequen-
ces4,13,14. In-plane defects, which also impact the electronic
transport properties of COFs, have been invoked to explain the
low crystallinity of many COFs15. In closely related systems such
as on-surface grown, monolayer 2D polymers, rings with five or
seven edges in an otherwise hexagonal system have been observed
as defects by scanning tunneling microscopy16,17, very similar to
the formation of defects in graphene18. While often detrimental,
such defects can be highly beneficial, for example in (electro)
catalysis where they act as high-energy binding sites for the
adsorption of reaction intermediates19. In addition, the typically
limited size of the crystallites of COFs leads to grain boundaries
and domain intergrowth, which can drastically influence the
long-range charge carrier percolation in COFs20 as well as
influence ion conduction21,22. These examples show that disorder
can have a significant influence on the chemical, structural and
(opto-)electronic properties of COFs. However, such defects were
never directly imaged. Hence, it is of paramount importance to
understand the types of defects and disorder present in COFs and
to elucidate and control their influence on the properties of the
material.

In this work, we investigate the topochemical conversion of the
triphenyl triazine imine COF (TTI-COF)4,23 with elemental sul-
fur into a thiazole-linked COF through a post-synthetic locking
strategy, thereby establishing a class of thiazole-based COFs. This
type of post-synthetic modification is fundamentally different
from previous examples, such as the introduction of functional-
ities by tethering side groups24 or heterogeneous linker
exchange:25 These approaches either do not change the reversible
bond of the starting COFs, or they even utilize the reversibility to
introduce functionality. The post-synthetic oxidation of an imine
COF linkage to an amide, as reported recently, provides a direct
transformation of the reversible bond of the COF;2 however it

was recently shown that even amides are, in principle, reversible
enough to be used for the synthesis of COFs26. Modification of
the imine linkage of the TTI-COF leads to excellent contrast and
high electron beam stability of the sulfur-modified TTI-COF
(triphenyl triazine thiazole COF; TTT-COF), which enables
imaging and analysis of in-plane defects with TEM, thus revealing
details of real structure effects that have not been amenable to
direct observation in any COF so far.

Results
Post-synthetic locking by imine to thiazole conversion. As
pointed out by Yaghi et al.,2 the promise of COFs lies in the fact
that COFs, though being extended solids, are amenable to the
versatile toolbox of molecular synthesis. While this concept is
particularly useful at the precursor level and hence formation of
COFs, strategies for modifying the backbone of COFs once they
are formed are extremely scarce2. We thus explored the
post-synthetic reaction of COFs with elemental sulfur. At high
temperatures, elemental sulfur reacts with aromatic imines
to first oxidize the imine to a thioamide, and subsequently
oxidatively cyclizes the thioamide group to form a thiazole ring
(Fig. 1)27. Thus, sulfur serves as an oxidant (being reduced to
H2S) and as a nucleophile, attaching first to the imine carbon and
afterwards to the phenyl ring on the nitrogen side of the imine.

Transferring this reaction scheme to imine-linked TTI-COF,
which was previously reported by us to show high thermal and
chemical stability4,23, we synthesized TTT-COF in two successive
steps: First, TTI-COF was infiltrated with molten sulfur at 155 °C.
At this temperature, sulfur has minimum viscosity, enabling
mixing with the COF material. Subsequently, by using a thermal
treatment at higher temperature (350 °C), the conversion of the
TTI-COF to the TTT-COF took place. After removal of the excess
sulfur by Soxhlet extraction and under high vacuum, the obtained
material was investigated by 13C and 15N solid state NMR
(ssNMR) to probe the imine to thiazole conversion and retention
of the framework structure (Fig. 2).

Framework characterization. As depicted in Fig. 2a, b, the
ssNMR spectra of TTT-COF shows significant and well-defined
changes as compared to the TTI-COF precursor. The loss of the
carbon 3 and 4 signals at 151 ppm and 115 ppm (in TTI-COF) in
the 13C ssNMR spectra, together with the appearance of the 3′
signal at 156 ppm for the TTT-COF, indicate the conversion of
the nitrogen bearing phenyl ring to the thiazole in TTT-COF.
Small residual intensity at 151 ppm might indicate some
unreacted TTI-COF. Furthermore, the characteristic imine car-
bon 2 is shifted in the thiazole 2′ as a shoulder to the triazine
carbon 1′28,29. Also, the absence of a 13C signal between 210 and
180 ppm29,30 hints at the conversion of the imine to the thiazole
and the absence of thioamide. 15N ssNMR shows the triazine
nitrogen, 6 and 6′, at the same position for TTT-COF as for TTI-
COF and a shift of the imine nitrogen 5 from −55 ppm to the
thiazole 5′ at −71 ppm. As additional confirmation of the
determined thiazole structure of the TTT-COF, the calculated
NMR chemical shifts of excised fragments (Fig. 2a, b, Supple-
mentary Table 1, 2, 3, 4) are in good agreement with the
experimental NMR spectra. 13C and 15N NMR chemical shifts
were calculated with density functional theory (DFT) on the B97-
2/3/pcS-2//PBE-D3/def2-TZVP level of theory (Supplementary
Figs. 1, 2, 3, 4, 5), as we already applied this method successfully
to other COF building blocks31.

The Fourier-transform infrared spectroscopy (FT-IR) spectra
further confirm the conversion of TTI-COF to TTT-COF, as
evident by the disappearance of the characteristic imine (N=
CH) vibration at 1627 cm−1 and the appearance of a new N= C
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vibration28 of the thiazole at 1609 cm−1 (Fig. 2d, Supplementary
Fig. 8). Elemental analysis shows the presence of sulfur with an
elemental composition close to the composition that would be
expected from the thiazole model (Supplementary Table 5). In
addition, energy dispersive X-ray spectroscopy scanning electron
microscopy (EDX/SEM; Supplementary Fig. 10) of TTT-COF
indicates homogeneous distribution of sulfur in all parts of the
sample, thus verifying a uniform and regular incorporation of
sulfur in the COF backbone. The XRPD confirms the complete
absence of reflections originating from elemental sulfur, further
validating that only chemically bound sulfur is present (Supple-
mentary Fig. 16).

Sorption analysis reveals retention of the porosity of the TTT-
COF after sulfurization (Fig. 2e), the Brunauer–Emmett–Teller
(BET) surface area of 1431 m2 g−1 for the TTT-COF (theoretical
surface area 1609 m2 g−1) being close to the BET surface area of
1362 m2 g−1 for the precursor TTI-COF (theoretical surface area
1970 m2 g−1) (Supplementary Fig. 11). The ratio of experimental
BET to theoretical surface area is seen to be improved upon sulfur
incorporation. This not only indicates that the pores have not
been blocked by sulfur deposits, but also that previously blocked

pores might have been cleaned by oxidative or evaporative
removal of guests in the pores. The pore size distribution was
calculated from Argon isotherms using the quenched solid state
functional theory (QSDFT) cylindrical pore model, which shows
a reduction in the pore size from 2.3 nm in the TTI-COF to 2.2
nm in the TTT-COF (Supplementary Fig. 12). This change in the
pore size matches well with the reduction in lattice parameters
observed in the XRPD and the expected pore size reduction by
the bending of the linkers upon formation of the thiazole.

Structural analysis of TTI-COF and TTT-COF. The structure
and crystallinity of TTT-COF was then assessed with XRPD,
revealing a crystalline material with a hexagonal unit cell (P63/m)
and a higher symmetry than derived for the precursor TTI-COF
(P1) (Supplementary Fig. 13)4. However, TTT-COF is quite
similar to the randomly stacked TTI-COF (rs-TTI-COF, P63/m)
(Fig. 3a), which is identical to the TTI-COF in terms of molecular
connectivity, but shows random orientation of the stacking vector
of the layers due to the altered synthesis conditions (see Methods
section), and hence a higher apparent symmetry4. TTT-COF has
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Fig. 1 Schematic of the imine to thiazole transformation in the TTI-COF. a Schematic of the reaction of an amine and an aldehyde (1) to form an imine (2),
then a thioamide as an intermediate (3) by the action of elemental sulfur, and finally a thiazole (4). b Schematic drawing of the sulfurization reaction of the
TTI-COF to form the thiazole-based TTT-COF. c Space filling model of one pore of the TTI-COF (left) and the TTT-COF (right)
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reduced in-plane unit cell dimensions (24.478(5) Å vs 25.244(8)
Å), and a larger interlayer stacking distance (c= 7.002(5) Å) than
rs-TTI-COF (c= 6.905(7) Å) as is evident from Rietveld refine-
ment (Supplementary Table 6, Supplementary Fig. 14). The
smaller a and b axis of the unit cell can be understood by the
contraction induced by bending of the linker upon formation of
the five-membered thiazole ring (Supplementary Fig. 15). The
larger stacking distance likely stems from the introduction of
sulfur into the layers, also signaling a somewhat weaker interlayer
interaction. This may explain the loss of the ordered slip-stacking
that is present in TTI-COF (Supplementary Fig. 13). Rietveld
refinement of the XRPD pattern of TTT-COF was done using an
imine model and a thiazole model; a significantly better fit was

obtained for the thiazole model, which further confirms this
structural feature in TTT-COF (Fig. 3b, Supplementary Table 7).

Generalizing the imine locking with a pyrene based COF. To
demonstrate that the concept of imine to thiazole conversion in
COFs can be generalized and transferred also to other COF
systems, we performed the reaction on the Pyrene tetra(phenyl)
biphenyl imine-COF (PBI-COF, Supplementary Fig. 6)32, which
was transformed to the Pyrene tetra(phenyl) biphenyl thiazole-
COF (PBT-COF, Supplementary Fig. 6). In the PBI- and PBT-
COFs the conversion is clearly evidenced by 13C ssNMR as well,
which shows the appearance of two peaks at 153.3 ppm and 166.8

3

In
te

ns
ity

 (
a.

u.
)

In
te

ns
ity

 (
a.

u.
)

100
a b

Cu Kα1
Cu Kα1

TTT-COF

TTT-COF

Observed
Calculated
Difference

Thiazole-model

Imine-modelrs-TTT-COF

11
0 20

0

12
0

13
0

00
2

100

11
0

20
0

12
0

13
0

00
2

6 9 12 15

2� (°) 2� (°)

18 21 24 27 30 3 6 9 12 15 18 21 24 27 30

Fig. 3 XRPD and modeling of the TTI- and TTT-COF. a XRPD patterns of the rs-TTI-COF and the TTT-COF showing retention of crystallinity upon
transformation. b Comparison of the imine and thiazole models that were applied during Rietveld refinement of the XRPD TTT-COF. The thiazole model
(top) shows a better fit than the imine model (bottom)

In
te

ns
ity

 (
a.

u.
)

Tr
an

sm
itt

an
ce

 (
a.

u.
)

1′,2′

6′
6′

1′
1′

2′

5′3′

653
6

TTI-COF

TTT-COF

1
14 2

N N

N
N

N
N

N
N

N

N N

N

NN

S

1

200

a c

d e

3000

1680 1660 1640

1627 cm–1

1609 cm–1

1620 1600 1580

2750 2500 2250 2000 1750

Wavenumber (cm–1)

1500 1250 1000 750 500 0.0

0

700

600

500

400

300

200

100

0.2 0.4
Relative pressure

0.6 0.8 1.0

V
ol

um
e 

@
 S

T
P

 (
cc

/g
)

180 160 140

Chemical shift (p.p.m.) Chemical shift (p.p.m.)

120 100 80 0 –50 –100 –150 –200

′

13C

In
te

ns
ity

 (
a.

u.
)

5′

6′

6

5

b
15N

2 3
4

3′

Fig. 2 Characterization of the TTI-COF (blue) and TTT-COF (green). a 13C ssNMR demonstrating the conversion of the imine linkage to the corresponding
thiazole. b 15N ssNMR showing a shift in the imine nitrogen position (5 → 5′). Calculated Δδ values for the TTT and TTI-COF on B97-2/pcS-2 level of
theory are shown as red and black dashes, respectively. c Assignment of the 13C and the 15N ssNMR signals to the respective 13C and 15N nuclei in the
structures. d FT-IR spectra of TTI-COF (black) and TTT-COF (red). The inset shows an enlargement of the region characteristic for N=C vibrations.
e Argon sorption isotherms of TTI-COF and TTT-COF showing retention of porosity

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04979-y

4 NATURE COMMUNICATIONS |          (2018) 9:2600 | DOI: 10.1038/s41467-018-04979-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


ppm, with the latter corresponding to the characteristic thiazole
carbon between the nitrogen and the sulfur (Supplementary
Fig. 7). Note that in the TTI- and TTT-COFs, this region is
obstructed by the presence of the triazine carbon (1 & 1′, Fig. 2a).
Similar to the TTI- to TTT-COF conversion, the PBI to PBT-COF
conversion is evidenced by the disappearance of the vibration at
1622 cm−1 that corresponds to the characteristic imine stretch,
and by the presence of a vibration at 1602 cm−1 in the PBT-COF
that can be assigned to the thiazole moiety (Supplementary
Fig. 9).

As in the TTI-to-TTT transformation, crystallinity was
retained during the transformation of the PBI- to PBT-COF
(Supplementary Fig. 17), while the in-plane lattice parameters a
and b of the Rietveld-refined structures differ less between PBI-
and PBT- COF (Supplementary Table 8) as compared to the TTI-
and TTT-COF (0.60 Å and 1.58 Å for the PB and the TT system,
respectively). This effect is attributed to the lower degree of
structural distortion during the sulfurization reaction, as seen in
Supplementary Fig. 18.

Chemical stability screening. As the transformation of the
imine-based TTI-COF to the thiazole-based TTT-COF is expec-
ted to significantly improve the chemical stability, we assessed the
possibility of locking the reversible bond by comparing the
crystallinity before and after chemical treatment. Both materials
were exposed to identical and extremely harsh conditions, to test
the limits of stability of both COFs (Fig. 4). Initially both COFs
were treated with concentrated hydrochloric acid, after which
both COFs showed no signs of degradation, testifying to the
already excellent resistance to acids of TTI-COF. In contrast,
other imine-based COFs have previously been reported to be
labile under strongly acidic conditions2. The treatment of TTI-
COF with potassium hydroxide solution lead to a near complete
loss of crystallinity, while the TTT-COF remained unaffected.
Next, we tested reagents that are known to alter imine bonds:
hydrazine is a particularly good nucleophile that enters the imine
bond and replaces the amine, which then leads to a loss of order;
sodium borohydride, a reagent that is used to reduce imine bonds
could lead to a loss of rigidity, followed by a collapse of the
structural order. In both cases the TTT-COF remains essentially
unaffected, while the TTI-COF turns completely amorphous. This

result shows that the imine bond has been locked as a thiazole,
while the ordered structure of the TTT-COF is retained. The
resilience of the TTT-COF to reactive conditions and reagents
could enable a range of applications that were previously not
accessible due to the lability of COFs.

Real structure and defect analysis by TEM. TEM investigations
in COFs have so far primarily been used to confirm the periodic
structure of COFs4,11,23,33,34, their nano- and micron-scale
morphology12, and the presence of inorganic guests33,35. How-
ever, the low contrast in COFs and their low electron beam sta-
bility generally render a detailed analysis of COFs with TEM
highly challenging as the samples easily decompose before useful
information can be extracted. The destruction of COFs in the
electron beam can be ascribed to different damaging mechanisms:
one of the defining features of COFs is their composition out of
light elements, which makes them difficult to image since such
atoms can be significantly affected by atom displacement,
electron-beam sputtering, electron-beam heating, electrostatic
charging, and radiolysis36.

The TTI- and TTT-COF were analyzed by electron micro-
scopy, where TEM and SEM revealed a morphology of inter-
grown crystallites with a slightly anisotropic shape in both COFs
(Supplementary Fig. 19). Imaging TTI- and TTT-COF by TEM
suggests significantly increased electron contrast for TTT-COF
and improved electron beam stability as compared to TTI-COF
and other COFs4,33. First, we quantified the stability of the TTI-
and the TTT-COF in the electron beam by taking images at
defined time intervals, under otherwise identical conditions.
Visual inspection of the images revealed gradual decomposition
of the TTI-COF upon electron beam exposure as evident by
shrinking of the structure as well as diminished lattice fringes
(Supplementary Fig. 20). Quantitative analysis of these images by
means of their fast Fourier transform (FFT) showed a continued
broadening and shift to smaller d-spacings for the peak
corresponding to the 100 reflection in the XRPD. The continuous
shift in d-spacing can be fitted by an exponential decay from
which half-lives can be extracted. TTI-COF has an average half-
life of 1.22 min, while TTT-COF displays a significantly increased
half-life in the electron beam of 2.83 min (Supplementary Fig. 21),
thus clearly pointing to the higher stability of TTT-COF in the
electron beam (Fig. 5). While the higher electron contrast in the
TEM images of the TTT-COF results from the regular
incorporation of sulfur into the lattice, the improved stabilization
is likely due to the aromatization of the imine bond in the form of
a thiazole and the lower number of hydrogen atoms in the
structure, which are most susceptible to electron beam damage36.
This improved stability is crucial for exploring the real structure
of the TTT-COF with TEM as described in the following.

TEM images of TTT-COF reveal an overall retention of the
crystallite size compared to the precursor TTI-COF (50–200 nm);
likewise, the crystallinity seen already for the TTI-COF is clearly
retained as well4. The hexagonal symmetry of the structure is
visible from the real space images (along the [001] zone axis,
Fig. 6a), which also show the presence of continuous pore
channels when viewed along [hk0] (Fig. 6b). Both real
space images and selected area electron diffraction (SAED)
patterns (Fig. 6c) are in agreement with the structural model
developed with Rietveld refinement (see also Supplementary
Figs. 22, 23, 24).

In addition, TEM reveals a host of real structure details of
TTT-COF, including many forms of defects such as disorder,
twin, and grain boundaries. Several observed grains of the COF
have co-aligned c-axes but are rotated against each other in the
ab-plane (Fig. 6d). Two main types of boundaries are visible
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between grains: high angle grain boundaries (HAGB) and low
angle grain boundaries (LAGB). HAGB are formed by a
corrugated interface of adjacent five and seven membered rings
in contrast to the normal six membered rings in the ordered
TTT-COF, as shown in Fig. 6f. Some crystallites have an angle of
29° between them, previously observed by TEM in covalently
connected grain boundaries of single-layer graphene showing
quilt-like structures37, similar to the co-aligned crystallites of
TTT-COF. It was not possible to discern unambiguously whether
a covalent interface exists between the grains due to increased
radiation damage at higher magnifications. However, having this
many different crystallites in such an oriented way and intimate
contact between the different domains suggests an alignment of
these domains during synthesis, which is likely induced by
covalent connections.

Discussion
A likely mechanism for the formation of the observed grain
boundaries is the crystallization of grains from an initially
amorphous imine gel (Fig. 7) as has been proposed as a formation
mechanism for imine COFs by Dichtel and coworkers38. This
mechanism implies that the covalent connectivity between the
different grains is present from the initial formation of the
polymer on and that the grain boundary is left as a remnant of
this amorphous state.

The intergrowth is even more likely for LAGB as these present
a nearly continuous transition from one crystallite to another.
Inspection of the LAGB with different Fourier filters shows the
presence of several edge dislocations (Fig. 6h–k). Details of such
an edge dislocation with a Burgers vector of [100] are shown in
Fig. 6l–o. At the molecular level, such a defect could be described
by either a linker vacancy (Fig. 6p–q, and supplementary dis-
cussion) or an out-of-plane growth that resembles five- and

seven-membered rings such as spirals. Features such as five
membered rings and the growth of spirals have similarly been
described in the simulation of the crystallization of COF-5, thus
predicting the presence of these features in a COF, which have
been observed here39.

The observed defects in TTT-COF might have important
implications for the properties of the COF. The grain boundaries
of the co-aligned crystallites would not obstruct the pore channels
and therefore are not expected to influence properties that are
primarily contingent on the porous nature of COFs, such as their
use as a sorption material or membranes where continuous mass
transport is important. The electronic or excitonic conductivity in
COFs is assumed to require ordered π-stacking for charge carrier
percolation perpendicular to the layers15, while the transport of
charges is also possible within the ab-plane of the individual
layers40. In the latter case the covalent connection and co-
alignment of the COF layers could still enable charge transport
from one grain to another, rendering limitations through reduced
grain boundary conductivity less severe. The presence of defects
extending beyond one layer such as out-of-plane helices would
essentially turn the 2D COF into a covalently connected 3D COF
(Supplementary Fig. 26). This could have important implications
for the feasibility of exfoliation of nominal 2D COFs, as covalent
bonds would need to be broken in order to separate the individual
“layers” of the COF. The presence of an isolated vacancy or a
columnar vacancy line defect in the COF structure would influ-
ence not only the sorption properties of the COF by the presence
of differently sized pores, but it would also present functional
groups exposed to larger than regular pores in the COF. Fur-
thermore, we note that size-selective properties such as sorption
and catalysis41 would be influenced in terms of selectivity by the
presence of defects, again emphasizing the importance of real
structure effects for the properties of COFs.
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Fig. 5 Electron beam stability tests of the TTI- and TTT-COFs. a Electron beam damage seen by the broadening and a shift of the peak in the FFT,
corresponding to the 100 reflection in XRPD, of TEM images taken after different exposure times. b Plotting the exposure time against the peak shift in the
FFT shows a decay that can be fitted with an exponential (fit parameters shown in Supplementary Table 10). c Several sets of images were analyzed this
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The reaction of the TTI-COF with sulfur proceeds under
conditions that should not allow opening of the imine bonds; the
reaction is performed in neat sulfur and no water is present.
Furthermore, special solvent mixtures are required to form a

porous crystalline COF while reversible bonds are formed and
broken. Since these conditions are not met during the sulfuriza-
tion reaction described, the formation of TTT-COF has to happen
in a topochemical fashion with minimal structural disruption of
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Fig. 6 TEM images and TEM analysis of TTT-COF. FFT filters applied to the image are indicated by a schematic inset. a, b Individual crystallites in different
orientations. c SAED with logarithmic contrast showing diffraction rings, which are in agreement with the XRPD pattern. d Multiple inter-grown grains
visible by TEM. Indicated angles show the relative orientation of neighboring crystallites. Color overlay indicating the individual grains generated by
applying selective hexagonal Fourier filtration (e). f High angle grain boundary of crystallites with co-aligned c direction with an overlay indicating the
interface consisting of five, six and seven membered rings. g FFT of image f. h–k Low angle grain boundary with different Fourier filters applied, visualizing
the starting points of edge dislocations. l Close-up of the start of an edge dislocation. The beginning of the edge dislocation is indicated by the blue T, the
Burgers vector (red arrow) is determined from the green hexagon to be [100]. m–o Visualization of the edge dislocation position from image l with
different Fourier filters. p, q Modeling of an edge dislocation in Materials Studio utilizing a screw dislocation along the pentagonal (red pentagon) and
the heptagonal channel (yellow heptagon) (p) and the edge dislocation visualized as a channel linker vacancy (q). Scale bars: a, b, d: 50 nm; f, h–k: 10 nm;
l–o: 5 nm
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the covalent molecular backbone and the retention of the hex-
agonal structure of the material. While oxidative conditions
during the thiazole formation might cause the scission of the
covalent backbone, it cannot explain the presence of the observed
defects such as grain boundaries and edge dislocations. We thus
note that the observed defects in TTT-COF have to be present
already in TTI-COF and likely in other COFs as well, especially
2D COFs based on the same topology.

In summary, the reaction of an imine COF with elemental
sulfur leads to the topochemical formation of aromatic thiazole
moieties as a robust linkage group, which causes a change in the
symmetry of the COF crystal, but not of its topology or its
connectivity. This reaction therefore adds to the synthetic toolbox
of post-synthetic locking of COFs, which helps to circumvent
the inherent limitations imposed by the presence of reversible
bonds. The effect of this locking strategy was exemplified by
the significantly improved chemical stability of the resulting
thiazole COF. In addition, sulfur-assisted generation of
thiazoles increases the number of possible COF structures and at
the same time opens the door to new COFs with chemical
properties not attainable in materials synthesized by reversible
reactions.

While crystallinity and porosity of the TTT-COF are fully
retained, it shows significantly improved electron contrast com-
pared to the parent COF in addition to improved stability to the
electron beam, thus making this system amenable to a study of its
real structure by TEM. Close inspection of the structure of the
TTT-COF allowed us to extract valuable information on both its
long-range and local structure, including the nature of defects and
disorder present in the system. While locked in during TTT-COF
formation, these defects have been introduced already during the
(reversible) synthesis of the precursor TTI-COF and thus can be
considered as lasting fingerprints of the COF formation process.
In particular, we find prevalent one-dimensional defects such as
edge dislocations as well as co-aligned COF grains with grain
boundaries that are likely covalently connected. Unraveling the
nature of defects in COFs is not only key to better understand
their impact on the optical, electronic and catalytic properties of
COFs, but also to control and design new COFs by targeting
properties imbued by such defects.

Methods
Synthesis. Triazine triphenyl thiazole COF (TTT-COF) and Pyrene tetra(phenyl)
biphenyl thiazole (PBT-COF): The respective imine COF was activated under high
vacuum at 150 °C and subsequently mixed with the 15-fold amount (by weight) of
sulfur in a ball mill. The resulting homogeneous mixture was transferred to a
quartz boat in a horizontal tubular furnace and purged at 60 °C under flowing
argon. The temperature was increased to 155 °C (60 K h−1 heating rate) and
maintained there for 3 h. Subsequently, the temperature was raised to 350 °C
(100 K h−1 heating rate) and kept for 3 h. After cooling down, the resulting
material was washed via Soxhlet extraction with toluene and THF for 24 h,
respectively. The samples were dried at 70 °C in an oven and then at 150 °C under
high vacuum.

Randomly stacked Triazine triazine triphenyl imine COF (rs-TTI-COF): TT-
CHO (0.0254 mmol, 10.0 mg), TT-NH2 (0.0254 mmol, 9.01 mg), di(n-octly)
phthalate (1 ml), triphenyl phosphate (1 ml), aqueous acetic acid (0.318 mmol, 6 M,
0.053 ml) were added successively to a Biotage© precision glass vial, sealed and
heated under autogenous pressure at 120 °C for 72 h. The rs-TTI-COF was worked
up in the same manner as TTI-COF.

Chemical stability tests. Chemical stability of the TTI- and TTT-COF was
assessed by immersing ~20 mg of the COF in an aqueous solution of each 12.5 M
hydrochloric acid (HCl) (50 °C), 12M potassium hydroxide (KOH), 1M hydrazine
(H2NNH2) and 1M sodium borohydride (NaBH4) for 16 h at room temperature
unless denoted otherwise. Afterwards, the sample was filtered off and washed
thoroughly with water, ethanol, THF, chloroform and DCM. After drying at
ambient conditions, the crystallinity was assessed by XRPD.

Structure building. The structural models were built successively and based on
each other starting from the well defined TTI-COF model4. The rs-TTI-COF and
the TTT-COF showed no symmetry reduction from a hexagonal to a triclinic
unit cell, therefore the highest reasonable symmetry supported by the molecular
geometry is P63/m which was used to build a unit cell model in BIOVIA Materials
Studio 2017 (17.1.0.48. Copyright © 2016 Dassault Systèmes). Molecular
connectivity was based on geometric considerations and the obtained evidence
from FT-IR and ssNMR. The structures and the unit cell was relaxed using force
fields (Forcite, universal force fields with Ewald electrostatic and van der Waals
summations method). These models were then used to refine the unit cell
parameters by Rietveld refinement.

TEM and SAED. TEM was performed with a Philips CM30 ST (300 kV, LaB6
cathode). The samples were suspended in n-butanol and drop-cast onto a lacey
carbon film (Plano). Processing of TEM and SAED images was performed with the
help of ImageJ 1.47 v.

Stability measurements were performed by taking images of the sample after
defined time intervals in-between pictures, relative to the first image (t= 0 min).

XRPD. XRPD patterns were collected on a Stoe Stadi P diffractometer (Cu–Kα1, Ge
(111)) in Debye-Scherrer geometry. The sample was measured inside a sealed glass
capillary (1.0 mm) that was spun for improved particle statistics.

The powder patterns were analyzed by Rietveld42 and Pawley43 refinement
using the range from 2–30° 2θ with TOPAS V5, while keeping the atom
coordinates fixed. The peak profile was described by applying the fundamental
parameter44 approach as implemented in TOPAS. The background was modeled
with a 6th order Chebychev polynomial. Lattice parameters were refined as
constrained by the symmetry. The peak broadening was modeled with asymmetry
adopted phenomenological model for microstrain45. The plotted XRPD patterns
were normalized to compare relative peak intensities.

ssNMR. The ssNMR spectra were recorded on a Bruker Avance III 400MHz
spectrometer (B0= 9.4 T) at the frequencies of 400.1, 100.6 and 40.8 MHz, for 1H,
13C and 15N, respectively. The ssNMR experiments were performed on a Bruker
double resonance 4 mm MAS probe with the COF samples packed in ZrO2 rotors.
The 1H-13C and 1H-15N cross-polarization (CP) MAS spectra were recorded with a
rotation frequency of 10–12 kHz using a ramped-amplitude (RAMP) spin-locking
pulse on the proton channel. The contact time for both nuclei was set to 5 ms,
which was found to be optimal. The recycle delay in the CP-experiments was 2 s,
defined primarily by the spin-lattice relaxation of protons. All solid-state experi-
ments were carried out using SPINAL64 composite-pulse proton decoupling with
radio frequency power between 70 and 80 kHz. The reported 1H and 13C chemical
shifts were referenced to tetramethylsilane (TMS), while the 15N shifts were
referenced to nitromethane.

Quantum‐chemical calculations. Atom positions and lattices of periodic struc-
tures were optimized on PBE-D3/def2‑TZVP46,47 level of theory using an accel-
eration scheme based on the resolution of the identity (RI) technique and the
continuous fast multipole method (CFMM)48 in a developer version of
Turbomole49.

The CFMM uses multipole moments of maximum order 20 together with a
well-separateness value 3 and a basis function extent threshold of 10-9 a.u. Grid 7
was used for the numerical integration of the exchange-correlation term. The norm
of the gradient was converged to 10-4 a.u. and the total energy is converged to 10-8

Hartree within the structure optimization using an equidistant 5 × 5 k-point grid.
NMR chemical shifts were obtained on B97-2/pcS-2//PBE-D3/def2-TZVP level

of theory46,47,50,51 using the Turbomole program package in version 7.0.2 for
geometries and the FermiONs++52,53 program package for the calculation of
NMR chemical shifts performed on excised sections (Supplementary Figs. 3, 4;

Fig. 7 Schematic of the proposed grain boundary formation mechanism. An initially amorphous gel slowly crystallizes to form the interface between two
grains, which implies covalent connectivity between grains as a remnant of the amorphous state
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distinction shown in Supplementary Fig. 5) of the TTT- and TTI-COF models.
Chemical shifts were then referenced to the experimentally obtained spectra with
the triazine peak 1/1′ and 6,6′.

Data availability. All relevant data are available from the authors upon reasonable
request.
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