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Background: As the greenhouse effect becomes more serious and carbon dioxide
emissions continue rise, the application prospects of carbon sequestration or carbon-
saving pathways increase. Previously, we constructed an EP-bifido pathway in
Escherichia coli by combining Embden-Meyerhof-Parnas pathway, pentose phosphate
pathway and “bifid shunt” for high acetyl-CoA production. There is much room for
improvement in the EP-bifido pathway, including in production of target compounds
such as poly(hydroxybutyrate) (PHB).

Result: To optimize the EP-bifido pathway and obtain higher PHB yields, we knocked
out the specific phosphoenolpyruvate phosphate transferase system (PTS) component
II Cglc, encoded by ptsG. This severely inhibited the growth and sugar consumption
of the bacterial cells. Subsequently, we used multiple automated genome engineering
(MAGE) to optimize the ribosome binding site (RBS) sequences of galP (galactose: H
(+) symporter) and glk (glucokinase gene bank: NC_017262.1), encoding galactose
permease and glucokinase, respectively. Growth and glucose uptake were partially
restored in the bacteria. Finally, we introduced the glf (UDP-galactopyranose) from
Zymomonas mobilis mutase sugar transport vector into the host strain genome.

Conclusion: After optimizing RBS of galP, the resulting strain L-6 obtained a PHB
yield of 71.9% (mol/mol) and a 76 wt% PHB content using glucose as the carbon
source. Then when glf was integrated into the genome strain L-6, the resulting strain
M-6 reached a 5.81 g/L PHB titer and 85.1 wt% PHB content.

Keywords: poly(hydroxybutyrate) yield, glucose flux, EP-bifido pathway, MAGE, Escherichia coli

INTRODUCTION

In 2018, global carbon dioxide emissions increased 1.7% over the previous year, hitting a record
high of 33.143 billion tons. Accelerating the adoption of renewable energy and improving energy
efficiency in response to global warming are urgent priorities (International Energy Agency,
2019). Bio-manufacturing, which uses food crops as raw materials, has wide application prospects.
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Through biological manufacturing, biomass resources can be
converted to ethanol, polylactic acid, 1, 3-propanediol, and other
bulk chemicals (Ragauskas et al., 2006; Lee et al., 2012). A key
barrier to this process is the CO2 emissions that occur during
natural aerobic fermentation. Many carbon dioxide fixation
pathways have been exploited using the six carbon fixation
pathways discovered in nature (Gong et al., 2016). However,
complex reaction steps and enzyme requirements limit the broad
application of these carbon sequestration pathways (Erb et al.,
2007; Schwander et al., 2016).

In natural microorganism fermentation, glucose can be
transformed through the Embden-Meyerhof-Parnas (EMP)
pathway to pyruvate. Pyruvate metabolism leads to the
production of two molecules of acetyl-CoA (AcCoA), the key
precursor of ethanol, butanol, fatty acids, amino acids, and
pharmaceuticals. This process produces two molecules of CO2
from one mol of glucose, making it an uneconomical way to
biosynthesize products using AcCoA as precursor. Other glycol
metabolism pathways, such as the phosphoketolase pathway,
employ a pentose phosphate specific transketolase to produce a
mixture of ethanol, lactic acid, and CO2. Additionally, the bifido
bacteria exclusive bifid shunt pathway can generate 1 mol of
lactic acid and 1.5 mol of acetate from 1 mol of glucose (Meile
et al., 2001; Posthuma et al., 2002). However, all of these glucose
metabolic pathways lose carbon in the form of CO2 during
the decarboxylation process. Therefore, several carbon-saving
pathways, including the non-oxidative glycolytic (NOG) and EP-
bifido pathways, have been engineered. The NOG pathway can
transform all six carbon atoms of glucose into three AcCoA
molecules without CO2 loss (Bogorad et al., 2013). However, it
cannot provide the reducing power NADPH that is needed for
PHB and other chemicals biosynthesis. The EP-bifido pathway
employs EMP, pentose phosphate pathway (PPP) and the Bifido
shunt for high-yield of AcCoA generation. As a reducing power
sponsor, the oxidation part of the PPP consumes 1 mol of glucose,
and provides 2 mol of NADPH and 1mol of xylulose-5-phosphate
(X5P). The enzyme encoded by the f/xpk gene of the EP-bifido
pathway has both fructose-6-phosphate (F6P) and X5P activity.
It is able to catalyze X5P to form acetyl phosphate (AcP) and
glyceraldehyde 3-phosphate (G3P) or split F6P to form erythrose
4-phosphate and AcP. The former G3P can generate AcP through
carbon rearrangement, each of these processes releases only
1 mol of CO2, thus saving the carbon source to a certain extent
(Figure 1). This carbon-saving pathway has been applied to
the production of several compounds that use AcCoA as the
precursor (Wang et al., 2019). Previously, we achieved a relatively
high level of production and yield, but there remains room to
improve carbon conversion in our system.

In Escherichia coli, glucose is transported through the
phosphate transferase system (PTS). This system is involved in
phosphoenolpyruvate (PEP)-dependent sugar transport and its
activity has an important impact on carbon flux redistribution
in the PEP and pyruvate nodes (Gosset, 2005). Glucose was
phosphorylated to G6P by the phosphoryl generated from PEP,
which was dephosphorylated to form pyruvate. Then pyruvate
further decarboxylated to AcCoA and released 1 mol of CO2,
leading to the loss of the carbon source. In addition, PEP is

a key intermediate metabolite of the EMP pathway. Therefore,
an increase in the EMP pathway reduces the carbon conversion
efficiency of the EP-bifido pathway.

Poly(hydroxybutyrate) (PHB) is the most common
poly(hydroxyalkanoate) (PHA). PHB can be synthesized
and accumulated by more than 300 microorganisms as both an
energy and carbon store (Lee and Choi, 2001; van der Walle
et al., 2001). The in vivo biosynthesis of PHB requires three steps
using AcCoA as the precursor, and PHB production has been
intensively studied (Lee et al., 1994; Wang Q. et al., 2009). Many
strategies have been applied to engineer E. coli to improve PHB
production, however, the yield still has much room to progress.
By overexpressing NAD kinase, recombinant E. coli produced
14 g/L PHB and the yield based on glucose reached 0.31 mol/mol
(0.15 g PHB/g glucose) (Li et al., 2009). By applying fed-batch
strategy, E. coli could accumulate 125 g/L PHB, but the yield
based on glucose was only 0.46 mol/mol (0.22 g PHB/g glucose)
(Mozumder et al., 2014). Previously, we have achieved relatively
high level of PHB content and PHB yield (68.4 wt% and 63.7%
mol/mol, respectively) (Wang et al., 2019). In this study, we
optimized the EP-bifido pathway for improved PHB production
in E. coli. The non-PTS glucose transport pathway genes glk, galP
and heterogeneous glf were enhanced and introduced into EP-
bifido strains through multiple automated genome engineering
(MAGE) and conditional-replication, integration, excision, and
retrieval (CRIM) plasmids. The improved PHB production
indicates that our modification increased the efficiency of
artificial carbon-saving pathways for high carbon conversion
rate from glucose.

MATERIALS AND METHODS

Culture Media and Conditions
For plasmid preparation, E. coli strains were cultured at 37◦C
on a rotary shaker (220 rpm) in test. For plasmid preparation,
E. coli strains were cultured at 37◦C on a rotary shaker (220 rpm)
in test tubes containing 5 mL Lysogeny broth (LB) medium.
For PHB biosynthesis, 50-mL shake flask cultures were started
by 2% inoculation from the 5-mL LB culture. The 50-mL
cultures contained M9 minimal medium with 0.2% yeast extract
containing 20 g/L glucose and shaken at 37◦C in a rotary shaker
(120 rpm) for 48 h. Overnight cultures were shaken at 37◦C in
a rotary shaker (220 rpm). Antibiotics were added as follows:
ampicillin (Amp) 100 µg/mL, spectinomycin (Spc) 50 µg/mL,
and chloromycetin (Cm) 25 µg/mL. For MAGE procedure,
strains were cultivated in SOB medium.

Lysogeny broth medium contains (g/L): tryptone (10),
yeast extract (5), and NaCl (10). M9 medium contains (g/L):
Na2HPO4·12H2O (15.138), KH2PO4 (3), NaCl (0.5), and NH4Cl
(1). SOB medium contains (g/L): tryptone (20), yeast extract
(5), and NaCl (5).

Strains and Plasmids
All E. coli strains and plasmids used are listed in Table 1.
DH-EP was used as the starting strain for further genetic
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FIGURE 1 | EP-bifido pathway and theory carbon flux distribution. Metabolic optimization of EP-bifido pathway. The red box referred to the carbon rearrangement
procedure. Overexpressed genes are shown in red. Deleted genes are shown in blue. Intermediate metabolites participated in carbon rearrangement are shown in
orange.

manipulation. All primers used for molecular manipulations are
listed in Table 2.

The Red homologous recombination method was employed
for gene deletion. The pTKRED complementary plasmid was

transformed into the target strain. Deletion fragments of ptsG
gene were amplified from the JW1087-2 single-gene knockout
mutant (Baba et al., 2006) (bought from Coli Genetic Stock
Center, CGSC) using primers Q-ptsG-F/Q-ptsG-R.
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TABLE 1 | Bacterial strains and plasmids used in this study.

Strain and
plasmids

Relevant properties Sources

Strains

JW1087-2 JW25113 derivative, 1ptsG:kan Baba et al. (2006)

DH-EP DH5α derivative, 1edd1pfkA Wang et al. (2019)

DH-EPP DH5α derivative, 1edd1pfkA1ptsG This study

L-6 DH-EPP derivative, 1edd1pfkA1ptsG galP
RBS:TGAAAGGGAAA

This study

M-6 L-6 derivative,
1edd1pfkA1ptsG:trc-rbs-glfzm

This study

Plasmids

pCAB pBluescriptII SK, phbC and phbAB gene
from Ralstonia eutropha

Wang et al. (2019)

pCDFtrc Cloning vector, SpeR Wang et al. (2019)

pFF pCDFtrc, fxpk gene from B. adolescentis
and fbp gene from E. coli

Wang et al. (2019)

pKD3 Template plasmid with CmR gene and FLP
recognition target

Datsenko and
Wanner (2000)

pTKRED PBAD promoter containing plasmid, SpeR Kuhlman and Cox
(2010)

pCP20 Helper plasmid expressing FLP
recombinase, ts-rep, AmpR, CmR

Datsenko and
Wanner (2000)

pAH69 Helper plasmid expressing HK022
integrase, AmpR

Haldimann and
Wanner (2001)

TABLE 2 | Key oligonucleotide primers used in this study for DNA manipulation.

Primers Sequence (5′-3′)

Q-ptsG-F 5′-GGCTGTGTTGAAAGGTGTTGC-3′

Q-ptsG-R 5′-AACGCGCTATATTGCAGAGG-3′

Glf-F 5′-GGTCGGTAAATCGCTGCTTGACAATTAATCATCCGGC
TCGTATAATGTCTAGAGAAAGAGGAGAAATACTAGATGAG
TTCTGAAAGTAGTCAGGGTC-3′

Glf-R 5′-GCCTACCCGGATATTATCGTGAGGATGCGAATTGTG
TAGGCTGGAGCTGCTTC-3′

R6K-F 5′-TCGCATCCTCACGATAATATCCGGGTAGGC-3′

R6K-R 5′-TTGTCAAGCAGCATCAGCGATTTACCGACCGATCC
GGCCACGATGCGTCC-3′

Measurement of Extracellular
Metabolites
A spectrophotometer was used to measure the optical density
at 600 nm (OD600) of the bacterial culture. PHB was quantified
using gas chromatography (GC). Cells were harvested by
centrifugation at 6,000 × g for 10 min, 4◦C. The cell pellets were
washed twice with distilled water and lyophilized for 7 h. Before
GC analysis, 1 mL chloroform, 850 µL methanol, and 150 µL
sulfuric acid (98%, w/w) were added to the weighed cells in vials.
The vials were incubated at 100◦C for 1 h. Then, 1 mL water
was added for stratification and cooling vials. After standing for
1 h, the mixture separated into layers and the heavier chloroform
phase was transferred to new vial for GC analysis. The GC
detection process was performed using a Shimadzu GC2010 gas
chromatograph (Kyoto, Japan) equipped with an AOC-20i auto
injector and a Restek Rtx-5 column. PHB standard samples of
methyl-(R)-3-hydroxybutyrate (Sigma-Aldrich) were dissolved

in chloroform and analyzed by GC. The temperature program
used was: 80◦C for 1 min, ramped to 120◦C at 10◦C/min,
then ramped to 160◦C at 45◦C/min for 5 min, and the total
time was 10.89 min.

For extracellular metabolite analysis, 1 mL of culture was
centrifuged at12,000 × g for 2 min. The supernatant was filtered
through a 0.22-µm syringe filter for high-performance liquid
chromatography analysis. Glucose, acetate, and pyruvate were
measured on an ion exchange column (HPX-87H; Bio-Rad Labs)
with a differential refractive index detector (Shimadzu RID-10A).
A 0.5-mL/min mobile phase using a 5-mM H2SO4 solution was
applied to the column. The column was operated at 65◦C.

MAGE Procedure
The ribosome binding sites (RBSs) designed for the modulation
of GalP and glk transcription rates were 5′-GTCGTACTC
ACCTATCTTAATTCACAATAAAAAATAACCADDRRRRRD
DDDATCATGCCTGACGCTAAAAAACAGGGGCGGTCAAA
CAAG-3′ (D = A, G, T; and R = A, G) and 5′-GCCGCCCACA
TCACCGACTAATGCATACTTTGTCATTCTHHHHYYYYYH
HGCTAAAGTCAAAATAATTCTTTCTCACACTGTAAATAC
CT-3′ (H = T, C, A; and Y = T, C), respectively, with four
phosphorothioated bases at the 5′ terminus. The initiation of
MAGE requires that pTKRED was transformed into the target
strain. The MAGE cycles were performed by growing DH-EPP in
5 mL SOB medium at 30◦C and shaking at 220 rpm for 12 h. For
the first MAGE round, 5-mL shake flask cultures using SOB broth
were started with a 1% inoculation from the overnight culture.
Isopropyl-β-D-thiogalactopyranoside (IPTG) was added to a
final concentration of 0.5 mM to induce λ-prophage (bet, gam,
and exo) gene expression. Cells were then incubated at 30◦C and
shaking at 220 rpm until reaching an OD600 of 0.5 to 0.6. Cells
were collected (2 mL), pelleted, and washed three times with cold
sterile water to make them electrocompetent. ssDNA mixture
(1 µM) was added to electrocompetent cells and electroporated
at 2.5 kV. To start the second MAGE round, cells were recovered
in 5 mL SOC with IPTG until their OD600 reached 0.5 to 0.6, after
which cells underwent pelleting, washing, and electroporation.
Three to four MAGE rounds were performed per day and 16
cycles were performed in total. The resulting pool of variants
were then characterized using the Nile red assay.

Screening of PHB Competent Cells by
Nile Red Assay
When PHB is combined with Nile red dye a red color is produced.
We transformed the pCAB plasmid into these variants and added
100 µL Amp, 50 µL IPTG, 20 g/L glucose, and 200 µL Nile
red dye to the solid M9 medium supplemented with 0.2% yeast
extract. The MAGE variants were diluted 200-fold and spread
onto several plates. After incubation at 37◦C for 16 h, the plates
were placed at 4◦C for 3 days to allow the color reaction to
develop. Based on the color difference, we picked single red
colonies for sequencing. For all the sequenced colonies with
mutations identified, the pTKRED plasmid was removed and the
strains were transformed with the pFF and pCAB plasmids for
further verification of the PHB competent cells.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 4 August 2020 | Volume 8 | Article 517336

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-517336 August 25, 2020 Time: 17:46 # 5

Li et al. Optimizing Glucose Uptake of EP-Bifido Pathway

Integration of glf
For glf integration, the trc-rbs-glf module was amplified from
Zymomonas mobilis genomic DNA by PCR using primers GLF-
F and GLF-R. The PCR product (trc-rbs-glf ) was cloned into
a vector that carries R6K replicon and phage attachment sites
(attP). This plasmid was named R6K-glf and was confirmed by
DNA sequencing. The pAH69 helper plasmid was transformed
into the L-6 strain. The target strain carrying pAH69 was
incubated overnight at 30◦C and transferred to 37◦C for 1 h
before transfection. Then the pR6K-glf plasmid was introduced
into L-6 by electroporation. The centrifuged bacteria were plated
onto plates containing 25 µg/mL kanamycin for overnight
incubation at 37◦C. R6K-glf positive transformants were selected
by their kanR phenotype and were verified by PCR.

Determination of CO2 Emissions
CO2 emission was determined using a thermostatic oscillation
incubator with a CO2 detector (BCP-CO2, Bluesens, Germany)
that monitored CO2 volume every 20 s and transmitted
the data to a computer. Cultures were grown at 37◦C with
shaking at 150 rpm.

RESULTS

Inhibiting PTS to Reduce PEP
Consumption
In E. coli, glucose is transported through the PTS system. This
system is involved in PEP-dependent sugar transport and its
activity has an important impact on carbon flux redistribution

in the PEP and pyruvate nodes (Gosset, 2005). Glucose transport
into the cytoplasm by EIICBGlc (encoded by ptsG) is coupled to
its phosphorylation. The phosphate group is derived from PEP
and is transferred via a cascade of proteins, enzyme I (EI), HPr,
EIIA, and EIIB. This procedure consumes almost half of the PEP
(Valle et al., 1996; Wang et al., 2012). Glucose was phosphorylated
to G6P by phosphoryl generated from PEP dephosphorylated
to pyruvate, the formed pyruvate is further decarboxylated to
AcCoA and releases 1 mol CO2, leading to carbon source loss.
While PEP is not the precursor in our study, PEP consumption
would convert carbon flux to the EMP pathway, which is not
desirable in our EP-bifido pathway. Therefore, modulation of
the PEP-independent uptake and phosphorylation system is
required. Knocking out ptsG and replacing it with other glucose
transport pathways is a common method used in the production
of PEP-precursor products (Gosset, 2005; Lee et al., 2005; Li
et al., 2013; Kyselova et al., 2018). Therefore, we knocked out
ptsG in strain DH-EP and named the strain DH-EPP. But found
that ptsG deletion severely impaired the growth capacity of
the resulting strain. Compared with DH-EP (pFFpCAB) strain,
PHB yield of DH-EPP strain decreased from 63.7 to 26.3%
(mol/mol) (Figure 2).

For glucose uptake recovery, replacing PTS with an alternative
PEP-independent uptake and phosphorylation system could be
an efficient solution to this problem.

Improving Glucose Flux Through
Non-PTS Pathway
When E. coli strains lack PTS, the low affinity galactose:
H+ symporter, GalP, encoded by galP, is induced. Glucose

FIGURE 2 | Fermentation result of ptsG knockout strain. The date of PHB yield and content of both strains were calculated based on fermentation samples at 60 h.
The time axis at the top was used to depict growth curve. The growth carve was showed in orange red. The experiments were performed in duplicate and error bars
indicate s.d. Strains were cultivated with M9 at 37◦C, 150 rpm.
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FIGURE 3 | MAGE procedure. The red squares represent the cells, the black circles represent the ptkRED plasmid, and Exo, Bet and gam are the gene sequences
of the enzymes on the plasmid. The yellow and blue circles represent the bacterial genome, with the red portion representing the target engineered gene sequence.
Exo, exonuclease; Bet, phage recombination protein Bet; gam, host-nuclease inhibitor protein Gam.

internalized by GalP must be phosphorylated by glucokinase
(encoded by glk), which catalyzes the ATP-dependent
phosphorylation of glucose to generate G6P in the cytoplasm
without CO2 emission, thus saving the carbon source (Gosset,
2005). Therefore, we modified galP and glk expression levels
to improve the glucose utilization rate. While increasing galP
and glk transcriptional levels through plasmid overexpression
is a pervasive strategy (Hernandez-Montalvo et al., 2003; Wang
et al., 2006), it has several disadvantages, including metabolic
burden and unexpected lateral effects. Modulation of galP
and glk expression levels through plasmid overexpression or
high strength promoter substitution cannot provide multiple
combination of expression intensity for screening. Discovering
a way to effectively modulate the transcription of the two genes
to an optimal strength in combination is a pressing problem.
We adopted MAGE to simultaneously regulate galP and glk
expression levels (Wang H.H. et al., 2009). Using this approach,
colonies with high PHB yields can be identified using Nile
red dye staining.

After 16 rounds of MAGE modulation (Figure 3),
recombinant strains were screened by Nile red staining.
Recombinant strains with higher PHB production showed
redder color. Screening and sequencing results are shown in
Table 3. Using single colony color screening, we found that the
RBS of both glk and galP genes were changed, and the amount of
ssDNA (single string DNA) recombination of glk exceeded that
of galP. This may be because the location of the glk gene is more

susceptible to ssDNA recombination during genome replication.
However, no recombinant was screened out in which the two
genes were simultaneously mutated.

TABLE 3 | Screening result of MAGE recombination strains.

Strain number Gene Origin RBS sequence Mutated RBS sequence

1 glk GGAGCAGTTGA GAAGGGAGAGG

2 glk GGAGCAGTTGA GAAAGAAATGA

6 galP TATTGGAGGGC TGAAAGGGAAA

9 glk GGAGCAGTTGA GGAGGGATGGA

16 glk GGAGCAGTTGA TAGGAGGAGTT

18 glk GGAGCAGTTGA AAAAAGGGTTA

19 glk GGAGCAGTTGA GAAGGAGGGGT

20 galP TATTGGAGGGC GGAGAGGGTTA

21 glk GGAGCAGTTGA TGGGGGGAGGG

22 glk GGAGCAGTTGA AAAGGGGTTTG

23 glk GGAGCAGTTGA GAAGGGGTTTG

24 glk GGAGCAGTTGA AGAGGAAGAGA

27 glk GGAGCAGTTGA AAAAGGGATAG

28 glk GGAGCAGTTGA TTGGAAGATAT

30 glk GGAGCAGTTGA TGAGGAATGAA

32 glk GGAGCAGTTGA GTGGAAATAGA

36 glk GGAGCAGTTGA TTAGGGGGAGT

51 glk GGAGCAGTTGA TTAAGGGATAT

62 glk GGAGCAGTTGA GGAAGGAGAAT
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Nineteen mutant strains were selected and transformed with
pFF and pCAB, subsequently. Three batches fermentation of
these 19 strains lead to the selection of strains in consideration
of glucose consumption and PHB content, named EPPG-6,

EPPG-16, EPPG-51, and EPPG-62 (Figure 4D). Then, we
repeated fermentation using the four selected strains (Figure 4E).
Fermentation results showed that after glucose transport system
modulation, the DH-EPPG-6 strain had a recovered growth rate.

FIGURE 4 | Fermentation result of the engineered EP-bifido strains. (A) Growth curve of first batch selection. (B) Growth curve of second batch selection.
(C) Growth curve of third batch selection. (D) PHB content and glucose consumption of these three batches selection. The blue columns represent PHB content
and orange red broken line represents glucose consumption. (E) PHB content and yield of selected recombinants. The experiments were performed in triplicate and
error bars indicate s.d. For mutant fermentation selection, strains were cultivated with M9 at 37◦C, 150 rpm. (F) Growth curve of selected recombinants.
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The PHB yield reached 71.2% (mol/mol), which was 63.7% higher
than that of the strain DH-EP. Then DH-EPPG-6 strain was
renamed L-6, in which the wild type RBS sequence of galP was
mutated to TGAAAGGGAAA.

Expressing Heterogeneous Sugar
Transporter to Reinforce Glucose Uptake
To further enhance the consumption of glucose, we compared
the kinetic parameters of several transporters with their glucose
transport capacity and energy consumption during glucose
internalization and phosphorylation (Gosset, 2005). Because the

transmembrane proton potential is a form of energy, the energy
consumption of the glf sugar transporter from Zymomonas
mobilis is comparable to that of the E. coli glucose-specific
PTS (PTSGlc). Compared with galP, the glfzm transporter used
less energy to produce a higher maximum velocity. Therefore,
the high-rate, low-energy sugar transporter glfzm was chosen
to improve the glucose absorption capacity of engineered
bacteria. Then glfzm was inserted at the attP genomic site of
strain L-6 using the CRIM plasmid system (Haldimann and
Wanner, 2001), resulting the strain M-6. We deduced that glf
integration was conducive to growth recovery in later growth
stages. In Figure 5B, M-6 (pFFpCAB) showed a better growth

FIGURE 5 | The fermentation profile and PHB yield of all the engineered EP-bifido strains. (A) Glucose consumption. (B) Cell dry weight. (C) Acetate production.
(D) PHB production. (E) PHB content and PHB yield. (F) Glucose consumption and acetate normalized by residual cell mass. The experiments were performed in
triplicate and error bars indicate s.d. Strains were cultivated in M9 with glucose at 37◦C, 150 rpm.
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TABLE 4 | Specific growth rates and glucose utilization rates of DH5α, DH-EP
(pFFpCAB), DH-EPP (pFFpCAB), L-6 (pFFpCAB), and M-6 (pFFpCAB).

Strains Specific growth
rate (h−1)

Specific glucose utilization
rate (g·L−1·h−1)

DH5α (pFFpCAB) 0.35 ± 0.011 0.78 ± 0.02

DH-EP (pFFpCAB) 0.20 ± 0.020 0.41 ± 0.03

DH-EPP (pFFpCAB) 0.09 ± 0.002 0.23 ± 0.01

L-6 (pFFpCAB) 0.28 ± 0.018 0.52 ± 0.01

M-6 (pFFpCAB) 0.50 ± 0.026 0.71 ± 0.03

Specific growth rates and glucose utilization rates were calculated based on the 0–
48 h data.

TABLE 5 | PHB productivity of the engineered PHB-producing strains.

Strains PHB titer (g·L−1·h−1)

DH5α (pCDF pCAB) 0.048 ± 0.07

DH5α (pFF pCAB) 0.061 ± 0.08

DH-EP (pFF pCAB) 0.071 ± 0.012

DH-EPP (pFF pCAB) 0.015 ± 0.04

L-6 (pFF pCAB) 0.083 ± 0.015

M-6 (pFF pCAB) 0.100 ± 0.078

curve than the control DH5α (pCDFpCAB). Simultaneously, as
we expected, gross glucose consumption improved compared
with L-6, increased from 16.2 to 20.4 g/L (Figure 5A). The
glucose consumption of all engineered strains changed obviously
after every modification step. PHB titer of M-6 improved
significantly, from 4.82 to 5.81 g/L in comparison with that
of L-6 (Figure 5D), and PHB content in M-6 strain reached
85.1 wt% (Figure 5E). The only drawback was that PHB yield
of M-6 reached 68.1% (mol/mol) slightly decreased compared
with L-6 (Figure 5E). In general, compared with parental
strain DH-EP (pFFpCAB), the PHB titer and content improved
41.71 and 24.41% in M-6, respectively. And compared with the
control DH5α (pCDFpCAB), the PHB content and yield of M-6
improved 61.9 and 141.7% in M-6, respectively (Figure 5). All the
engineered strains produced some amount of acetate, M-6 and L-
6 produced less acetate than DH-EP strain. We also calculated

the acetate formation and glucose consumption normalized by
residual cell mass (RCM).

In order to confirm that the glucose consumption rates in our
engineered strains are indeed improved, we calculated the specific
growth rate and glucose utilization rates of DH-EP (pFFpCAB),
DH5α-EPP (pFFpCAB), L-6 (pFFpCAB), and M-6 (pFFpCAB).
After ptsG gene was deleted, the specific growth rate of DH-
EPP decreased from 0.20 to 0.09 h−1, and the glucose utilization
rate decreased from 0.78 to 0.41 g L−1 h−1 (Table 4). After
glfzm integration based on L-6, the specific growth rate of M-6
(pFFpCAB) increased obviously from 0.28 to 0.50 h−1, improved
42.8% compared to that of DH5α (pFFpCAB). The growth
consumption rate recovered to 0.71 g L−1 h−1, 73% higher
than DH-EP (pFFpCAB). M-6 and L-6 showed lower normalized
glucose consumption. Thus M-6 and L-6 had improved PHB
biosynthesis and PHB productivity since they produced less by-
product acetate and consumed less glucose per residual cell mass
(Figure 5F and Table 5).

We further examined the CO2 release from the constructed
EP-bifido strains. The total CO2 release of DH5α-EPP
(pFFpCAB) decreased to 32.5% compared to DH-EP (pFFpCAB)
(Figure 6A). And the CO2 emission of L-6 (pFFpCAB), M-6
(pFFpCAB) improved 177 and 332% compared to that of
DH5α-EPP (pFFpCAB). We believe that the restoring growth
contributed to the increased CO2 release. The CO2 yield of
DH5α-EPP (pFFpCAB), L-6 (pFFpCAB), and M-6 (pFFpCAB)
decreased to 16.9% (mol/mol), 74.4% (mol/mol) and 92.4%
(mol/mol) compared to their controls, respectively (Figure 6B).
The above data confirmed the recovery of growth after PTS
system deficiency and the decreased CO2 emission from the L-6
(pFFpCAB) and M-6 (pFFpCAB) strains.

DISCUSSION

As environmental problems intensify, carbon saving or carbon
sequestration pathways have become a new focus for bio-
manufacturing. Previously, we successfully constructed an
efficient carbon-saving pathway in E. coli called the EP-bifido

FIGURE 6 | Determination of CO2 release. (A) Relative CO2 emission and (B) CO2 yield. Strains were cultivated in modified M9 medium containing 20 g/L glucose
at 37◦C and 150 rpm. CO2 yield were calculated as mol/mol glucose × 100%. The experiments were performed in triplicate and error bars indicate s.d.
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pathway. This pathway has been applied to the production of
several compounds that use acetyl-CoA as a precursor. As a
degradable material, PHB has great application prospects. While
we believe that there is potential for further optimization of PHB
production by the EP-bifido pathway. In this study, we knocked
out the ptsG gene, a key glucose transporter of the PTS system
that employs PEP as phosphate donor. The glucose consumption
rate and cell growth were significantly reduced in the ptsG mutant
under aerobic fermentation conditions. The deficiency in the PTS
system dramatically impairs glucose uptake and causes growth
restriction. It is speculated that the reason for growth restriction
is not insufficient glucose uptake, but the subsequent decrease
in glucose phosphorylation efficiency due to limited glucokinase
activity (Steinsiek and Bettenbrock, 2012).

To overcome this growth hindrance, we optimized the RBS
sequences of galP and glk genes, encoding glucose permease
and glucokinase, respectively. Subsequently, we introduced the
Z. mobilis glucose transporter, glfzm, into the L-6 high-yield strain,
and observed cell growth recovery. After optimization, PHB
yield reached 71.9% (mol/mol) in L-6 strain. In the resulting
strain M-6, the intracellular PHB content reached 85.1 wt%,
and the titer reached 5.81 g/L. Previously, most studies have
compensated for PTS knockout-induced inhibition of glucose
uptake by overexpression of glk, and galP or by heterologous
expression of glf (Snoep et al., 1994; Gosset, 2005; Lin et al., 2018).
Instead, we applied MAGE technology to directly alter genomic
glk and galP to optimize their expression (Gallagher et al.,
2014). Meanwhile, the RBS library constructed using MAGE
provided rich genotypes for subsequent screening of high-yield
PHB strains. After glfzm integration, recovered growth rate and
glucose consumption was evident in strain M-6. Compared with
parent strain DH-EP (pFFpCAB), the glucose consumption of M-
6 increased 4.6 g/L, 29.1% higher than that of parent strain in
Figure 5A. The PHB content and yield of strain M-6 improved
compared with that of DH-EP(pFFpCAB). M-6 and L-6 showed
lower normalized glucose consumption. Thus M-6 and L-6 had
improved PHB production since they produced less by-product
acetate and consumed less glucose per residual cell mass. We
inferred that increased glucose uptake enhanced flux through

EMP, which is supported by increased cell growth. The growth
of DH-EP strain improved with decreased acetate formation in
M-6 strain. The specific growth rate and CO2 release data of
constructed strains further confirmed our inference. Our study
provided an efficient way for improving glucose absorption and
total carbon conversion rate in artificial carbon-saving pathways
by replacing PTS with other glucose transporters. It also describes
an efficient screening strategy for MAGE ssDNA recombineering
technology. The efficient utilization of carbon sources has been
one of the determinant for high productivity in microbial
fermentation. In the future, the effective allocation of carbon
resources and the construction of effective strategies for balancing
cell growth and product biosynthesis will still be the direction of
metabolic engineering.
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